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ABSTRACT
In this paper, we propose a new mutual information (MMI) frame-

work for multi-agent reinforcement learning (MARL) to enable

multiple agents to learn coordinated behaviors by regularizing the

accumulated return with the simultaneous mutual information

between multi-agent actions. By introducing a latent variable to

induce nonzero mutual information between multi-agent actions

and applying a variational bound, we derive a tractable lower bound

on the considered MMI-regularized objective function. The derived

tractable objective can be interpreted as maximum entropy rein-

forcement learning combined with uncertainty reduction of other

agents’ actions. Applying policy iteration to maximize the derived

lower bound, we propose a practical algorithm named variational

maximum mutual information multi-agent actor-critic (VM3-AC),

which follows centralized learning with decentralized execution

(CTDE). We evaluated VM3-AC for several games requiring coor-

dination, and numerical results show that VM3-AC outperforms

other MARL algorithms in multi-agent tasks requiring high-quality

coordination.

KEYWORDS
Multi-Agent Reinforcement Learning; Coordination; Mutual Infor-

mation

ACM Reference Format:
Woojun Kim, Whiyoung Jung, Myungsik Cho, and Youngchul Sung. 2023.

A Variational Approach to Mutual Information-Based Coordination for

Multi-Agent Reinforcement Learning. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
With the success of RL in the single-agent domain [13, 18], MARL

is being actively studied and applied to real-world problems such as

traffic control systems and connected self-driving cars, which can

be modeled as multi-agent systems requiring coordinated control

[1, 12]. The simplest approach to MARL is independent learning,

which trains each agent independently while treating other agents

as a part of the environment, but this approach suffers from the

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

problem of non-stationarity of the environment. A common solu-

tion to this problem is to use fully-centralized critic in the frame-

work of centralized training with decentralized execution (CTDE)

[8, 11, 16, 20, 21]. For example, MADDPG [16] uses a centralized

critic to train a decentralized policy for each agent, and COMA

[4] uses a common centralized critic to train all decentralized poli-

cies. However, these approaches assume that decentralized policies

are independent and hence the joint policy is the product of each

agent’s policy. Such non-correlated factorization of the joint policy

limits the agents to learn coordinated behavior due to negligence of

the influence of other agents [3, 26]. Recently, mutual information
(MI) between multiple agents’ actions has been considered as an

effective intrinsic reward to promote coordination in MARL [10]. In

[10], MI between agents’ actions is captured as social influence and

the goal is to maximize the sum of accumulated return and social in-

fluence between agents’ actions. It is shown that the social influence

approach is effective for sequential social dilemma games. In this

framework, however, causality between actions under coordination

is required, and it is not straightforward to coordinate multi-agents’

simultaneous actions. In certain multi-agent games, coordination

of simultaneous actions of multiple agents is required to achieve

cooperation for a common goal. For example, suppose that a pack of

wolves tries to catch a prey. To catch the prey, coordinating simulta-

neous actions among the wolves is more effective than coordinating

one wolf’s action and other wolves’ actions at the next time be-

cause the latter case causes delay in coordination. In this paper, we

propose a new approach to the MI-based coordination for MARL to

coordinate simultaneous actions among multiple agents under the

assumption of the knowledge of timing information among agents.

Our approach is based on introducing a common latent variable to

induce MI among simultaneous actions of multiple agents and on

a variational lower bound on MI that enables tractable optimiza-

tion. Under the proposed formulation, applying policy iteration

by redefining value functions, we propose the VM3-AC algorithm

for MARL to learn coordination of simultaneous actions among

multiple agents. Numerical results show its superior performance

on cooperative multi-agent tasks requiring coordination.

2 RELATEDWORK
MI is a measure of dependence between two variables [2] and has

been considered as an effective intrinsic reward for MARL [10, 24].
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[19] proposed an intrinsic reward for empowerment by maximiz-

ing MI between agent’s action and its future state. [24] proposed

two intrinsic rewards capturing the influence based on a decision-

theoretic measure and MI between an agent’s current actions/states

and other agents’ next states. In particular, [10] proposed a social

influence intrinsic reward, which basically captures the mutual

information between multiple agents’ actions to achieve coordi-

nation, and showed that the social influence formulation yields

good performance in sequential social dilemma environments. The

difference of our approach from the social influence to MI-based

coordination will be explained in Section 3 and Section 4.1.

Some previous works approached correlated policies from dif-

ferent perspectives. [15] proposed explicit modeling of correlated

policies for multi-agent imitation learning, and [26] proposed a re-

cursive reasoning framework for MARL to maximize the expected

return by decomposing the joint policy into own policy and op-

ponents’ policies. Going beyond adopting correlated policies, our

approach maximizes the MI between multiple agents’ actions which

is a measure of correlation.

In our approach, the MI between agents’ action distributions is

decomposed as the sum of each agent’s action entropy and a varia-

tional term related to prediction of other agents’ actions. Hence, our

framework can be interpreted as enhancing correlated exploration

by increasing the entropy of own policy [7] while decreasing the

uncertainty about other agents’ actions. Some previous works pro-

posed other techniques to enhance correlated exploration [17, 28].

MAVEN addressed the poor exploration problem of QMIX by maxi-

mizing the mutual information between the latent variable and the

observed trajectories [17]. However, MAVEN does not consider the

correlation among policies.

3 BACKGROUND
Setup We consider a Markov Game [14], which is an extention of

Markov Decision Process (MDP) to multi-agent setting. An 𝑁 -agent

Markov game is defined by an environment state space S, action
spaces for 𝑁 agents A1, · · · ,A𝑁 , a state transition probability

𝑝T : S × A × S → [0, 1], where A =
∏𝑁
𝑖=1 A𝑖 is the joint action

space, and a reward function R : S × A → R. At each time

step 𝑡 , Agent 𝑖 with policy 𝜋𝑖 executes action 𝑎𝑖𝑡 ∈ A𝑖 based on

state 𝑠𝑡 ∈ S. The actions of all agents 𝒂𝑡 = (𝑎1𝑡 , · · · , 𝑎𝑁𝑡 ) yield
the next state 𝑠𝑡+1 according to 𝑝T and shared common reward 𝑟𝑡
according to R under the assumption of fully-cooperative MARL.

The discounted return is defined as 𝑅𝑡 =
∑∞
𝑛=𝑡 𝛾

𝑛𝑟𝑛 , where 𝛾 ∈
[0, 1) is the discounting factor.

We assume CTDE incorporating the resource asymmetry be-

tween training and execution phases, widely considered in MARL

[4, 8, 16]. Under CTDE, each agent can access all information in-

cluding the environment state, observations and actions of other

agents in the training phase, whereas the policy of each agent is

conditioned only on its own observation 𝑜𝑖𝑡 in the execution phase.

