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ABSTRACT
Cooperative multi-agent reinforcement learning (MARL) aims to

coordinate the actions of multiple agents via a shared team re-

ward. The complex interactions among agents make this problem

extremely difficult. The mainstream of MARL methods often im-

plicitly learn an inexplicable value decomposition from the shared

reward into individual utilities, failing to give insights into howwell

each agent acts and lacking direct policy optimization guidance.

This paper presents a sequential MARL framework that factorizes

and simplifies the complex interaction analysis into a sequential

evaluation process for more effective and efficient learning. We

explicitly formulate this factorization via a novel sequential ad-

vantage function to evaluate each agent’s actions, which achieves

an explicable credit assignment and substantially facilitates policy

optimization. We realize the sequential credit assignment (SeCA) by

dynamically adjusting the sequence in light of agents’ contributions

to the team. Extensive experimental validations on a challenging set

of StarCraft II micromanagement tasks verify SeCA’s effectiveness.
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1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) aims to

coordinate multiple agents’ actions through shared team rewards,

which applies to numerous tasks such as robot swarm control [9],

autonomous vehicle coordination [1], and network routing [38].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

One natural way to address the cooperative MARL problem is the

centralized approach, which treats the team as a single actor with

a joint action space. Although we can trivially apply single-agent

RL algorithms to this setting, it usually does not scale well because

the joint action space grows exponentially with the agent num-

ber [6, 7, 18]. Besides, it is not applicable in real-world settings due to

the inherent constraints on agent observability and communication.

An alternative approach is to learn decentralized policies [3, 27, 39]

by independently training agents based on their local observations,

but simultaneous exploration brings non-stationarity that causes

unstable learning and convergence difficulties [8, 40]. As a result,

most works follow the centralized training with decentralized exe-
cution (CTDE) paradigm [10, 17], where decentralized policies can

access extra global information during training.

A crucial challenge of the CTDE paradigm is correctly attributing

the global reward from the environment to the agents’ individual

actions, also known as the credit assignment problem [2]. Existing

popular MARL frameworks often directly represent the global Q-

value as an aggregation of each agent’s local value in an inexplicable

manner [13, 20, 25, 37]. In this way, these implicit methods avoid ex-

plicit coordination analysis and instead fit the complex interactions

by neural networks. Although credit assignment may not require

an explicit formulation if the policy gradient derived from the cen-

tralized critic carries sufficient information [41], it is difficult for

decentralized actors to extract direct and valuable knowledge from

the implicit information. Without explicitly evaluating each agent’s

action, they fail to give valuable insights into how well each agent

acts and lack direct guidance for policy optimization. In addition,

implicit methods often face limitations in expressiveness as they

often impose specific constraints on the mixing network [20, 25].

Although some following works [19, 22] attempt to solve this prob-

lem, they often introduce extra intractable computations, leading

to mediocre performances in complex environments.

To address these problems, we propose a sequential MARL evalu-

ation framework to evaluate each agent successively and explicitly.

This framework factorizes the analysis of the complex interactions

into a sequential evaluation process. In this factorization, we carry

out credit assignment by evaluating agents in a particular sequence,



where the evaluation of each agent is based on its preceding agents’

actions. We introduce a sequential advantage function under this

framework to explicitly formulate the evaluation and optimize the

agents’ policies in terms of the sequential advantage function. Our

sequential credit assignment, referred to as SeCA, equips with a se-

quence adjustment algorithm and dynamically learns the evaluation

sequence according to each agent’s contribution to the team.

SeCA avoids the above inexplicit and difficult learning and pur-

sues efficient MARL by providing the agents with explicit and direct
guidance for policy optimization. Our explicable credit assignment

is reflected in two aspects: 1) SeCA explicitly evaluates all agent

actions and elucidates howwell each agent acts, unlike the common

practice that decomposes the team reward into individual utilities

as an implicit analysis, and 2) the learned evaluation sequence is

explicable, which helps the agents collaborate methodically (c.f. the
fourth part in Section 4.2). The directness of our learning manifests

in the explicit formulation of the sequential advantage that directly

facilitates policy learning. SeCA also achieves higher expressive-

ness than most value-decomposition methods, as our centralized

critic has no inherent constraints. Although a few works [5, 29]

also attempt to give explicit credit assignment, they often perform

poorly in complex environments due to simple implementation or

strict restrictions. SeCA introduces a more accurate and general

evaluation formulation and thus achieves much better performance.

