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ABSTRACT
We consider stationary equilibria of mean-field games between

agents which follow continuous time semi-Markov decision pro-

cesses with finite states and actions, when congestion affects their

state-sojourn times but not the reward and transition structure.

Games of this type arise in situations where selfish agents either

traverse or circulate a network of congestible resources, as in rout-

ing games and models of driver mobility in ride-hailing platforms.

A variational characterization of equilibria is employed to es-

tablish existence and uniqueness of average rewards. In contrast

to ordinary routing games, where the price of anarchy can be un-

bounded, the latter equals 2 when agents never exit.
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1 INTRODUCTION
The literature on stationary equilibria in general mean field games

(e.g., see [1, 5, 8, 9, 13]) is primarily focused in obtaining existence

results and is not very informative about uniqueness and efficiency

of the equilibria. To the best of the authors’ knowledge no results

on the price of anarchy exist in the literature of general mean field

games in the stationary case. (Although, some progress has been

made in the nonstationary linear case, e.g., see [4, 6, 10]
1
.) In con-

trast, when congestion affects only the time evolution (although

in a substantially general way) we show that the price of anarchy

is 2. Application specific models found in the literature, e.g., for

ride-hailing in [2, 3], explore properties beyond existence, but the

methods do not seem to generalize and use assumptions pertain-

ing to the specific domain (e.g., competitive pricing, geographical

symmetry in [3]).

All the proofs, applications to ride-hailing and selfish routing in

closed networks (as opposed to open, studied in [12]) can be found

in the full paper version in [7].

1
We thank the anonymous reviewer for bringing these to our attention

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

2 MODEL OF AN INDIVIDUAL PLAYER
A nonatomic set of players of 𝐿 types, indexed by 𝑙 = 1, . . . , 𝐿,

compete for resources. (A player of type 𝑙 is referred to as an 𝑙-

player.) All types share the same finite sets of states, 𝑆 , and actions,

𝐴. The state of any 𝑙-player evolves according to a continuous

time semi-Markov decision process. The actions are chosen at state

transitions, and choosing 𝛼 ∈ 𝐴 in 𝑖 ∈ 𝑆 results in the following

sequence:

(1) An immediate reward 𝑟 𝑙
𝑖𝛼

is awarded. Let the reward vector

be 𝑟 𝑙 = (𝑟 𝑙
𝑖𝛼
, 𝑖 ∈ 𝑆, 𝛼 ∈ 𝐴).

(2) The next state is chosen independently of the past according

to the transition probabilities 𝑝𝑙
𝑖𝛼 𝑗
, 𝑖, 𝑗 ∈ 𝑆, 𝛼 ∈ 𝐴, where

𝑝𝑙
𝑖𝛼 𝑗

≥ 0,
∑
𝑗∈𝑆 𝑝

𝑙
𝑖𝛼 𝑗

= 1. Let 𝑝𝑙 = (𝑝𝑙
𝑖𝛼
, 𝑖 ∈ 𝑆, 𝛼 ∈ 𝐴).

(3) Conditionally on the next state being 𝑗 , the transition to 𝑗

occurs after a random time, independently of the past. The

mean sojourn time, 𝜏𝑙
𝑖𝛼
, of state 𝑖 when 𝛼 is chosen, depends

on the interaction with the other players, including those of

other types, and is defined in Section 3.

(4) Upon arrival to 𝑗 the player decides the next action and the

process continues as above.

3 CONGESTION-DEPENDENT SOJOURN
TIMES

Players exhibit a mean field type of interaction where their state

sojourn times 𝜏𝑙 = (𝜏𝑙
𝑖𝛼
, 𝑖 ∈ 𝑆, 𝛼 ∈ 𝐴) depend on the distribution of

players on 𝑆 ×𝐴. Let 𝜇𝑙 ∈ M(𝑆 ×𝐴) be a measure on 𝑆 ×𝐴, where
𝜇𝑙 ({(𝑖, 𝛼)}), or simply 𝜇𝑙

𝑖𝛼
, is the mass of 𝑙-players which choose

action 𝛼 in 𝑖 . (𝜇𝑙 (𝑆 ×𝐴) gives the total mass of 𝑙-players.) The mean

sojourn time is decomposed as

𝜏𝑙𝑖𝛼 = 𝑤𝑙𝑖𝛼 (𝜇) + 𝑡
𝑙
𝑖𝛼 (𝑥 (𝜇)), (1)

where𝑤𝑙
𝑖𝛼
(𝜇) is the time the player waits to collect the resources

required for 𝑙-players to execute action 𝛼 in 𝑖 , and 𝑡𝑙
𝑖𝛼
(·) is the

action execution time which is allowed to depend on the rates

𝑥 (𝜇) = (𝑥𝑙 ′
𝑖′𝛼 ′ (𝜇), 𝑖′ ∈ 𝑆, 𝛼 ′ ∈ 𝐴, 𝑙 ′ = 1, . . . , 𝐿) . (𝑥𝑙

𝑖𝛼
(𝜇) is the rate of

𝑙-players entering 𝑖 and choosing 𝛼 per unit of time.)