The goal of fully cooperative MARL is to find the optimal joint

policy 𝝅∗
that maximizes the objective 𝐽 (𝝅) = 𝐸𝜏0∼𝝅

[
𝑅0

]
, where

𝜏𝑡 = (𝑠𝑡 , 𝒂𝑡 , 𝑠𝑡+1, 𝒂𝑡+1, · · · ) and 𝝅 = (𝜋1, · · · , 𝜋𝑁 ) denotes the joint
policy of all agents.

Mutual Information-Based Coordination for MARL MI

between agents’ actions has been considered as an intrinsic reward

(a) (b) (c)

Figure 1: Causal diagram: (a) basic social influence, (b) social
influence of modeling other agents, and (c) the proposed
approach

to promote coordination in MARL [10]. Under this framework, one

basically aims to find the policy that maximizes the weighted sum

of the return and the MI between multi-agent actions. Thus, the

MI-regularized objective function for joint policy 𝝅 is given by

𝐽 (𝝅) = E𝜏0∼𝝅

[ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑟𝑡 + 𝛼

∑︁
(𝑖, 𝑗 ) |𝑖≠𝑗

𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 )

)]
, (1)

where 𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) is the MI between 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑠𝑡 ) and 𝑎 𝑗𝑡 ∼ 𝜋 𝑗 (·|𝑠𝑡 ),

and 𝛼 is the temperature parameter that controls the relative impor-

tance of theMI against the reward. It is known that by regularization

with MI in the objective function (1), the policy of each agent is

encouraged to coordinate with other agents’ policies. There are

several approaches to implement (1). Under the social influence

framework in [10], the MI is decomposed as

𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) =

∫
𝑎𝑖𝑡 ,𝑎

𝑗
𝑡

𝑝 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 ) log

𝑝 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 )

𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )𝑝 (𝑎
𝑗
𝑡 |𝑠𝑡 )

(2)

=

∫
𝑎𝑖𝑡

𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )
∫
𝑎
𝑗
𝑡

𝑝 (𝑎 𝑗𝑡 |𝑎
𝑖
𝑡 , 𝑠𝑡 ) log

𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )
𝑝 (𝑎 𝑗𝑡 |𝑠𝑡 )

(3)

=

∫
𝑎𝑖𝑡

𝑝 (𝑎𝑖𝑡 |𝑠𝑡 ) 𝐷𝐾𝐿 (𝑝 (𝑎 𝑗𝑡 |𝑎
𝑖
𝑡 , 𝑠𝑡 ) | |𝑝 (𝑎

𝑗
𝑡 |𝑠𝑡 ))︸                              ︷︷                              ︸

△
= social influence of agent 𝑖 on agent 𝑗

, (4)

where 𝐷𝐾𝐿 (·| |·) is the Kullback-Leibler divergence. In this decom-

position, influencing Agent 𝑖’s policy is given by 𝜋𝑖 = 𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )
and influenced Agent 𝑗 ’s policy is given by 𝜋 𝑗 = 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ). The
social influence is defined as the difference between 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )
and 𝑝 (𝑎 𝑗𝑡 |𝑠𝑡 ). Hence, at time step 𝑡 , influencing Agent 𝑖 acts first

and then influenced Agent 𝑗 acts based on 𝑎𝑖𝑡 after Agent 𝑖 acts, as

shown in Fig. 1(a). This sequential dependence between actions

prevents multiple agents from performing simultaneous actions,

which is an assumption of most decentralized execution. In ad-

dition, the social influence approach needs a strategy for action

ordering because it divides all agents into a set of influencers and

a set of influencees. One way to remove this action ordering is

to model other agents [10]. In this case, the causal influence of

action 𝑎𝑖𝑡 of Agent 𝑖 at time 𝑡 on action 𝑎
𝑗

𝑡+1 of Agent 𝑗 at time

𝑡 + 1 is considered, as shown in Fig. 1(b), i.e., the social influence

𝐷𝐾𝐿 (𝑝 (𝑎 𝑗𝑡+1 |𝑎
𝑖
𝑡 , 𝑠𝑡 ) | |𝑝 (𝑎

𝑗

𝑡+1 |𝑠𝑡 )) instead of the influence term in (4)
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is considered based on modeling 𝑝 (𝑎 𝑗
𝑡+1 |𝑎

𝑖
𝑡 , 𝑠𝑡 ) so that actions 𝑎𝑖𝑡

and 𝑎
𝑗
𝑡 can be performed simultaneously without ordering. In this

case, however, the actually considered MI is 𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗

𝑡+1 |𝑠𝑡 ) and is

not the MI between 𝑎𝑖𝑡 and 𝑎
𝑗
𝑡 occurring at the same time. In this

paper, we propose a different approach to MI regularization which

enables simultaneous coordination between actions 𝑎𝑖𝑡 and 𝑎
𝑗
𝑡 both

at time 𝑡 without action ordering.

4 THE PROPOSED APPROACH
We assume that the environment is fully observable, i.e., each agent

can observe the environment state 𝑠𝑡 for theoretical development in

this section, and will consider partially observable environment for

practical algorithm construction under CTDE in the next section.

4.1 Formulation
Without explicit dependency between actions,𝜋𝑖 (𝑎𝑖𝑡 |𝑠𝑡 ) and𝜋 𝑗 (𝑎

𝑗
𝑡 |𝑠𝑡 )

are conditionally independent for given environment state 𝑠𝑡 and

consequently the mutual information is always zero, i.e., 𝐼 (𝜋𝑖 (·|𝑠𝑡 );
𝜋 𝑗 (·|𝑠𝑡 )) = 0. Then, the MI-regularized objective function (1) re-

duces to the standard MARL objective of only the accumulated

return. In order to circumvent this difficulty, we propose a novel

method to induce MI between actions. Our approach for inducing

MI between concurrent two actions 𝑎𝑖𝑡 and 𝑎
𝑡
𝑗
of Agents 𝑖 and 𝑗 at

time 𝑡 is to introduce a latent variable 𝑍𝑡 , as shown in Fig. 1(c). We

assume that the latent variable 𝑍𝑡 has a prior distribution 𝑝𝑍 (𝑧𝑡 )
and that actions 𝑎𝑖𝑡 and 𝑎

𝑗
𝑡 are generated from the state variable 𝑠𝑡

and the latent random variable 𝑍𝑡 . Thus, Agent 𝑖’s action 𝑎
𝑖
𝑡 at time

𝑡 is drawn from the policy distribution of Agent 𝑖 as

𝑎𝑖𝑡 ∼ 𝜋𝑖 ( · |𝑆𝑡 = 𝑠𝑡 , 𝑍𝑡 ), 𝑖 = 1, 2, · · · , 𝑁 , (5)

where we use the upper case for random variables and the lower

case for their realizations in the conditioning input terms for nota-

tional clarification. Then, even in case of deterministic policy, there

is randomness in 𝑎𝑖𝑡 for given 𝑆𝑡 = 𝑠𝑡 due to the random input 𝑍𝑡
since a function of random variable is a random variable. In case

of stochastic policy, there is additional randomness in 𝑎𝑖𝑡 for given

𝑆𝑡 = 𝑠𝑡 due to stochasticity of the policy itself. One can view the

randomness due to 𝑍𝑡 as a perturbation to nominal 𝑎𝑖𝑡 for given

𝑆𝑡 = 𝑠𝑡 . With the common perturbation-inducing variable 𝑍𝑡 to

all agents’ policies, two random variables 𝑎𝑡
𝑖
and 𝑎𝑡

𝑗
conditioned

on 𝑆𝑡 = 𝑠𝑡 are correlated due to common 𝑍𝑡 , and then nonzero

MI 𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) between concurrent 𝑎𝑖𝑡 and 𝑎

𝑗
𝑡 is induced. We aim

to exploit this correlation for action coordination and correlated

exploration in the training phase. (See Appendix A for a simple

example and explanation of our basic idea with the simple example.)