We summarize our main contributions as follows:

(1) We propose a sequential MARL evaluation framework that

factorizes and simplifies the complex cooperation analysis

among agents into a sequence of accessible evaluations.

(2) We formulate the sequential evaluation by introducing a se-
quential advantage function that realizes an explicable credit

assignment. In addition, we further provide the upper bound

of the proposed sequential advantage’s variance.

(3) We present a sequence adjustment algorithm to alleviate the

impacts caused by the evaluation order. It leverages inte-

grated gradients to dynamically learn the explicable evalua-

tion sequence in light of each agent’s contribution.

With these innovations, SeCA enables efficient learning through ex-

plicable and direct guidance and achieves competitive performances

on a challenging set of StarCraft II micromanagement tasks [21].

2 RELATEDWORK
Cooperative MARL coordinates multiple agents by team rewards.

The key to promoting coordination is correctly assigning this global

reward to each agent, known as the credit assignment problem.

The popular implicit credit assignment methods often learn a

value decomposition from the team reward into individual values,

lacking explicable and direct guidance for policy optimization. The

earlier work, VDN [25], equips a linear decomposition and ignores

the state information. QMIX [20] learns a non-linear mixing net-

work with the global state and maps the individual state-action

values into the joint Q-value estimate. Although performing well

in various environments, QMIX still faces the mixing network’s

monotonicity constraint limitation. QTRAN [22] further avoids

this representation limitation by using linear constraints between

individual utilities and the global state-action value. It guarantees

optimal decentralization, but its constraints are computationally

intractable, and the relaxations often lead to unsatisfactory perfor-

mances. VMIX [23] combines A2C with QMIX to extend the mono-

tonicity constraint to value networks and replaces the value net-

work with the monotonic mixing network. QPLEX [28] decomposes

Q-values following the dueling structure, transferring the mono-

tonicity condition from Q-values to advantage values. QPD [36]

uses integrated gradient attribution to decompose team rewards

along trajectory paths. However, whether QPD’s individual rewards

should be linearly correlated to an agent’s contribution remains

unclear. Policy-based method, LICA [41], learns end-to-end differ-

entiable policy optimization to remove the monotonicity constraint.

As for the explicit credit assignment methods, a few attempts

attribute the global reward to individual actions following explicit

formulations. Although explicit methods reveal which agent ac-

tions are responsible for the team reward, existing works perform

poorly as the interactions between agents are highly complex. The

notable COMA [5] utilizes a counterfactual baseline to calculate the

advantage function. However, its biased advantage evaluates each

agent’s action based on other agents’ current behaviors and ignores

their interactions. SQDDPG [29] and Shapley Counterfactual Cred-

its (SCC) [11] distribute the global reward by Shapley Q-value and

reflect each agent’s marginal contribution through a network or

counterfactual method. SQDDPG provides a theoretically justified

framework, but the assumption of observability and convex game

limits the scope of its application.

3 METHOD
Notations. This paper mainly focuses on a cooperative task with

n agents A = {a1, . . . ,an } as a Dec-POMDP [16] defined by a

tuple G =< S,U , P, r ,Z ,O,n,γ >. We denote joint quantities over

agents in bold and joint quantities over agents other than a given

agent a with the superscript −a. The environment has a true state
s ∈ S . Each agent a chooses an action uat from its action spaceU a

at timestep t and forms a joint action ut ∈ (U 1 × · · · ×U n ) ≡ U
that induces a transition according to the state transition function
P(st+1 |st ,ut ) : S ×U × S → [0, 1]. The reward function r (s,u) : S ×
U → R yields a global reward, and γ ∈ [0, 1) is the discount factor.
We consider partially observable scenarios where agent a acquires