𝑥 (𝜇) and 𝑤 (𝜇) = (𝑤𝑙
𝑖𝑎
(𝜇), 𝑖 ∈ 𝑆, 𝛼 ∈ 𝐴, 𝑙 = 1, . . . , 𝐿) are defined

by Lemma 1 below.

Assumption 1. There exists convex 𝐺 : R𝐿×𝑆×𝐴+ −→ R+ with
𝐺 (0) = 0 such that

𝜕𝐺

𝜕𝑥𝑙
𝑖𝛼

= 𝑡𝑙𝑖𝛼 , ∀𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑙 = 1, . . . , 𝐿. (2)
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For example, 𝑡𝑙
𝑖𝛼
(𝑥) = 𝑔𝑖,𝛼

(∑
𝑙 ′ 𝑥

𝑙 ′
𝑖𝛼

)
for nondecreasing 𝑔𝑖,𝛼 , sat-

isfies Assumption 1, since (2) holds with

𝐺 (𝑥) =
∑︁
𝑖,𝛼

∫ ∑
𝑙 𝑥

𝑙
𝑖𝛼

0

𝑔𝑖,𝛼 (𝑢)𝑑𝑢. (3)

Lemma 1. Let Assumption 1 hold, and let𝐾 ∈ N, 𝑎𝑙
𝑘,𝑖𝛼

≥ 0, 𝑏𝑘 > 0

for all 𝑘 = 1, . . . , 𝐾, 𝑙 = 1, . . . , 𝐿, 𝑖 ∈ 𝑆, 𝛼 ∈ 𝐴. There exists a unique
continuous map 𝜇 ↦→ (𝑥 (𝜇),𝑤 (𝜇)) defined on M(𝑆 ×𝐴)𝐿 such that
it satisfies: [

𝑤𝑙𝑖𝛼 (𝜇) + 𝑡
𝑙
𝑖𝛼 (𝑥 (𝜇))

]
𝑥𝑙𝑖𝛼 (𝜇) = 𝜇

𝑙
𝑖𝛼 , (4)

𝑤𝑙𝑖𝛼 (𝜇) =
𝐾∑︁
𝑘=1

𝑎𝑙
𝑘,𝑖𝛼

𝑑𝑘 , (5)∑︁
𝑙,𝑖,𝛼

𝑎𝑙
𝑘,𝑖𝛼

𝑥𝑙𝑖𝛼 (𝜇) < 𝑏𝑘 =⇒ 𝑑𝑘 = 0, (6)∑︁
𝑙,𝑖,𝛼

𝑎𝑙
𝑘,𝑖𝛼

𝑥𝑙𝑖𝛼 (𝜇) ≤ 𝑏𝑘 . (7)

for some 𝑑𝑘 ≥ 0, 𝑘 = 1, . . . , 𝐾 .

Equation (4) is Little’s identity. Equation (5) is because 𝑤𝑙
𝑖𝛼
(𝜇)

is assumed to arise from waiting to obtain a mix of 𝐾 resources

indexed by 𝑘 = 1, . . . , 𝐾 . (The 𝑘-th resource is referred to as 𝑘-

resource.) 𝑎𝑙
𝑘,𝑖𝛼

≥ 0 is the amount of 𝑘-resource that an 𝑙-player

requires to execute action 𝛼 in 𝑖 , and let 𝑑𝑘 ≥ 0 be the waiting time

to obtain a unit of 𝑘-resource. Assuming that players wait for one

unit of resource at a time yields (5). Equation (6) implies that 𝑑𝑘
should be zero if the 𝑘-resource constraint (7) is not active, i.e., the

𝑘-resource is not exhausted.

We write 𝜏𝑙,𝜇 to emphasize the dependence of 𝜏𝑙 on 𝜇.

4 MEAN FIELD GAME
For any initial state 𝑖 , the ergodic average of rewards of an 𝑙-player

following a Markovian policy 𝜎 is

lim inf

𝑇

1

𝑇
𝐸

(
𝑁𝑇∑︁
𝑛=1

𝑟 𝑙𝑋𝑛𝐴𝑛

�����𝑋0 = 𝑖
)
, (8)

where 𝑁𝑇 is the number of transitions before time𝑇 ,𝑋𝑛 is the state

visited at the 𝑛-th transition, and 𝐴𝑛 is the action chosen by 𝜎 at

that instant. Let 𝑉 (𝑟 𝑙 , 𝑝𝑙 , 𝜏𝑙,𝜇 ) be the optimal average reward per

unit time, i.e., the supremum of (8) over all policies 𝜎 , which does

not depend on 𝑖 under the following assumption (see [11]).

Assumption 2 (Weakly communicating model, [11]). For ev-
ery 𝑙 = 1, . . . , 𝐿, the transition model 𝑝𝑙 is weakly communicating.

Furthermore, assume that a player always prefers to participate

in the game regardless of the strategies of the other players.

Assumption 3 (Participation). There exists 𝜇 ∈ M(𝑆 × 𝐴)𝐿
such that the optimal average reward is positive for any player type,
i.e., 𝑉 (𝑟 𝑙 , 𝑝𝑙 , 𝜏𝑙,𝜇 ) > 0 for every 𝑙 .