With nontrivial MI 𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ), we now express this MI. First,

note in (4) that we need 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) to compute theMI but we do not

want to use 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) directly because 𝑝 (𝑎
𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) requires Agent

𝑗 to know the action 𝑎𝑖𝑡 of Agent 𝑖 . For this, we adopt a variational

distribution 𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) to estimate 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) and derive a lower

bound on the MI 𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) as follows:

𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) =

∫
𝑎𝑖𝑡 ,𝑎

𝑗
𝑡

𝑝 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 ) log

𝑝 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 )

𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )𝑝 (𝑎
𝑗
𝑡 |𝑠𝑡 )

=

∫
𝑎𝑖𝑡 ,𝑎

𝑗
𝑡

𝑝 (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 ) log

𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )𝑝 (𝑎
𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )𝑞(𝑎

𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )

𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )𝑝 (𝑎
𝑗
𝑡 |𝑠𝑡 )𝑞(𝑎

𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )

= E
𝑝 (𝑎𝑖𝑡 ,𝑎

𝑗
𝑡 |𝑠𝑡 )

[
log

𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )
𝑝 (𝑎 𝑗𝑡 |𝑠𝑡 )

]
× E𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )

[
𝐷𝐾𝐿 (𝑝 (𝑎 𝑗𝑡 |𝑎

𝑖
𝑡 , 𝑠𝑡 )∥𝑞(𝑎

𝑗
𝑡 |𝑎

𝑖 , 𝑠𝑡 ))
]

≥ 𝐻 (𝑎 𝑗𝑡 |𝑠𝑡 ) + E𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 ,𝑠𝑡 )
[
log𝑞(𝑎 𝑗𝑡 |𝑎

𝑖
𝑡 , 𝑠𝑡 )

]
, (6)

where the last inequality in (6) holds because the KL divergence is

always non-negative. Note that 𝐻 (𝑎 𝑗𝑡 |𝑠𝑡 ) is the entropy of 𝑎
𝑗
𝑡 given

𝑠𝑡 , i.e., the entropy of the following marginal distribution of 𝑎
𝑗
𝑡 in

our case:

𝜋̃ 𝑗 (𝑎 𝑗𝑡 |𝑠𝑡 ) :=
∫
𝑧𝑡

𝜋 𝑗 (𝑎 𝑗𝑡 |𝑆𝑡 = 𝑠𝑡 , 𝑍 = 𝑧𝑡 )𝑝𝑍 (𝑧𝑡 )𝑑𝑧𝑡 . (7)

For the variational distribution 𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) we consider a class

of distributions Q, i.e., 𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) ∈ Q. The lower bound (6) be-

comes tight when 𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) approximates 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) well, i.e.,
𝐷𝐾𝐿 (𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )∥𝑞(𝑎

𝑗
𝑡 |𝑎𝑖 , 𝑠𝑡 )) is small. Note that in our expansion,

the lower bound on the MI 𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) is expressed as the sum of

the action entropy 𝐻 (𝑎 𝑗𝑡 |𝑠𝑡 ) and the negative of the cross entropy of
𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) relative to 𝑝 (𝑎

𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) averaged over 𝑝 (𝑎𝑖𝑡 |𝑠𝑡 ). Using the

symmetry of MI, we can rewrite the lower bound as

𝐼 (𝑎𝑖𝑡 ;𝑎
𝑗
𝑡 |𝑠𝑡 ) ≥

1

2

{
𝐻 (𝑎𝑖𝑡 |𝑠𝑡 ) + 𝐻 (𝑎 𝑗𝑡 |𝑠𝑡 )

+ E
𝑝 (𝑎𝑖𝑡 ,𝑎

𝑗
𝑡 |𝑠𝑡 )

[
log𝑞(𝑎 𝑗𝑡 |𝑎

𝑖
𝑡 , 𝑠𝑡 ) + log𝑞(𝑎𝑖𝑡 |𝑎

𝑗
𝑡 , 𝑠𝑡 )

] }
. (8)

Then, our goal is to maximize this lower bound of MI by using

a tractable approximation 𝑞(𝑎𝑖𝑡 |𝑎
𝑗
𝑡 , 𝑠𝑡 ) ∈ Q. Our decompsition of

MI based on the action entropy and the cross entropy is effective

in our variational formulation for MI-based MARL. Consider one

of the cross entropy terms in the right-hand side (RHS) of (8):

E
𝑝 (𝑎𝑖𝑡 ,𝑎

𝑗
𝑡 |𝑠𝑡 )

[log𝑞(𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )], which can be rewritten as

E
𝑝 (𝑎𝑖𝑡 ,𝑎

𝑗
𝑡 |𝑠𝑡 )

[log𝑞(𝑎 𝑗𝑡 |𝑎
𝑖
𝑡 , 𝑠𝑡 )] = −E𝑝 (𝑎𝑖𝑡 |𝑠𝑡 )

[
𝐻 (𝑝 (𝑎 𝑗𝑡 |𝑎

𝑖
𝑡 , 𝑠𝑡 ))

+ 𝐷𝐾𝐿 (𝑝 (𝑎 𝑗𝑡 |𝑎
𝑖
𝑡 , 𝑠𝑡 ) | |𝑞(𝑎

𝑗
𝑡 |𝑎

𝑖
𝑡 , 𝑠𝑡 ))

]
, (9)

based on thewell-known decomposition of the cross entropy. Hence,

by maximizing this cross entropy term, due to the negation in (9)

we can learn 𝜋𝑖 (generating 𝑎𝑖𝑡 ) and 𝜋
𝑗
(generating 𝑎

𝑗
𝑡 ) so that the

conditional entropy𝐻 (𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 )) of 𝑎
𝑗
𝑡 given 𝑎

𝑖
𝑡 is minimized, i.e.,

the two actions are more correlated to each other, and learn 𝑞 that

closely approximates the true 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ), i.e., the 𝐷𝐾𝐿 term in (9)

is minimized.