its local observation za ∈ Z drawn fromO(st ,a) : S ×A → Z . Each
agent has an action-observation history τa ∈ T a ≡ (Z × U a )∗ on

which it conditions a policy πa (ua |τa ) : T a × U a → [0, 1]. The

joint policy π induces a joint action value function Qπ (st ,ut ) =
Eπ

[∑∞
i=0 γ

irt+i |st ,ut
]
. Our final goal is to find the optimal joint

policy π∗ such that Qπ ∗ (st ,ut ) ≥ Qπ (st ,ut ) for all π and (st ,ut ).

3.1 Sequential MARL Evaluation Framework
The interactions in a multi-agent system are complicated. Every

agent makes decisions based on the environment interfered with

by the other agents, and all agents’ actions jointly determine the

reward. Therefore, explicitly evaluating each agent’s action requires

considering the behaviors of other agents. It is hard to determine

the impact an agent’s action has on the team when we have not

assessed other agents. Accordingly, we aim to propose a sequential

process to explicitly evaluate each agent’s actions one by one and

promote cooperation between them.



This section presents a sequential MARL evaluation framework

to factorize the complex interaction analysis into a sequence of

accessible evaluations. Our key assumption is that the evaluations of
some agents in a team are less affected by other agents’ actions. For
instance, when evaluating the action of a staff in a company, the

CEO’s decision is vital because we have to judge whether the staff

obeys the command. On the contrary, a staff’s actions intuitively

have little impact on evaluating the CEO’s decision.When assessing

the CEO, we often consider external factors like themarket situation

modeled as state information s . With this insight, when evaluating

each agent’s action in a multi-agent system, we can first evaluate

the less-affected agents (like the CEO in this example) and then

analyze the other agents based on the actions of these already-

studied agents. To formulate this sequential evaluation process,

we introduce Eval(A) as the evaluation of a set of agents A to

model a sequential MARL evaluation framework. Specifically, the

cooperation study on a multi-agent systemA with n agents can be

factorized into a sequence of sub-evaluations:

Eval(A) ⇔ Eval(a1,a2, . . . ,an )
Factorize

=======⇒ (1)

Eval(ai ) & Eval(aj |ai ) & Eval(ak |ai ,aj ) & · · ·& Eval(am |A−m ),

where Eval(am |A−m ) represents the evaluation of agent am con-

ditional on the agents other than am that are already evaluated.

Figure 1: Benefits of the sequential evaluation.

We further provide an inspiring example to illustrate the benefits

of the proposed sequential evaluation over directly assessing the

interacting system. Agents in a cooperative MARL system learn

in every iteration to promote better cooperation, i.e., update their
policies to work effectively with others. Synchronously evaluat-

ing agents’ actions may lead to difficulties and inefficiencies in

cooperative policy learning, as each agent may update its policy to

better cooperate with the others’ current policies. As shown in Fig-

ure 1(left), when evaluated together, two agents attacking different

enemies are both guided to update their policy for the cooperative

strategy of focus fire. Thus, they may simultaneously change their

attack targets to cooperate with each other and cause inefficiencies

in learning (change from the current white strategy to the new blue

dashed strategy). Sequential evaluation, on the other hand, does

not consider the action of Agent 2 when evaluating Agent 1 but

only judges whether Agent 1 is attacking its nearest enemy (also

essential for the focus fire strategy). While Agent 2 is evaluated

conditional on the action of Agent 1, thus it will then update its

policy to swiftly form the cooperative focus fire strategy with Agent
1, illustrated by the blue strategy in Figure 1(right).

Under the sequential MARL evaluation framework, we evaluate

each agent based on its preceding agents’ actions in a particular

order. This framework simplifies the dependencies in the analysis by

half sincewe do not have to consider each agent’s subsequent agents

when evaluating it. It alleviates the problem that it is hard to judge

how good an agent’s action is when we have yet to evaluated the

others. This framework factorizes the complex interaction analysis

among agents into a sequence of accessible evaluations and provides

a solid groundwork for the explicit evaluation of each agent.

