
Improvement and Evaluation of the Policy Legibility in
Reinforcement Learning

Demonstration Track

Yanyu Liu
Xiamen University
Xiamen, China

yanyuliu@stu.xmu.edu.cn

Yifeng Zeng∗
Northumbria University

Newcastle, United Kingdom
yifeng.zeng@northumbria.ac.uk

Biyang Ma
Minnan Normal University

Zhangzhou, China
mby@mnnu.edu.cn

Yinghui Pan∗
Shenzhen University
Shenzhen, China

panyinghui@szu.edu.cn

Huifan Gao
Xiamen University
Xiamen, China

huifangao@stu.xmu.edu.cn

Xiaohan Huang
University of Liverpool

Liverpool, United Kingdom
xiaohan.huang20@gmail.com

ABSTRACT
When we work with intelligent agents, such as fighting a battle 
with other agents in computer games, it is difficult to achieve seam-
less collaboration if we can’t figure out what the agents are doing. 
Especially in a complex problem domain, the agents are well trained 
and their actions could be too sophisticated to be comprehended by 
humans. In this article, we propose a novel reward shaping mech-
anism to improve the legibility of reinforcement learning that is 
used to train agents’ policies. More importantly, we develop an in-
teractive system to seek for users’ evaluation of the policy legibility 
and show performance of the new learning approach.
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1 INTRODUCTION
In many practical scenarios, such as loading cargoes onto shelves 
with robots in a warehouse, or blowing up enemy Ancients with AI 
teammates in DotA games, agents and humans need to collaborate 
with each other in order to achieve a common goal. However, it 
would be challenging if humans/agents cannot figure out what their 
collaborators are doing. Their interaction will become difficult and 
even lead to mission failure. Hence it becomes necessary for agents 
to convey their intention timely to assist humans in predicting what 
they are doing as shown in Fig. 1, and increases human’s confidence 
in interacting with the agents [15, 17, 18]. In other words, the agents 
need to perform in a legible way so that humans could understand 
their intentions during the action execution.

The previous research has shown its possibility of improving the 
policy legibility through different action choices. Dragan et al. [8]
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Figure 1: A multi-exits maze. The agent is initialized ran-
domly in the maze and given a target exit, which is unknown
to the observer. The easier the observer could predict the
agent’s intention (exit), the more legible the agent’s policy is.

proposed a framework for quantifying legibility, which essentially
exploited the assumption that an observer expects the agent to be
rational and act efficiently or justifiably. Furthermore, they pro-
posed a gradient optimization technique to generate legible robotic
armmotion [5–7]. In reinforcement learning (RL), the existing work
has succeeded in manually influencing the policy training process
through policy shaping [3, 9], reward shaping [4, 11, 13]. Bied et
al. [2] proposed the integration of observers into the RL frame-
work through reward shaping, and designed the additional rewards
from different perspectives, e.g. goal distance, cost of the observed
trajectory in comparison with cost of the optimal trajectory, or a
legibility function[8]. Persiani et al. [14] modelled the agent and
observers as two equivalent Bayesian Networks (BN), and took the
distance between the two BNs as the regularization term in the
reward computation.

In this article, we propose a new way of generating legible poli-
cies for intelligent agents through a new reward shaping mecha-
nism. From the observer’s perspective, we use information entropy
to measure the observer’s uncertainty about the agent’s goal, which
acts as the reward shaping function in RL. By doing this, we encour-
age the agent to execute the actions that would reduce the entropy
in a fast way. In particular, we implement an interactive system
to seek for users’ evaluation about the improved legibility in RL,
which would inspire the legibility research in intelligent agents.
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2 INFORMATION GAIN BASED LEGIBILITY
We develop the legibility in a general RL framework that is defined
with a tuple (S,A,T , 𝑅,𝛾), in which S is the set of states,A is the
set of actions, T : S ×A × S→𝑃 (𝑠′ |𝑠, 𝑎) describes the state transi-
tion probability. A reward function 𝑅 : S × A→R is the feedback
signal for tuning agent’s policy. A discount factor 𝛾 balances the
immediate and future reward. In traditional RL, the agent’s objec-
tive is to learn a policy 𝜋 : S → A that maximizes the discounted
cumulative reward. We adopt a general RL algorithm, namely the
Q-Learning, to learn the value of an action in a particular state.
Given the policy 𝜋 , the expected discounted cumulative reward for
state 𝑠 and action 𝑎 can be represented with the 𝑄 (𝑠, 𝑎). In every
learning step, the agent selects the action 𝑎 based on the current
policy, receives the reward 𝑅, gets to the new state 𝑠′ from 𝑠 , and
the the 𝑄-value is updated with a Bellman equation:

𝑄 (𝑠, 𝑎)←𝑄 (𝑠, 𝑎) + 𝛼 [𝑅 + 𝛾×𝑚𝑎𝑥
𝑎′∈A

𝑄 (𝑠′, 𝑎′ ) − 𝑄 (𝑠, 𝑎) ] (1)

where 𝛼 is the learning rate.
In this article, we introduce the novel Information Gain based

Legibility (IGL) reward shaping into the Q-learning. Equation 2
shows the new reward 𝑅𝐿 where 𝑅 is the original reward signal, 𝐿
is the legibility value for shaping the rewards, and 𝛽 is a trade-off
factor to accommodate their scale difference.