4.2 Modified Policy Iteration
Our algorithm construction is based on policy iteration. In order

to develop policy iteration for the proposed MI framework, we
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first replace the original MI-regularized objective function (1) with

the following tractable objective function based on the variational

lower bound (8):

𝐽 (𝝅 , 𝑞) =E 𝜏0 ∼ 𝝅
𝑧𝑡 ∼ 𝑝𝑍

[ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑟𝑡 (𝑠𝑡 , 𝒂𝒕 )

+ 𝛼𝑁

𝑁∑︁
𝑖=1

𝐻 (𝑎𝑖𝑡 |𝑠𝑡 ) + 𝛼

𝑁∑︁
𝑖=1

∑︁
𝑗≠𝑖

log𝑞(𝑎 𝑗𝑡 |𝑎
𝑖
𝑡 , 𝑠𝑡 )

)]
, (10)

where𝝅 = [𝜋1, · · · , 𝜋𝑁 ] and𝜋𝑖 is given by (5) and 𝒂𝑡 = [𝑎1𝑡 , · · · , 𝑎𝑁𝑡 ].
Then, we determine the individual objective function 𝐽 𝑖 (𝜋𝑖 , 𝑞) for
Agent 𝑖 as the sum of the terms in (10) associated with Agent 𝑖’s

policy 𝜋𝑖 or action 𝑎𝑖𝑡 , given by

𝐽 𝑖 (𝜋𝑖 , 𝑞) = E 𝜏0 ∼ 𝝅
𝑧𝑡 ∼ 𝑝𝑍

[ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑟𝑡 (𝑠𝑡 , 𝒂𝒕 ) + 𝛽 · 𝐻 (𝑎𝑖 |𝑠𝑡 )︸                           ︷︷                           ︸

(𝑎)

+ 𝛽

𝑁

∑︁
𝑗≠𝑖

[
log𝑞 (𝑎𝑖𝑡 |𝑎

𝑗
𝑡 , 𝑠𝑡 ) + log𝑞 (𝑎 𝑗𝑡 |𝑎

𝑖
𝑡 , 𝑠𝑡 )︸                                        ︷︷                                        ︸

(𝑏)

] )]
, (11)

where 𝛽 = 𝛼𝑁 is the temperature parameter. Note that maximizing

the term (a) in (11) implies that each agent maximizes the weighted

sum of the return and the action entropy, which can be interpreted

as an extension of maximum entropy RL [7] to multi-agent setting.

On the other hand, maximizing the term (b) with respect to 𝜋𝑖

and 𝑞 means that we update the policy 𝜋𝑖 so that the conditional

entropy of 𝑎
𝑗
𝑡 given 𝑎𝑖𝑡 and the conditional entropy of 𝑎𝑖𝑡 given 𝑎

𝑗
𝑡

are reduced, as already mentioned below (9). Thus, the objective

function (11) can be interpreted as the maximum entropy MARL
objective combined with action correlation or coordination. Hence,
the proposed objective function (11) can be considered as one im-

plementation of the concept of correlated exploration in MARL [17].

Now, in order to learn policy 𝜋𝑖 to maximize the objective func-

tion (11), we modify the policy iteration in standard RL. For this,

we redefine the value functions for Agent 𝑖 as

𝑄𝝅
𝑖 (𝑠, 𝑎) ≜ E 𝜏0 ∼ 𝝅

𝑧𝑡 ∼ 𝑝𝑍

[
𝑟0 + 𝛾𝑉 𝝅

𝑖 (𝑠1 )
�����𝑠0 = 𝑠, 𝒂0 = 𝒂

]
, (12)

𝑉 𝝅
𝑖 (𝑠 ) ≜ E 𝜏0 ∼ 𝝅

𝑧𝑡 ∼ 𝑝𝑍

[ ∞∑︁
𝑡=0

𝛾𝑡
(
𝑟𝑡 + 𝛽𝐻 (𝑎𝑖𝑡 |𝑠𝑡 )

+ 𝛽

𝑁

∑︁
𝑗≠𝑖

log𝑞 (𝑖,𝑗 ) (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 )

)�����𝑠0 = 𝑠
]
, (13)

where 𝑞 (𝑖, 𝑗 ) (𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑠𝑡 ) ≜ 𝑞(𝑎𝑖𝑡 |𝑎

𝑗
𝑡 , 𝑠𝑡 )𝑞(𝑎

𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ). Then, the Bellman

operator corresponding to 𝑉 𝝅
𝑖

and 𝑄𝝅
𝑖
on the value function esti-

mates 𝑉𝑖 (𝑠) and 𝑄𝑖 (𝑠, 𝒂) is given by

T𝝅𝑄𝑖 (𝑠, 𝒂) ≜ 𝑟 (𝑠, 𝒂) + 𝛾E𝑠′∼𝑝 [𝑉𝑖 (𝑠′)], where (14)

𝑉𝑖 (𝑠) = E
[
𝑄𝑖 (𝑠, 𝒂)−𝛽 log 𝜋̃𝑖 (𝑎𝑖 |𝑠)+ 𝛽

𝑁

∑
𝑗≠𝑖 log𝑞

(𝑖, 𝑗 ) (𝑎𝑖 , 𝑎 𝑗 |𝑠)
]
, and

𝜋̃𝑖 is the marginal distribution given in (7). In the policy evaluation

step, we compute the value functions (12) and (13) by applying the

modified Bellman operator T𝝅
repeatedly to an initial function

𝑄
(0)
𝑖

.

Proposition 1. (Variational Policy Evaluation). For fixed 𝝅 and
the variational distribution 𝑞, consider the modified Bellman operator
T𝝅 in (14) and an arbitrary initial function 𝑄

(0)
𝑖

: S × A → R,

and define 𝑄 (𝑘+1)
𝑖

= T𝝅𝑄
(𝑘 )
𝑖

. Then, 𝑄 (𝑘 )
𝑖

converges to 𝑄𝝅
𝑖
defined

in (12).

Proof. See Appendix B.
In the policy improvement step, we update the policy and the

variational distribution by using the value function evaluated in

the policy evaluation step. Here, each agent updates its policy and

variational distribution while keeping other agents’ policies fixed

as follows: (𝜋𝑖
𝑘+1, 𝑞𝑘+1 ) =

argmax

𝜋𝑖 ,𝑞

E (𝑎𝑖 , 𝑎−𝑖 ) ∼ (𝜋𝑖 , 𝜋−𝑖
𝑘

)
𝑧𝑘 ∼ 𝑃𝑍

[
𝑄

𝝅𝑘
𝑖

(𝑠, 𝒂) − 𝛽 log 𝜋̃𝑖 (𝑎𝑖 |𝑠 )

+ 𝛽

𝑁

∑︁
𝑗≠𝑖

log𝑞 (𝑖,𝑗 ) (𝑎𝑖 , 𝑎 𝑗 |𝑠 ) )
]
, (15)

where 𝑎−𝑖 ≜ {𝑎1, · · · , 𝑎𝑁 }\{𝑎𝑖 } and 𝜋−𝑖
𝑘

is the collection the poli-

cies for all agents except Agent 𝑖 at the 𝑘-th iteration. Then, we

have the following proposition regarding the improvement step.