3.2 Sequential Credit Assignment under The
Sequential MARL Evaluation Framework

Following the CTDE paradigm, we utilize a centralized critic for

each agent network to follow a gradient that is based on an advan-

tage function A estimated from this critic:

д = ∇θ π logπ (u |τ )A. (2)

The advantage function A for each actor explicitly deduces how

that particular agent contributes to the team. Eqn.(2) shows that

the advantage value A directly determines the scale of the policy

updating at each iteration. An unreasonable advantage value will

lead to oscillation and dilatory learning and may cause convergence

to the local optimal solution, even in simple scenarios.

The notable explicit credit assignment method, COMA [5], uses

a counterfactual baseline inspired by difference rewards [35]. For

each agent a, COMA’s counterfactual advantage Aacf compares

the Q-value of action ua to a counterfactual baseline that only
marginalizes out ua while keeping u−a fixed, i.e.,:

Aacf (s,u) = Q
(
s,
(
ua,u−a

) )
−
∑
u′a

πa
(
u ′a |τa

)
·Q

(
s,
(
u ′a,u−a

) )
. (3)

The second term of the Eqn.(3) indicates that the counterfactual

baseline evaluates agent a’s action with the precondition that other

agents choose actionu−a . It ignores potential joint actions (ua,u−a′)
with u−a′ , u−a that may lead to unexpected results. Thus, the

counterfactual advantage still faces training instability and ineffi-

ciency. To better evaluate each agent a, a straightforward practice

is to consider the influence of all possible action combinations with

ua , computing the expectation of other agents’ actions u−a :

Aa (s,u) = Eu−a∼π−a
[
Q
(
s,
(
ua,u−a

) ) ]
− Eu−a∼π−a

[∑
u′a

πa
(
u ′a |τa

)
·Q

(
s,
(
u ′a,u−a

) ) ]
. (4)

However, the expectation of us in Eqn.(4) will lead to an indepen-

dent learning scheme, which is prone to non-stationarity [5, 27].

Under the proposed sequential MARL evaluation framework

that factorizes the complex coordination study into a sequence of

accessible evaluations, each agent’s evaluation is based on its pre-

ceding agents’ actions, and the actions of the subsequent agents do

not influence the evaluation. This trait considers the influence of

others when evaluating each agent and avoids independent policy

updates. With these properties, we propose a sequential advan-

tage function to improve the counterfactual advantage function

in Eqn.(3) and the independent practice in Eqn.(4). Concretely, we

give a sequential credit assignment (SeCA) for n agents identified

by {a1,a2, ...,an } under a specific sequence ⟨a1,a2, ...,an⟩. Simi-

lar equations can be drawn from the rest (n! − 1) orders. Here we



denote uai :j = [uai ,uai+1 , ...,uaj ]. After evaluating agent a, we as-
sess the subsequent agents based on ua . When evaluating agent ai ,
the advantage functions of its leading agents a1, ...,ai−1 have been
deduced, and the sequential advantage of ai is based on ua1:i−1 :

AaiSeCA (s,u) (5)

= Eu′ai+1:n
[
Q
(
s,
(
ua1:i ,u′ai+1:n

) ) ]
− Eu′ai :n

[
Q
(
s,
(
ua1:i−1 ,u′ai :n

) ) ]
=

∑
u′ai+1

· · ·
∑
u′an

n∏
j=i+1

πaj
(
u ′aj |τaj

)
·Q

(
s,
(
ua1:i ,u ′ai+1 , · · · ,u ′an

) )
−
∑
u′ai
· · ·

∑
u′an

n∏
j=i

πaj
(
u ′aj |τaj

)
·Q

(
s,
(
ua1:i−1 ,u ′ai , · · · ,u ′an

) )
.

Proposition 1. The proposed sequential advantage’s variance is
upper bounded by the variance of the counterfactual advantage.