𝑅𝐿 = 𝑅 + 𝛽 × 𝐿 (2)

In order to learn a legible policy, we design the function 𝐿 that
enables agents to take more legible actions by giving them higher
reward when the actions let the observer more easily predict the
agents’ goals. To evaluate prediction uncertainty, we propose the
legibility function 𝐿 in Eq. 3

𝐿 = H(𝜏𝑡 ) − H(𝜏𝑡 , 𝑎) (3)

whereH(𝜏𝑡 ) is a measurement of information entropy that rep-
resents the uncertainty, from the observer’s viewpoint, in predict-
ing the agent’s true goal given the agent’s trajectory 𝜏𝑡 at time 𝑡 .
H(𝜏𝑡 , 𝑎) is the observer’s uncertainty after the agent executes the
action 𝑎 following the trajectory 𝜏𝑡 . A low value ofH means that
the observer is confident about his/her prediction of the agent’s
goal. Intuitively, the largerH(𝜏𝑡 ) − H (𝜏𝑡 , 𝑎) (i.e. more entropy is
reduced), indicates that the action 𝑎 conveys more information to
the observer about the agent’s intention.

Subsequently, we implementH(𝜏𝑡 ) andH(𝜏𝑡 , 𝑎) respectively in
Eqs. 4-5. In both equations, we transform the observer’s belief in
each goal into the entropy calculation.

H(𝜏𝑡 ) = −
∑︁
𝑔∈G

𝑏 (𝑔 |𝜏𝑡 )𝑙𝑜𝑔 (𝑏 (𝑔 |𝜏𝑡 ) ) (4)

H(𝜏𝑡 , 𝑎) =
∑︁

𝑠𝑡+1∈S
𝑇𝑜 (𝑠𝑡+1 |𝑠𝑡 , 𝑎)H(𝜏𝑡◦𝑠𝑡+1 ) (5)

where 𝑏 (𝑔 |𝜏𝑡 ) is the conditional probabilities of the observer’s
prediction in the agent’s goal 𝑔, and G is the set of all potential
goals of agent.

Apparently, the accuracy of 𝑏 (·) directly contributes to the leg-
ibility computation - even the RL convergence. In principle, any
function which maps a policy to the agent’s beliefs can be used to
update 𝑏 [10, 12].

We choose the Bayesian method in the belief update. Inspired by
the work of Baker et al. [1], we update the posterior beliefs in Eq. 6.

𝑏 (𝑔 |𝜏𝑡◦𝑠𝑡+1) =
𝑇𝑜 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 )𝜋𝑜 (𝑠𝑡 , 𝑎𝑡 |𝑔)∑

𝑔′∈G 𝑇𝑜 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 )𝜋𝑜 (𝑠𝑡 , 𝑎𝑡 |𝑔′)
𝑏 (𝑔|𝜏𝑡 ) (6)

where 𝑇𝑜 is the transition probability in the observer’s mind, and
𝜋𝑜 is the legible policy recognized by the observer. It assumes that
agent’s actions can be seen by the observer.

3 EXPERIMENTS AND DEMONSTRATION
We conduct the experiments in a maze-like multi-goals environ-
ment in Fig. 1. We use a solid black line to indicate the trajectory.
We firstly train the policy 𝜋𝑞 with the Q-Learning as a baseline, and
the legible policy 𝜋𝑙 with the reward shaping. For simplicity we
set the 𝜋𝑜 = 𝜋𝑞 in updating the observer’s belief in Eq. 6. Figure 2

(a) 𝜋𝑞 complete trajectory (b) Prediction of A-F exits following 𝜋𝑞

(c) 𝜋𝑙 complete trajectory (d) Prediction of A-F exits following 𝜋𝑙

Figure 2: Comparison of the trajectory legibility and predic-
tion from the Q-learning and IGL methods

demonstrates the complete trajectories from the two policies. In
Step 7 to 9 of the 𝜋𝑞 trajectory (Fig. 2(a)), the observer is very likely
to misjudge that the agent will go to exit B and does not realize that
the agent’s real goal is exit F until Step 11. Such behavior can obvi-
ously surprise the observer. In contrast, the 𝜋𝑙 trajectory (Fig. 2(c))
convinces the observer that the agent’s goal in Step 8. We can find
in Fig. 2(d) the probability that the observer predicts agent is going
to the exit F rises rapidly after Step 8, compared to the prediction
probability of F when the plain Q-learning is used to generate the
trajectory 𝜋𝑞 in Fig. 2(b). In addition, we implement an interac-
tive system 1 2 that allows an observer to evaluate the legibility of
the trained policies in this environment and will seek for the live
evaluation from the AAMAS audience.

4 CONCLUSION
We propose a new reward shaping function to improve the RL
legibility and develop one interactive evaluation system to demon-
strate the performance of the new legibility research. Using the
IGL function improves the learned policy, which is also verified in
humans’ evaluation. The demonstration system will interact with
the audience to evaluate the policy legibility. The interaction data
could be used to further improve the legibility formulation. Our
work expects to elicit further research on legible plans in multiagent
systems [16] and contribute to explainable AI research.
1Video: https://youtu.be/Ow6hFLs3O2U
2Download: https://pan.baidu.com/s/1irGrO𝑉 𝑓 8𝑌𝑄𝑋9𝑐 𝑓 𝐴 − 𝑦71𝑊𝑄?𝑝𝑤𝑑 = 7𝑑𝑙𝑦
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