Proposition 2. (Variational Policy Improvement). Let 𝜋𝑖𝑛𝑒𝑤 and
𝑞𝑛𝑒𝑤 be the updated policy and the variational distribution from (15).

Then, 𝑄
𝜋𝑖𝑛𝑒𝑤 ,𝜋

−𝑖
𝑜𝑙𝑑

𝑖
(𝑠, 𝒂) ≥ 𝑄

𝜋𝑖
𝑜𝑙𝑑
,𝜋−𝑖

𝑜𝑙𝑑

𝑖
(𝑠, 𝒂) for all (𝑠, 𝒂) ∈ (S × A).

Here, 𝑄
𝜋𝑖𝑛𝑒𝑤 ,𝜋

−𝑖
𝑜𝑙𝑑

𝑖
(𝑠, 𝒂) means 𝑄𝝅

𝑖
(𝑠, 𝒂) |𝝅=(𝜋𝑖𝑛𝑒𝑤 ,𝜋−𝑖

𝑜𝑙𝑑
) .

Proof. See Appendix B.

The modified policy iteration is defined as applying the vari-

ational policy evaluation and variational improvement steps in

an alternating manner. Each agent trains its policy, critic and the

variational distribution to maximize its objective function (11).

5 ALGORITHM CONSTRUCTION
Summarizing the development above, we now propose the varia-

tional maximum mutual information multi-agent actor-critic (VM3-

AC) algorithm, which can be applied to continuous and partially

observable multi-agent environments under CTDE. The overall

operation of VM3-AC is shown in Fig. 2. Under CTDE, each agent’s

policy is conditioned only on local observation, and centralized

critics are conditioned on either the environment state or the obser-

vations of all agents, depending on the situation [16]. Let 𝒙 denote

either the environment state 𝑠 or the observations of all agents

(𝑜1, · · · , 𝑜𝑁 ), whichever is used. In order to deal with the large

continuous state-action spaces, we adopt deep neural networks to

approximate the required functions. For Agent 𝑖 , we parameterize

the policy as 𝜋𝑖
𝜙𝑖 (𝑎 |𝑜𝑖 , 𝑧) with parameter 𝜙𝑖 , the variational dis-

tribution as 𝑞𝜉𝑖 (𝑎 𝑗 |𝑎𝑖 , (𝑜𝑖 , 𝑜 𝑗 )) with parameter 𝜉𝑖 , the state-value

function as 𝑉 𝑖
𝜓𝑖
(𝒙) with parameter𝜓 𝑖 , and two action-value func-

tions as 𝑄𝑖
𝜃𝑖,1

(𝒙, 𝒂) and 𝑄𝑖
𝜃𝑖,2

(𝒙, 𝒂) with parameters 𝜃𝑖,1 and 𝜃𝑖,2.

Note that in the original variational distribution, 𝑎
𝑗
𝑡 is conditioned

on 𝑎𝑖𝑡 and 𝑠𝑡 . In the partially observable case, we replace 𝑠𝑡 with

(𝑜𝑖 , 𝑜 𝑗 ).
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Figure 2: Overall operation of the proposed VM3-AC.We only
need the operation in the red box after training.

For the prior distribution 𝑃𝑍 of the injection variable 𝑧𝑡 , we use

zero-mean multivariate Gaussian distribution with identity covari-

ance matrix, i.e., 𝑧𝑡 ∼ N(0, I), where the dimension is a hyperpa-

rameter, given in Appendix E. We further assume that the class Q
of the variational distribution is multivariate Gaussian distribution

with constant covariance matrix 𝜎2I with dimension of the action

dimension, i.e., Q = {𝑞𝜉𝑖 (𝑎 𝑗 |𝑎𝑖 , (𝑜𝑖 , 𝑜 𝑗 )) = N(𝜇𝜉𝑖 (𝑎𝑖 , 𝑜𝑖 , 𝑜 𝑗 ), 𝜎2I)},
where 𝜇𝜉𝑖 (𝑎𝑖 , 𝑜𝑖 , 𝑜 𝑗 ) is the mean of the distribution.

Centralized Training The parameterized value functions, the

policy, and the variational distribution are trained based on proper

loss functions derived from Section 4.2 in a similar way to the

training in SAC in a centralized manner. During the centralized

training, correlated exploration works so as to find a good set of

joint policies of the 𝑁 agents due to our common injection variable

as explained in Section 4. Now, we provide the training details and

pseudo code.

The value functions 𝑉 𝑖
𝜓𝑖
(𝒙), 𝑄𝑖

𝜃𝑖
(𝒙, 𝒂) are updated based on the

modified Bellman operator defined in (13) and (14). The state-value

function 𝑉 𝑖
𝜓𝑖
(𝒙) is trained to minimize the following loss function:

L𝑉 (𝜓 𝑖 ) = E𝑠𝑡∼𝐷
[
1

2

(𝑉 𝑖
𝜓 𝑖 (𝒙𝑡 ) −𝑉 𝑖

𝜓 𝑖 (𝒙𝑡 ))2
]

(16)

where𝐷 is the replay buffer that stores the transitions (𝒙𝑡 , 𝒂𝑡 , 𝑟𝑡 , 𝒙𝑡+1);
𝑄𝑖
𝑚𝑖𝑛

(𝒙𝑡 , 𝑎𝑖𝑡 ) = min[𝑄𝑖
𝜃𝑖,1

(𝒙𝑡 , 𝑎𝑖𝑡 ), 𝑄𝑖𝜃𝑖,2 (𝒙𝑡 , 𝑎
𝑖
𝑡 )] is the minimum of

the two action-value functions to prevent the overestimation prob-

lem [5]; and

𝑉 𝑖
𝜓 𝑖 (𝒙𝑡 ) = E𝑧𝑡∼𝑁 (0,𝑰 ),{𝑎𝑘∼𝜋𝑘 ( · |𝑜𝑘𝑡 ,𝑧𝑡 ) }𝑁𝑘=1

[
𝑄𝑖𝑚𝑖𝑛 (𝒙𝑡 , 𝒂𝑡 )

− 𝛽 log𝜋𝑖
𝜙𝑖 (𝑎𝑖𝑡 |𝑜𝑖𝑡 , 𝑧𝑡 ) +

𝛽

𝑁

∑︁
𝑗≠𝑖

log𝑞
(𝑖, 𝑗 )
𝜉𝑖

(𝑎𝑖𝑡 , 𝑎
𝑗
𝑡 |𝑜

𝑖
𝑡 , 𝑜

𝑗
𝑡 )
]
. (17)

Note that in the second term of the RHS of (17), originally we

should have used the marginalized version, −𝛽 log 𝜋̃𝑖
𝜙𝑖 (𝑎𝑖𝑡 |𝑜𝑖𝑡 ) =

−𝛽 logE𝑧𝑡∼𝑁 (0,𝑰 ) [𝜋𝑖𝜙𝑖 (𝑎𝑖𝑡 |𝑜𝑖𝑡 , 𝑧𝑡 )]. However, for simplicity of com-

putation, we took the expectation E𝑧𝑡∼𝑁 (0,𝑰 ) outside the logarithm.

