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ABSTRACT

Designing autonomous agents that can interact effectively with
other agents is an important problem in multi-agent systems. For
real-world applications these agents must also be able to handle par-
tial observability and scale to complex environments. We present
two efficient planning algorithms for multi-agent, partially observ-
able environments. The first, Interactive Nested Tree Monte-Carlo
Planning (I-NTMCP), is a novel extension of Monte-Carlo Tree
Search (MCTS) to Interactive Partially Observable Markov Decision
Processes (I-POMDPs). Compared to existing methods, I-NTMCP
is able to scale to significantly larger I-POMDP problems while
modelling the other agent to deeper reasoning levels. The second
algorithm, Bayes-Adaptive Partially Observable Stochastic Game
Monte-Carlo Planning (BA-POSGMCP), combines a novel meta-
policy with MCTS for scalable type-based reasoning. Through com-
prehensive empirical analysis in large cooperative, competitive and
mixed domains we demonstrate that BA-POSGMCP is able to more
effectively adapt online to diverse sets of agents in larger prob-
lems than previous methods. To support further research we have
also developed POSGGym, an open-source library of multi-agent,
partially observable environments supporting both planning and
learning methods, along with POSGGym-Agents, a suite of policies
for these environments.
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1 INTRODUCTION

A core challenge in the field of artificial intelligence is the design
of autonomous agents that can interact effectively with previously
unknown other agents [2, 26]. For the majority of real-world appli-
cations such agents must also be able to handle partial observability
of the environment. To achieve this, an agent must be able to rea-
son about the behaviours, goals, and beliefs of other agents, while
simultaneously reasoning about the state of the environment. This
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requires both agent modelling [4] and planning under uncertainty
[9, 10, 13]. Agent modelling involves constructing models of the
other agents and using these models to inform decision making.
While planning under uncertainty uses beliefs to account for partial
observability and other sources of uncertainty in the environment.
Considerable research has been done in both areas, and the com-
bination of the two has great promise for the design of robust
autonomous agents.

A key limitation of existing methods combining agent modelling
and planning is their ability to scale to more complex domains.
This restricts the problems to which these methods can be applied.
Fortunately, in recent years there has been significant progress in
scalable methods for planning under uncertainty, through tech-
niques such as Monte-Carlo Tree Search (MCTS) [24]. Similarly,
advancements in deep learning have lead to efficient reinforce-
ment learning methods, which can be used to improve both agent
modelling [7, 11, 15, 18] and planning [16, 23].

In our research we have focused on developing algorithms and
techniques for efficient planning in partially observable, multi-agent
settings. Of particular interest is the setting where an agent must
interact effectively with previously unknown other agents across
competitive, cooperative, and general-sum domains. This setting
reflects many problems of interest in robotics and human-robot
interaction (HRI), such as autonomous driving.

As part of our research we have developed two scalable planning
methods for decision making in partially observable, multi-agent
environments. Our first method, Interactive Nested Tree Monte-
Carlo Planning (I-NTMCP) focuses on the challenge of constructing
and using agent models within the paradigm of nested reasoning
using the Interactive Partially Observable Markov Decision Process
(I-POMDPs) framework [9]. Our second method, Bayes-Adaptive
Partially Observable Stochastic Game Monte-Carlo Planning (BA-
POSGMCP) focuses on efficient type-based reasoning [1, 5], where
the planning agent must reason about a set of possible behaviours
for the other agent. In addition to these two methods, we have
developed POSGGym a library of environments supporting both
planning and learning techniques, as well as a complementary
library POSGGym-Agents containing policies that can be used for
evaluating new approaches.

2 NESTED REASONING

The first part of our work [22] explored how to efficiently plan
when the environment and other agent are modelled using an I-
POMDP [9].I-POMDPs provide a framework of recursive reasoning
which allows an agent to explicitly model the other agents, which
in turn model other agents, and so on down to some finite depth.
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Figure 1: The Pursuit-Evasion domain (left) and the performance of BA-POSGMCP and baselines for the evader (middle) and

pursuer (right).