Proof. We first rewrite the counterfactual advantage in Eqn.(3)

and the proposed sequential advantage in Eqn.(5) for reading and

comprehending convenience:

Aaicf (s, u) =Q
(
s,
(
uai , u−ai

) )
−
∑
u′ai

πai
(
u ′ai |τai

)
·Q

(
s,
(
u ′ai , u−ai

) )
=Eu′ai ∼π ai

[
Q
(
s, (uai , u−ai )

)
−Q

(
s, (u ′ai , u−ai )

)]
(6)

AaiSeCA(s, u) = Eu′ai+1:n∼π ai+1:n

[
Q
(
s,
(
ua1:i , u′ai+1:n

) )]
− Eu′ai :n∼π ai :n

[
Q
(
s,
(
ua1:i−1 , u′ai :n

) )]
(7)

= Eu′ai+1:n∼π ai+1:n

[
Eu′ai ∼π ai

[
Q
(
s,
(
ua1:i−1 ,uai , u′ai+1:n

))
−Q

(
s,
(
ua1:i−1 ,u ′ai , u′ai+1:n

) )]]
Then, for each agent ai , we have:

Varu∼π
[
AaiSeCA(s, u)

]
= E

[ [
AaiSeCA(s, u)

]
2

]
− E

[
AaiSeCA(s, u)

]
2

= Eua1:n∼π a
1:n

[
Eu′ai+1:n∼π ai+1:n

[
Eu′ai ∼π ai[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
] ]2]

≤ Eua1:n∼π a
1:n

[
Eu′ai+1:n∼π ai+1:n

[
Eu′ai ∼π ai[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
]
2

] ]
= Eua1:i ∼π a

1:i ,u′ai+1:n∼π ai+1:n

[
Eu′ai ∼π ai[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
]
2

]
= Eua1:n∼π a

1:n

[
Eu′ai ∼π ai

[
Q(s, (uai , u−ai )) −Q(s, (u ′ai , u−ai ))

]
2

]
= E

[ [
Aaicf (s, u)

]
2

]
− E

[
Aaicf (s, u)

]
2

= Varu∼π
[
Aaicf (s, u)

]
(8)
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Figure 2: Toy examples: Comparisons between the proposed
sequential advantage function and the counterfactual ad-
vantage function in two multi-agent particle environments.

Thus, we have Varu∼π
[
AaiSeCA(s, u)

]
≤ Varu∼π

[
Aaicf (s, u)

]
.

We further analyze the conditions for the tight upper bound. The

inequality in Eqn.(8), i.e.,

Eua1∼π a1 , ...,uan∼π an

[
Eu′ai+1∼π ai+1 , ...,u′an∼π an

[
Eu′ai ∼π ai[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
] ]2]

≤ Eua1∼π a1 , ...,uan∼π an

[
Eu′ai+1∼π ai+1 , ...,u′an∼π an

[
Eu′ai∼π ai (9)[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
]
2

] ]
,

is equivalence to Eqn.(10):

Eu′ai+1∼π ai+1 , ...,u′an∼π an
[
Eu′ai ∼π ai[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
] ]2

≤ Eu′ai+1∼π ai+1 , ...,u′an∼π an
[
Eu′ai ∼π ai (10)[

Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
]
2

]
.

For reading convenience, we use u′i+1:n ∼ π ′i+1:n to denoteu ′ai+1 ∼
πai+1 , . . . ,u ′an ∼ πan and setEu′ai ∼π ai

[
Q(s, (ua1:i−1 ,uai , u′ai+1:n ))

−Q(s, (ua1:i−1 ,u ′ai , u′ai+1:n ))
]
= X . Then we can deduce:

Eu′i+1:n∼π ′i+1:n (X )
2 ≤ Eu′i+1:n∼π ′i+1:n (X

2)

⇔ Eu′i+1:n∼π ′i+1:n (X
2) − Eu′i+1:n∼π ′i+1:n (X )

2 ≥ 0

⇔ Eu′i+1:n∼π ′i+1:n
[
[X − Eu′i+1:n∼π ′i+1:n (X )]

2

]
≥ 0. (11)



Figure 3: Architecture for SeCA. (a) A centralized mixing critic that maps the state into a set of weights (top) and the agent
structure (bottom). (b) The overall SeCA architecture. (c) The critic learning flow (top) and the policy learning flow (bottom).