Hence, there exists Jensen’s inequality type approximation error.

We observe that this approximation works well.

The two action-value functions are updated by minimizing the

loss

L𝑄 (𝜃𝑖 ) = E(𝒙𝑡 ,𝒂𝑡 )∼𝐷

[
1

2

(𝑄𝜃𝑖 (𝒙𝑡 , 𝒂𝑡 ) − 𝑄̂ (𝒙𝑡 , 𝒂𝑡 ))2
]

(18)

where

𝑄̂ (𝒙𝑡 , 𝒂𝑡 ) = 𝑟𝑡 (𝑥𝑡 , 𝒂𝒕 ) + 𝛾E𝒙𝑡+1 [𝑉𝜓 𝑖 (𝑥𝑡+1)] (19)

and 𝑉
𝜓
𝑖 is the target value network, which is updated by the ex-

ponential moving average method. We implement the reparame-

terization trick to estimate the stochastic gradient of policy loss.

Then, the action of agent 𝑖 is given by 𝑎𝑖 = 𝑓𝜙𝑖 (𝑠; 𝜖𝑖 , 𝑧), where
𝜖𝑖 ∼ N(0, 𝑰 ) and 𝑧 ∼ N(0, 𝑰 ). The policy for Agent 𝑖 and the vari-

ational distribution are trained to minimize the following policy

improvement loss, L𝜋𝑖 ,𝑞 (𝜙𝑖 , 𝜉)

= E 𝑠𝑡 ∼ 𝐷,
𝜖𝑖 ∼ N,
𝑧 ∼ N

[
−𝑄𝑖

𝜃𝑖,1
(𝒙𝑡 , 𝒂) + 𝛽 log𝜋𝑖

𝜙𝑖 (𝑎𝑖 |𝑜𝑖𝑡 , 𝑧)

− 𝛽

𝑁

∑︁
𝑗≠𝑖

log𝑞
(𝑖, 𝑗 )
𝜉𝑖

(𝜋𝑖
𝜙𝑖 (𝑎𝑖 |𝑜𝑖𝑡 , 𝑧), 𝜋

𝑗

𝜙 𝑗 (𝑎 𝑗 |𝑜
𝑗
𝑡 , 𝑧) |𝑜

𝑖
𝑡 , 𝑜

𝑗
𝑡 )
]

(20)

where 𝑞
(𝑖, 𝑗 )
𝜉𝑖

(𝜋𝑖
𝜙𝑖 (𝑎𝑖 |𝑜𝑖𝑡 , 𝑧), 𝜋

𝑗

𝜙 𝑗 (𝑎 𝑗 |𝑜
𝑗
𝑡 , 𝑧) |𝑜𝑖𝑡 , 𝑜

𝑗
𝑡 )

=𝑞𝜉𝑖 (𝜋𝑖𝜙𝑖 (𝑎𝑖 |𝑜𝑖𝑡 , 𝑧) |𝜋
𝑗

𝜙 𝑗 (𝑎 𝑗 |𝑜
𝑗
𝑡 , 𝑧) |𝑜

𝑖
𝑡 , 𝑜

𝑗
𝑡 )︸                                           ︷︷                                           ︸

(𝑎)

× 𝑞𝜉𝑖 (𝜋
𝑗

𝜙 𝑗 (𝑎 𝑗 |𝑜
𝑗
𝑡 , 𝑧) |𝜋

𝑖
𝜙𝑖 (𝑎𝑖 |𝑜𝑖𝑡 , 𝑧) |𝑜𝑖𝑡 , 𝑜

𝑗
𝑡 )︸                                           ︷︷                                           ︸

(𝑏 )

. (21)

Again, for simplicity of computation, we took the expectation

E𝑧𝑡∼𝑁 (0,𝑰 ) outside the logarithm for the second term in the RHS

in (20). Since approximation of the variational distribution is not

accurate in the early stage of training and the learning via the term

(a) in (21) is more susceptible to approximation error, we propagate

the gradient only through the term (b) in (21) to make learning

stable. Note that minimizing − log𝑞𝜉𝑖 (𝑎 𝑗 |𝑎𝑖 , 𝑠𝑡 ) is equivalent to
minimizing the mean-squared error between 𝑎 𝑗 and 𝜇𝜉𝑖 (𝑎𝑖 , 𝑜𝑖 , 𝑜 𝑗 )
due to our Gaussian assumption on the variational distribution.

Decentralized Execution In the centralized training phase, we

pick actions (𝑎1𝑡 , · · · , 𝑎𝑁𝑡 ) according to𝜋1 (𝑎1𝑡 |𝑠𝑡 , 𝑧𝑡 ), · · · , 𝜋𝑁 (𝑎𝑁𝑡 |𝑠𝑡 ,
𝑧𝑡 ) (or with 𝑠𝑡 replaced with (𝑜1𝑡 , · · · , 𝑜𝑁𝑡 )), where common 𝑧𝑡 gen-

erated from zero-mean Gaussian distribution is shared under the

centralized assumption. However, in the decentralized execution

phase, sharing common 𝑧𝑡 requires communication among the

agents. To remove this communication necessity, we consider two

methods. First, under the assumption of synchronization, we can

make all agents have the same Gaussian random sequence gen-

erator and distribute the same seed and initiation timing to this

random sequence generator only once in the beginning of the exe-

cution phase. In other words, we require all agents to have the same

Gaussian random sequence generator and distribute the same seed

and initiation timing to these random sequence generators before

deployment for the execution phase. (Mahajan et al. [17] also con-

sidered that multiple agents share the realization of latent variables

in the beginning of the episode.) Second, we exploit the property of
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Algorithm 1 VM3-AC (L=1)

Centralized training phase
Initialize parameter 𝜙𝑖 , 𝜃𝑖 ,𝜓 𝑖 ,𝜓

𝑖
, 𝜉𝑖 , ∀𝑖 ∈ {1, · · · , 𝑁 }

for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 2, · · · do
Initialize state 𝑠0 and each agent observes 𝑜𝑖

0

for 𝑡 < 𝑇 and 𝑠𝑡 ≠ terminal do
Generate 𝑧𝑡 ∼ N(0, 𝐼 ) and select action 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑜𝑖𝑡 , 𝑧𝑡 ) ,∀𝑖

Execute 𝒂𝒕 and each agent 𝑖 receives 𝑟𝑡 and 𝑜
𝑖
𝑡+1

Store transitions in 𝐷

end for
for each gradient step do
Sample a minibatch from D and generate 𝑧𝑙 ∼ N(0, 𝐼 ) for
each transition.

