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ABSTRACT
This extended abstract outlines the benefits of implementing citizen-
centric design principles into a demand-responsive transportation
optimization system. Demand-responsive transportation systems
work on flexible schedules to predict and react to user demand
in real-time. Additionally, areas where social preferences can be
incorporated into these methods, are identified. Then a comparison
between a Tabu search heuristic and a simple greedy heuristic
for passenger stop selection is outlined. An ant colony heuristic
handled the primary vehicle routing. The results of these tests
indicate a benefit to the users of the transportation system when
these design principles are implemented. However, more work is
required to add essential features, such as dynamic elements, to
the model as well as improve the overall efficiency of the method.
Finally, a path to these improvements as well as potential extensions
to work is discussed, including focus groups, wider surveys and
further experiments.

KEYWORDS
Routing; Optimization; citizen-centric; Accessibility; Smart City;
Socially aware design

ACM Reference Format:
Alexander Masterman. 2023. Citizen Centric Demand Responsive Trans-
port: Doctoral Consortium. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 3 pages.

1 INTRODUCTION
Current public transportation systems utilize static stops and timeta-
bles. This arrangement is not designed to serve the passengers in-
dividually but the community. Currently, if a user wishes to make
a journey not covered by the current transportation network they
must either book a taxi or use a ridesharing service such as Uber1
or Lyft2. These ridesharing services have problems of their own,
for example, surge pricing, controversial labour practices and lack
of service in rural areas. These static systems are a necessity when
the user base of the transportation has no interaction with the sys-
tem. However, with modern technology, there is an opportunity to

1https://www.uber.com/
2https://www.lyft.com/
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allow users to impact the transportation system [11]. This poten-
tial two-way interaction would require a substantial change to the
organisation and scheduling of existing transportation systems.

When designing these changes to the system, there is the op-
portunity to make more citizen-centric choices that focus on the
users’ needs [1]. By providing a service that focuses on and serves
the users’ needs more than the existing system, the users are more
likely to favour the public transportation system over personal
transportation. This is the aim of improving the system as the use
of buses and trains reduces the congestion on the road and reduces
the total emissions of transport [9]. There are two main focuses
that these improvements can have. First, a citizen-centric design
where passengers’ concerns, such as different accessibility needs,
that passengers may have or the environmental impact of travel
are incorporated when designing the methods. The second focus
is to consider the entire passenger journey, from origin to destina-
tion [12]. For example, in a bus system, this includes the time the
passengers must walk to and from the locations the bus stops at.

Demand-responsive transportation systems rely on the input
of the passengers to book point-to-point trips [4]. These bookings
include a starting location, a destination and a target arrival time.
The demand-responsive system will have to route a fleet of vehicles
around a set area, be it a region or city, to best complete each
booking. This operation and adjustment of the route must be made
in a short time frame as changes to the route must be calculated
before the actual time frame of the change occurs. This problem is
compounded by the NP-hard nature of the routing problem [3, 8, 10].
In addition to this problem, there is the aspect of the bus driver
making changes to their route as new directions arrive, a possible
distraction for the driver.

Next, the demand-responsive system must be flexible. One of
these methods is to increase flexibility by removing the current
static stops and replacing them with dynamic stops [7]. The system
could also be made to predict the demand across the active region
to preemptively route the bus fleet to the areas that will serve the
most demand.

Finally, a system that is designed to be citizen-centric must have
some mechanism to gauge how well the system is serving the needs
of the passengers. There are three categories that passenger pref-
erences can fall into economic, environmental and social. Each of
these categories and preferences can be split further into individual
objectives. These objectives, such as cost and emissions, can be
quantified and compared [5]. However, social preferences are more
nebulous and hard to quantify.

Many of these aforementioned social preferences relating to the
accessibility of the transportation network. This accessibility relates
to both physical and social aspects of accessibility. Some examples
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of physical accessibility of transportation are wheelchair accessibil-
ity, walking to bus stops and waiting times [6]. In contrast, social
accessibility preferences include objectives such as a level of safety,
reducing contact with others or the fairness of the system. The
ability to quantify these metrics and scale them to their importance
to the passengers is crucial to the ability to compare and contrast
these values meaningfully.

2 METHOD
The core problem of routing remains the same, optimizing the rout-
ing of a fleet of vehicles. However, when designing citizen-centric
systems using the aforementioned objectives and preferences new
challenges arise. In many routing systems, the key technique used
to optimize the routing are Heuristics. Initial experiments were un-
dertaken to evaluate if including a specific passenger cost value in
the objective function of the evaluation step of the heuristics. These
costs were generated using a random uniform distribution. An Ant
Colony Heuristic (ACO) [13] was used for the overall routing of
the vehicles. In the context of demand-responsive transport that
considers the entire passenger journey, a second heuristic was used
to route the passengers to the stop locations.

To test and compare two heuristics were compared for the rout-
ing of passengers to the stops, a Tabu search and a greedy search.
These tests were undertaken in an environment created from Open
Street Map data 1 of the city of Southampton. For this initial battery
of tests, the passenger cost was implemented in a simple fashion by
adding the cost of distance walked for each individual passenger
to the objective function. However, future versions of the objec-
tive function aim to incorporate the different passenger preference
categories outlined in the introduction.

In addition to integrating the passenger information into the
objective function, we have begun investigating the other elements
of a demand-responsive system to improve the passenger objectives.
One of these experiments was exploring the addition of vehicle-to-
vehicle transfers and the potential benefit this could have on the
passenger journey. Using this simulator we implemented a heuristic
based on a modified insertion [2] heuristic, one that additionally
looked for stops where passengers could change from one vehicle
to another mid-journey to better meet their requirements.

3 CONCLUSIONS AND FUTUREWORK
The tests undertaken indicated a benefit to considering the passen-
ger as seen by an 18% decrease in the objective function, indicating
an overall improvement to the system. However, the other mea-
sured metrics such as average passenger wait time and passenger
cost improvements had less significant mean improvements, be-
tween 1-3%. This highlights that including a passenger cost on its
own in the objective function of the optimization may have some
benefit to the overall system. However, during the tests, it was
clear that this method was insufficient to address the barriers in
the transport systems.

One of these areas that were insufficient was the execution of
passenger costs. In this simulation, the costs were a simple random
distribution assigned to the passenger. To address this weakness
I will be running a set of focus groups and interviews wherein a
1https://www.openstreetmap.org/

Figure 1: A graph of the average passenger cost

Figure 2: A graph of the objective function of the Heuristics

sample of the population will be asked about their current usage
of transportation and the accessibility barriers that currently pre-
vent their use of public transport. Using this information further
wide-scale surveys that will aim to collect more quantitative data.
Using this data a more complex system of multiple passenger costs
and weights that cover a wide range of identified accessibility chal-
lenges will be implemented. In addition to this and adding dynamic
elements to the simulator the passenger costs will also be dynamic
and change as the simulation progresses.

Additionally, further work is needed in the investigation of
vehicle-to-vehicle transfers both in the design of the heuristic and
the method of selecting transfer windows. When selecting transfer
windows we examined a very selective set of stops where both the
vehicles stopped at the same stop and the passenger’s destination
was served by the later vehicle. This very limited set of transfer
windows was very rarely met in the system.
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