The equation in (11) holds if and only if X = Eu′i+1:n∼π ′i+1:n (X ),
∀u′i+1:n ∼ π ′i+1:n .

Thus, Varu∼π
[
AaiSeCA

]
= Varu∼π

[
Aaicf

]
holds only in two cases:

(1) X = Eu′ai ∼π ai
[
Q(s, (ua1:i−1 ,uai , u′ai+1:n )) −Q(s, (ua1:i−1 ,u ′ai ,

u′ai+1:n ))
]
is an constant, ∀u ′ai+1 ∼ πai+1 , . . . ,u ′an ∼ πan ;

(2) u′i+1:n = ∅, i.e., agent ai is the last one in the sequence (i = n);

and Varu∼π
[
AaiSeCA

]
< Varu∼π

[
Aaicf

]
for other situations. □

To validate our sequential advantage and Proposition 1, we com-

pare the proposed sequential advantage function with the counter-

factual advantage in two multi-agent particle environments [12]

and follow the environmental settings in [29]. We compare these

two advantage functions using the same architecture (COMA’s) and

only change the way to compute the advantage. Figure 2 illustrates

that our sequential advantage helps the agents in Predator-Prey
capture the prey faster and assists the agents in performing better

with significantly smaller variance in Cooperative Navigation.
Critic Learning. We train the critic network fϕ on-policy-ly to

estimate the total Q-value and use a variant of TD(λ) [26] adapted
for use with neural networks. The critic parameter ϕ is updated by

minibatch gradient descent to minimize the following loss function:

Lt (ϕ) =
(
y
(λ)
t − fϕ (st ,ut )

)
2

, (12)

where y
(λ)
t = rt + γ

[
λy
(λ)
t+1 + (1−λ)fϕ− (st+1,ut+1)

]
. We utilize a

target critic fϕ− to improve learning stability [15] and update ϕ−←
ϕ periodically. The top block of Figure 3(c) shows the learning flow

of the critic network. The input for critic training is the state s and
the action vector u =

[
u1,u2, ...,un

]
denoted as v1:n .

Policy Learning.Computing each agent’s sequential advantage

function valueAaiSeCA in Eqn.(5) is extremely time-consuming since

a massive amount of Q values with different joint action inputs u
should be calculated. Here we consider an unconventional alterna-

tive previously explored in [33, 34, 41] where we directly feed each

agent’s action distribution parameters (e.g., the action probabilities

of a discrete policy or the mean and variance of a Gaussian con-

tinuous policy) to estimate the sequential advantage function. We

optimize the policy parameter θ by maximizing the following ob-

jective, which contains our sequential advantage AaSeCA in Eqn.(5)

and an adaptive entropy regularization termH [41]:

Ja (θ ) = Eτ∼π
[
logπa (ua |τa )AaSeCA(s,u) +H

(
πa (·|τa )

) ]
, (13)

where the derivative of the entropy regularization termH(πa (·|τa ))

with respect to the ith action probability pai is given by:

dHi = −ξ · (logp
a
i + 1)/H (π

a (·|τa )), (14)

and H (πa (·|τa )) = Eua∼π a
[
− logπa (ua |τa )

]
. (15)

We share parameters among agents to accelerate learning, and the

gradient we use to train the shared agent network is:

д = Eτ∼π
[
Ea

[
∇θa

(
logπa (ua |τa )AaSeCA(s,u) +H

(
πa (·|τa )

) ) ] ]
.

(16)

The policy learning flow is illustrated in the bottom block of Fig-

ure 3(c). The inputs of the centralized critic fϕ to compute agent ai ’s
sequential advantage are the state s and two action-policy vectors

v1:i =
[
u1, ...,ui , π i+1, ..., πn

]
and v1:i−1 =

[
u1, ...,ui−1, π i , ..., πn

]
.