Update 𝜃𝑖 ,𝜓 𝑖 by minimizing the loss (18) and (19)

Update 𝜙𝑖 , 𝜉𝑖 by minimizing the loss (20)

end for
Update𝜓

𝑖
using the moving average method

end for

Decentralized execution phase
Initialize state 𝑠0 and each agent observes 𝑜𝑖

0

for each environment step do
Select action 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑜𝑖𝑡 , 𝑧𝑡 ) where 𝑧𝑡 =

−→
0 (or sample from

the Gaussian random sequence generator with the same seed)

Execute 𝒂𝒕 and each agent 𝑖 receives 𝑜𝑖
𝑡+1

end for

zero-mean Gaussian input variable 𝑧𝑡 to the policy network. During

the centralized training period, the parameters 𝜙1, · · · , 𝜙𝑁 of the

policy networks 𝜋1
𝜙1
(𝑎 |𝑜1, 𝑧), · · · , 𝜋𝑁

𝜙𝑁
(𝑎 |𝑜𝑁 , 𝑧) (with input (𝑜𝑖 , 𝑧)

and output 𝑎) are learned so that actions 𝑎1𝑡 , · · · , 𝑎𝑁𝑡 are coordinated

for random perturbation input 𝑧𝑡 drawn from 𝑃𝑍 . Note that the

coordination behavior is learned and engraved into the parameters

𝜙1, · · · , 𝜙𝑁 not into the input 𝑧𝑡 . So, we only use this stored pa-

rameter information during the decentralized execution phase. We

apply the common mean value E{𝑧𝑡 } to the 𝑧𝑡 input of the trained

policy network 𝜋𝑖
𝜙𝑖 (𝑎𝑖𝑡 |𝑜𝑖𝑡 , 𝑧𝑡 ) of Agent 𝑖 , ∀𝑖 . In this case, actions

𝑎1𝑡 , · · · , 𝑎𝑁𝑡 are independent conditioned on 𝑠𝑡 ∋ (𝑜1𝑡 , · · · , 𝑜𝑁𝑡 ) but
a specific joint bias (most representative joint bias) is applied to

actions 𝑎1𝑡 , · · · , 𝑎𝑁𝑡 . We expect that this joint bias is helpful and this

situation is described in a toy example in Appendix A. In this way,

the proposed algorithm is fully operative under CTDE. The ablation

study is provided in Sec. 6.

6 EXPERIMENT
In this section, we provide numerical results on both continuous

and discrete action tasks.

Experiment on continuous action tasks We consider the fol-

lowing continuous action tasks with the varying number of agents:

multi-walker [6], predator-prey [16], cooperative treasure collec-

tion [9], and cooperative navigation [16]. The detailed setting of

each task is provided in Appendix F. Here, we considered four base-

lines: 1) MADDPG [16] - an extension of DDPG with a centralized

critic to train a decentralized policy for each agent. 2) Multi-agent

actor-critic (MA-AC) - a variant of VM3-AC (𝛽 = 0) without the
latent variable. 3) Multi-agent variational exploration (MAVEN)

[17]. Similarly to VM3-AC, MAVEN introduced latent variable and

variational approach for optimizing the mutual information. How-

ever, MAVEN does not consider the mutual information between

actions but considers the mutual information between the latent

variable and trajectories of the agents. 4) Social Influence with

MOA (SI-MOA) [10], which is explained in Section 3. Both MAVEN

and SI-MOA are implemented on top of MA-AC since we consider

continuous action-space environments.

Fig. 3 shows the learning curves for the considered four environ-

ments with the different numbers of agents. The y-axis denotes the

average of all agents’ rewards averaged over 7 random seeds, and

the x-axis denotes the time step. The hyperparameters including the

temperature parameter 𝛽 and the dimension of the latent variable

are provided in Appendix E. As shown in Fig. 3, VM3-AC outper-

forms the baselines in the considered environments. Especially, in

the case of the multi-walker environment, VM3-AC has a large

performance gain over existing state-of-the-art algorithms. This is

because the agents in the multi-walker environment are strongly

required to learn simultaneous coordination in order to obtain high

rewards. In addition, the agents in the predator-prey environment,

where the number of agents is four, should spread out in groups

of two to get more rewards. In this environment, VM3-AC also

has a large performance gain. Thus, it is seen that the proposed

MMI framework improves performance in complex multi-agent

tasks requiring high-quality coordination. It is observed that both

MAVEN and SI-MOA outperform the basic algorithm MA-AC but

not VM3-AC. Hence, the numerical results show that the way of

using MI by the proposed VM3-AC algorithm has some advantages

over those by MAVEN and SI-MOA, especially for MARL tasks

requiring coordination of concurrent actions.

Experiment on discrete action taskWe also considered the

StarcraftII micromanagement benchmark (SMAC) environment

[22]. We modified the SMAC environment to be sparse by giving

rewards when an ally or an enemy dies and a time penalty. Thus, in

the case of 3s vs 3z, where we need to control three stalkers to beat

the three zealots (enemy), the reward is hardly obtained because

it takes a long time to remove a zealot. We provided the detailed

setting of the modified SMAC environment in Appendix G. We

considered five state-of-the-art baselines: DOP [25], FOP [27], LICA

[29], MAVEN [17], and VDAC [23]. We implemented VM3-AC on

the top of FOP by introducing the latent variable and replacing the

entropy term in [27] with the MI. Fig. 4 shows the performances of

VM3-AC and the baselines on three maps in SMAC. It is observed

that VM3-AC outperforms the baselines. Especially on 3svs3z, in

which reward is highly sparse, VM3-AC outperforms the baselines

in terms of both training speed and final performance.

6.1 Ablation Study and Discussion
In this subsection, we provide ablation studies and discussion on

the major techniques and hyperparameters of VM3-AC: 1) mutual

information versus entropy 2) the latent variable, 3) the temperature

parameter 𝛽 , 4) injecting zero vector instead of the latent variable

𝑧 to policies in the execution phase and 5) scalability.
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(a) MW (N=3) (b) MW (N=4) (c) PP (N=2) (d) PP (N=3)

(e) PP (N=4) (f) CTC (N=4) (g) CTC (N=5) (h) CN (N=3)

Figure 3: Performance of MADDPG (blue), MA-AC (green), MAVEN (purple), SI-MOA (black), and VM3-AC (the proposed
method, red) on multi-walker environments (a)-(b), predator-prey (c)-(e), cooperative treasure collection (f)-(g), and cooperative
navigation (f). (MW, PP, CTC, and CN denote multi-walker, predator-prey, cooperative treasure collection and cooperative
navigation, respectively)

(a) 3m (b) 2s3z (c) 3s vs 3z

Figure 4: Performance of DOP (green), FOP (blue), LICA (black), MAVEN (purple), VDAC (orange) and VM3-AC (red) on three
maps in the modified SMAC environment.