Next, the equilibrium of the mean field game is defined, in sta-

tionarity:

Definition 1. 𝜇𝑜 ∈ M(𝑆 ×𝐴)𝐿 is a (stationary) equilibrium if
and only if

(1) 𝜇𝑙𝑜 is time-invariant, i.e.,∑︁
𝑗∈𝑆,𝛼∈𝐴

𝑥𝑙𝑗𝛼 (𝜇𝑜 )
(
𝛿𝑖 𝑗 − 𝑝𝑙𝑗𝛼𝑖

)
= 0, for each 𝑖 ∈ 𝑆, (9)

where 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise, and
(2) the optimal average reward equals the aggregate average re-

ward per unit mass, i.e.,

𝑉

(
𝑟 𝑙 , 𝑝𝑙 , 𝜏𝑙,𝜇𝑜

)
=

∑
𝑖,𝛼 𝑟

𝑙
𝑖𝛼
𝑥𝑙
𝑖𝛼
(𝜇𝑜 )

𝜇𝑙𝑜 (𝑆 ×𝐴)
, (10)

for each type 𝑙 .

5 MAIN RESULTS
A key result is a characterization of equilibria as the optimal solu-

tions of a convex optimization problem.

Theorem 1. Under Assumptions 1, 2, 3, 𝜇𝑜 ∈ M(𝑆 × 𝐴)𝐿 is an
equilibrium if and only if 𝑥 (𝜇𝑜 ) ∈ R𝐿×𝑆×𝐴+ is an optimal solution of:

max

∑︁
𝑙

𝜇𝑙𝑜 (𝑆 ×𝐴) log
(∑︁
𝑖,𝛼

𝑟 𝑙𝑖𝛼𝑥
𝑙
𝑖𝛼

)
−𝐺 (𝑥) (11)

s.t.
∑︁
𝑙,𝑖,𝛼

𝑎𝑙
𝑘,𝑖𝛼

𝑥𝑙𝑖𝛼 ≤ 𝑏𝑘 , , 𝑘 = 1, . . . , 𝐾, (12)∑︁
𝑗,𝛼

𝑥𝑙𝑗𝛼

(
𝛿𝑖 𝑗 − 𝑝𝑙𝑗𝛼𝑖

)
= 0, 𝑙 = 1, . . . , 𝐿, 𝑖 ∈ 𝑆, (13)

over 𝑥 = (𝑥𝑙𝑖𝛼 , 𝑙 = 1, . . . , 𝐿, 𝑖 ∈ 𝑆, 𝛼 ∈ 𝐴) ∈ R𝐿×𝑆×𝐴+ ,

and𝑤𝑙
𝑖𝛼
(𝜇𝑜 ) =

∑
𝑘 𝑎

𝑙
𝑖𝛼
𝑑𝑘 for all 𝑙, 𝑖, 𝛼 , where 𝑑1, . . . , 𝑑𝐾 are optimal

Lagrange multipliers for the resource constraints (12).

Corollary 1. Under Assumptions 1, 2, 3, the following hold:
(a) For any set of player masses𝑚𝑙 > 0, 𝑙 = 1, . . . , 𝐿, an equilib-

rium 𝜇𝑜 exists with 𝜇𝑙𝑜 (𝑆 ×𝐴) =𝑚𝑙 for every 𝑙 .
(b) The optimal average reward 𝑉

(
𝑟 𝑙 , 𝑝𝑙 , 𝜏𝑙,𝜇𝑜

)
, 𝑙 = 1, . . . , 𝐿 and

𝐺 (𝑥 (𝜇𝑜 )) assume the same value for every equilibrium 𝜇𝑜
with the same player masses. That is, their values depend on
𝜇𝑜 only through 𝜇𝑙𝑜 (𝑆 ×𝐴), 𝑙 = 1, . . . , 𝐿.

5.1 Price of Anarchy
Here we restrict attention to games with a single player type (𝐿 = 1).

(The player type index 𝑙 is dropped.)

Definition 2. The optimal aggregate average reward𝑊 (𝑚) for
player mass𝑚 is

𝑊 (𝑚) = sup

𝜇 stationary, 𝜇 (𝑆×𝐴)≤𝑚

∑︁
𝑖,𝛼

𝑟 𝑙𝑖𝛼𝑥
𝑙
𝑖𝛼 (𝜇) . (14)

𝑊 (𝑚) and the aggregate average reward at an equilibrium with

player mass𝑚, do not coincide in general. The price of anarchy, i.e.,

the largest possible ratio between the two, is

sup

𝑊 (𝜇𝑜 (𝑆 ×𝐴))∑
𝑖,𝛼 𝑟

𝑙
𝑖𝛼
𝑥𝑙
𝑖𝛼
(𝜇𝑜 )

, (15)

where the supremum is taken over all model parameters and corre-

sponding equilibria 𝜇𝑜 ∈ M(𝑆 ×𝐴) for which Assumptions 1, 2, 3

are true.

Proposition 1. The price of anarchy is 2.
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