Similarly, the input action-policy vectors to compute the sequential

advantage of agent ai+1 are v1:i+1 and v1:i .
Under the sequential MARL evaluation framework, the proposed

sequential credit assignment explicitly evaluates each agent’s ac-

tion and substantially facilitates policy optimization, generating

explicable and direct learning guidance for the agents.

3.3 Dynamic Sequence Adjustment
This section presents one implementation to derive the proper

evaluation sequence for SeCA. Our evaluation of each agent ai in
Eqn.(5) is based on its preceding agents’ actions ua1:i−1 , indicating
that agents whose evaluations are grounded in other agents’ actions

are better placed at the rear of the sequence. Although the CEO-Staff

example in Section 3.1 explains the factorization of the cooperation

study into a sequential evaluation, roles like CEO and staff are not

generalizable to acquire the sequence because multiple agents often
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Figure 4: Ablation and component studies onmap MMM2 to validate SeCA’s critical elements and showswhy SeCAworkswell. (a)
verifies the effects of our sequential advantage and network implementation. (b) compares our sequence adjustment method
with some other intuitive adjustments. (c) shows the test win percentage with various sequence adjustment frequencies.

play the same role. Therefore, instead of focusing on roles [30, 31],

we prefer a universal criterion that fits our sequential advantage.

As a universal element of cooperation, agents’ contribution to

the team allows a generalizable dynamic sequence learning. The

actions of the dominant agents (like the CEO in the example) that

contribute more to the team are more correlated with the team

reward. Knowing these agents’ actions allows a better analysis of

whether other agents’ actions are beneficial to the team. There-

fore, DescendingOrder(ca ) realizes a feasible implementation of

sequence adjustment, where ca denotes agent a’s contribution.
Integrated Gradients (IG) [24] is a natural tool to deduce contri-

bution in deep learning. It explains how much each input feature of

a network F affects the output change along an input path. Given

α ∈ [0, 1] and path function τ (α) that specifies a path from the

baseline τ (0) = ®b to the input τ (1) = ®x , path integrated gradients

along the jth dimension for the input ®x is acquired by:

c j = PathIG
τ
j (®x ; F ) =

∫
1

0

∂F (τ (α))

∂τj (α)

∂τj (α)

∂α
dα . (17)

c j is the contribution value of x j to F (®x) − F (®b), i.e., the difference
between prediction F (®x) and the baseline prediction F (®b).

Since we employ a critic network fϕ to approximate expected Q-

values, its gradient is naturally enabled to extract the contribution

of each agent policy πa to the expected reward obtained from t1
to t2, i.e., (f

t2
ϕ − f t1ϕ ), along a practical integral path. The action-

observation history τ t2t1 in MARL is a natural candidate for the path

τ [36]. Thus, we deduce the contribution during [t1, t2] by:

ca =

|π a |∑
j=1

PathIG

τ t2t
1

j (π
a
; fϕ ), (18)

where |πa | gives the number of policy vector’s components. We

compute each agent’s contribution and analyze the agent with

a bigger c first to deduce the dynamic sequence. The temporal

granularity of the sequence adjustment is studied in the following

section. The above contribution-based adjustment only implements

a feasible way to adjust the sequence, and the proper adjustment

is open for other attempts. We also provide some other intuitive

adjustment methods and compare them in Section 4.2.

4 EXPERIMENTS
4.1 Experimental Setup
We consider a challenging set of StarCraft II micromanagement

tasks (SMAC) [21] as our experiment environment. The inherent

differences amongmethods and their training procedure (e.g., on/off-
policy learning for value-based/policy-based methods) bring difficul-

ties when comparing methods fairly without introducing additional

components (e.g., importance sampling [14, 32] for off-policy meth-

ods). To attribute any poor performance of policy-based methods

to potential algorithmic limitations or poor training conditions (in

particular, high variance due to small batch sizes or insufficient gra-
dient steps), we follow [4, 41], training all methods with 32 parallel

runners to generate trajectories and using batches of 32 episodes.