Mutual information versus entropy: The proposed MI frame-

work maximizes the sum of the action entropy and the negative

of the cross entropy of the variational conditional distribution rel-

ative to the true conditional distribution, which provides a lower

bound of MI between actions. As aforementioned, maximizing the

sum of the action entropy and the negative of the cross entropy

of the variational conditional distribution relative to the true con-

ditional distribution enhances exploration and predictability for

other agents’ actions. Hence, the proposed MI framework enhances

correlated exploration among agents.

We compared VM3-AC with multi-agent-SAC (MA-SAC), which

is an extension of maximum entropy soft actor-critic (SAC) [7] to

multi-agent setting. For MA-SAC, we extended SAC to multi-agent

settings in the manner of independent learning. Each agent trains

its decentralized policy using decentralized critic to maximize the

weighted sum of the cumulative return and the entropy of its policy.

Adopting the framework of CTDE, we replaced decentralized critic

with centralized critic which incorporates observations and actions

of all agents.

We performed an experiment in the predator-prey environment

with four agents where the number of required agents to catch the

prey is two. In this environment, the agents started at the center of

the map. Hence, the agents should spread out in the group of two to

catch preys efficiently. Fig.6 shows the positions of the four agents

at five time-steps after the episode starts. The first and second rows

in Fig.6 show the results of VM3-AC and MA-SAC in the early stage

of the training, respectively. It is seen that the agents of VM3-AC

explore in the group of two while the agents of MA-SAC tend to

explore independently. We provided the performance comparisons

of VM3-AC with MA-SAC in Fig.5 (a) and (b).

Latent variable: The role of the latent variable is to induce MI

among concurrent actions and inject an additional degree of free-

dom for action control. We compared VM3-AC and VM3-AC with-

out the latent variable (implemented by setting dimension(𝑧𝑡 ) = 0)

in the multi-walker environment. In both cases, VM3-AC yields
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(a) PP (N=4) (b) MW (N=4) (c) MW (N=3) (d) MW (N=4)

Figure 5: (a) and (b): VM3-AC (red), VM3-AC without latent variable (orange), and MA-SAC (cyan) and (c) and (d): performance
with respect to the temperature parameter

Figure 6: The positions of four agents after five time-steps
after the episode begins in the early stage of the training:
1st row - VM3-AC and 2nd row - MA-SAC. The figures in
column correspond to a different seed. The black squares are
the preys and each color except black shows the position of
each agent.

better performance than VM3-AC without the latent variable as

shown in Fig.5(a) and 5(b). Here, the gain by VM3-AC without the

latent variable (i.e., dimension(𝑧𝑡 ) = 0) over MA-SAC is solely due

to passive modeling 𝑝 (𝑎 𝑗𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ) by using 𝑞(𝑎
𝑗
𝑡 |𝑎𝑖𝑡 , 𝑠𝑡 ), not including

active injection of coordination by 𝑧𝑡 .

Injecting mean vector E{𝑧𝑡 } to the 𝑧𝑡 -input of policy net-
work 𝜋𝑖

𝜙𝑖 (·|𝑜𝑖𝑡 , 𝑧𝑡 ) during the execution phase: As mentioned

in Section 5, we applied the mean vector of 𝑧𝑡 , i.e., E{𝑧𝑡 } to the

𝑧𝑡 -input of the policy deep neural network 𝜋𝑖
𝜙𝑖 (·|𝑜𝑖𝑡 , 𝑧𝑡 ) during the

execution phase so as to execute actions without communication

in the execution phase. We compared the performance of decen-

tralized policies that use the mean vector E{𝑧𝑡 } and decentralized

policies which use the latent variable 𝑧𝑡 assuming communication.

We used deterministic evaluation based on 20 episodes generated

by the corresponding deterministic policy, i.e., each agent selects

action using the mean network of Gaussian policy 𝜋𝑖
𝜙𝑖 . We aver-

aged the return over 7 seeds, and the result is shown in Table 1.

It is seen that the mean vector replacement method yields almost

the same performance and enables fully decentralized execution

without noticeable performance loss. Please see Appendix A for

intuition.

Temperature parameter 𝛽: The role of temperature parameter

𝛽 is to control the relative importance between the reward and the

MI. We evaluated VM3-AC by varying 𝛽 = [0, 0.05, 0.1, 0.15] in the

multi-walker environment with 𝑁 = 3 and 𝑁 = 4. Fig. 5(c) and 5(d)

show that VM3-AC with the temperature value around [0.05, 0.1]
yields good performance.

Table 1: Impact of replacing the latent variable 𝑧𝑡 ∼ N(0, I)
with mean vector 𝑧𝑡 = E(𝑧𝑡 ) in the execution phase

PP (N=2) PP (N=3) PP (N=4)

𝑧𝑡 ∼ N(0, I) 413 734 1123

𝑧𝑡 = E(𝑧𝑡 ) 409 743 1147

Scalability: Many MARL algorithms which use a centralized

critic such as MADDPG [16] can suffer from the problem of scala-

bility due to increasing joint state-action space as the number of

agents increases. VM3-AC can also suffer from the same issue but

we can address the problem by adopting an attention mechanism

as in MAAC [8]. Additionally, VM3-AC needs more variational

approximation networks as the number of agents increases. As

many MARL algorithms share the parameters among agents, we

can share the parameters for the variational approximation net-

works. We expect that parameter sharing can handle the scalability

of the proposed method.

7 CONCLUSION
In this paper, we have proposed a new approach to MI-based co-

ordinated MARL to induce the coordination of concurrent actions

under CTDE. In the proposed approach, a common correlation-

inducing random variable is injected into each policy network, and

the MI between actions induced by this variable is expressed as a

tractable form by using a variational distribution. The derived objec-

tive consists of the maximum entropy RL combined predictability

enhancement (or uncertainty reduction) for other agents’ actions,

which can be interpreted as correlated exploration. We evaluated

the derived algorithm named VM3-AC on both continuous and

discrete action tasks and the numerical results show that VM3-AC

outperforms other state-of-the-art baselines, especially in multi-

agent tasks requiring high-quality coordination among agents.

LimitationOne can think sharing the common variable requires

communication between agents. To handle this, we introduced two

methods including sharing a Gaussian random sequence genera-

tor at the beginning of the episode and injecting the mean vector

into the latent vector in the execution. Here, reference timing in-

formation on top of time step synchronization is required for the

method of sharing a Gaussian random generator. This requirement

of communication is one limitation of our work, but we provided an

ablation study on this alternative and it was seen that the alternative

performs well.
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