This makes I-POMDPs ideal for modelling problems where there
is uncertainty about the beliefs and reasoning of the other agents,
with high application potential in HRI domains [17, 27, 29]. Un-
fortunately, the use of I-POMDPs has been restricted to relatively
small problems due to their high computational complexity.

In order to improve the scalability of I-POMDP planning we
developed I-NTMCP, an online MCTS-based planner. Compared
to existing full-width planners, -INTMCP focuses on computing
the best action to perform from the planning agents current belief.
This allows I'NTMCP to minimise the computation required for
constructing the other agent’s model, by focusing planning on the
parts of the model that are most relevant for the planning agent’s
current belief. To achieve this -NTMCP constructs and maintains
a sequence of inter-related belief trees, where each tree encodes an
approximately optimal policy for an agent operating at a particular
nested reasoning level. This makes it possible for I-NTMCP to
model the other agent in large problems without requiring a strong
assumptions such as the other agent having full-observability [8,
12]. Our experiments demonstrated that I-NTMCP can generate
substantially better policies up to more than 50x faster than I-
POMDP Lite [12] - one of the fastest [lPOMDP solvers at the time
of publication. Further experiments showed that -ZNTMCP can plan
effectively in a complex domain with over 88K states and to much
deeper reasoning levels.

3 TYPE-BASED REASONING

Moving beyond the nested reasoning paradigm, we next explored ef-
ficient methods for type-based reasoning in partially observable en-
vironments. Type-based reasoning methods give agents the ability
to interact effectively with unknown other agents by maintaining
a belief over a set of types for the other agents [1, 3, 5, 6, 25]. Each
type completely specifies an agent’s behaviour, making type-based
reasoning very general, and applicable in numerous multi-agent
domains. However, most existing type-based reasoning methods
assume the planning agent has full observability of the state of the
environment and the other agents’ actions [4].

We proposed BA-POSGMCP [21] to address the lack of scalable
planners for type-based reasoning in partially observable environ-
ments. BA-POSGMCP is inspired by ideas from empirical game
theory [28] and the success of combining MCTS with a search pol-
icy [23]. Key to our method is the idea of reusing the set of types, i.e.
policies, to help guide planning. To do this we introduced a novel
meta-policy for selecting what policy from the set of policies to

2997

use for guiding search. This meta-policy was then integrated into
MCTS using an extension of the PUCT algorithm [20, 23] to the
multi-agent, partially observable setting. Through comprehensive
evaluation in cooperative, competitive, and mixed environments -
the largest of which has four agents and on the order of 10'4 states
and 102 observations - we demonstrated that BA-POSGMCP is able
to adapt online and interact effectively without explicit prior coor-
dination (Figure 1). We are currently extending this work with a
theoretical analysis and additional comparisons against more recent
methods [14].

4 ENVIRONMENTS AND POLICIES

As part of our ongoing research we have been developing a library
of partially observable, multi-agent environments as well as a suite
of reference policies. The environment library POSGGym! aims to
provide a set of well tested benchmark environments with support
for both planning and learning methods and in both discrete and
continuous domains. This is in contrast to the majority of exist-
ing libraries which primarily support only reinforcement learning
methods. Our policy suite POSGGym-Agents® provides a diverse set
of policies for a number of the POSGGym environments, which can
be used for reproducible evaluation of algorithms. Both libraries
are under active development but are open-source and available
for use now.

5 FUTURE WORK

While both IZNTMCP and BA-POSGMCP are general methods, they
make strong assumptions about the other agent. -NTMCP assumes
the other agent is using a specific level of nested-reasoning. While
BA-POSGMCP assumes the other agent’s type is from a fixed and
known set. To be truly robust, autonomous agents require the ability
to generalize to a wide range of other agent behaviours, and be
robust to out-of-distribution behaviours. An avenue of future work
we plan to explore are methods for efficiently generating diverse
agent models in complex environments and integrating them into
decision-making. There has already been some work by others in
this direction [19], and we are excited to see how these types of
methods can lead to more robust and practical agents.

!github.com/RDLLab/posggym
2github.com/Jjschwartz/posggym-agents
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