We evaluate each method every 320K steps with 32 episodes and

report the 1st, median, and 3rd quartile win rates across 5 seeds.

4.2 Why SeCAWorks Well: Component Studies
Are our sequential advantage function and implementation
effective? The sequential advantage function is improved based

on COMA’s counterfactual advantage, and we have shown our

improvement in two toy examples in Figure 2. Afterward, we in-

troduced a fϕ approximation and a corresponding network archi-

tecture. Here we apply our implementation for COMA’s advantage

(COMA-newArchi) and compare it with the vanilla COMA and

SeCA to show the effects of our sequential advantage and network

implementation, respectively. As shown in Figure 4(a), COMA with

the vanilla advantage and implementation performs poorly on the

Super Hard map MMM2 and is significantly improved with our net-

work implementation. The proposed sequential advantage function

further accelerates and stabilizes learning.

Does the sequence adjustment algorithm help SeCA per-
form better? We compare our method with some intuitive adjust-

ments to validate its effects. One could first evaluate agents with

higher current-action probability (SeCA-Prob) or lower policy en-

tropy (SeCA-Entro), as they are more confident in their actions.

Since SeCA-Prob and Entro get a new order at each step, to be

fair, we set the path length in Eqn.(18) to one, i.e., consider agents’
contribution based on the transition from st to st+1 (SeCA-IG-1).
Although formulation (1) suggests that we can assign credit in any

sequence, Figure 4(b) illustrates that the variances and learning

speeds differ. Both SeCA-Prob and Entro learn faster than a fixed



Figure 5: Sequence evolution of SeCA on 2s3z. The learned sequence is explicable and facilitates sophisticated cooperation.

random sequence (SeCA-Fixed), but Prob has a larger variance. Our

algorithm performs the best in win rates and stability, while other

intuitive adjustments have inferior performance or higher variance.

Howdidwe determine the adjustment frequency?We next

study how the sequence adjustment frequency in our method af-

fects the performance. Except per step adjustment (SeCA-IG-1)

introduced above, one could also update the sequence after a stage

or an episode. If we change the order for every episode (SeCA-IG-

episode), τ t2t1 in Eqn.(18) represents a whole episode path. As for

stage adjustment, it is hard to define a stage in SMAC maps, and

the episode length limits vary in diverse maps. Here we set stage

lengths to 10 and 20 according to all maps’ length limits, denoted as

SeCA-IG-10 and IG-20. As Figure 4(c) shows, IG-1 and IG-episode

have similar final win rates, but IG-episode converges faster with

smaller variance. IG-10 and IG-20’s mediocre performance and

significant variance may be due to the need for dynamic stage ad-

justment.We utilized SeCA-IG-episode for all the other experiments
and will investigate dynamic stage learning in our future work.

Explicable learned sequence. We visualize an illuminating

map 2s3z in Figure 5, demonstrating how the sequence changes

and affects the performance as training proceeds. The sequence

is adjusted after every episode and is fixed in each battle. In the

beginning, the sequence is randomized. At about 60K steps, our

approach has learned to adjust the sequence based on survival

and health. Although survival and health make sense from some

perspectives, they are not proper criteria for deciding an evaluation

sequence. As training proceeded, our approach gradually learned

explicable sequences that evaluations of agents in the rear should

be based on preceding agents’ actions. We illustrate this through a

battle at around 120K steps. According to our battle analysis, the

kiting technique is the key to winning this battle. In particular,

agents have to make enemy units give chase while maintaining

enough distance, so that little or no damage is incurred. In this

episode, the dominant Agent 2 that carried out kiting needs Agent

1 to assist in attacking Enemy 7. Agent 4 helped attract Enemies

5 and 6 to ensure the safe kiting execution. Otherwise, Enemies 5

and 6 may attack Agent 2 and stop the kiting. Agents 0 and 3 did

not participate in this strategy and carried out side duties. From the

contribution perspective, the learned sequence makes sense. Most

importantly, it is also explicable to our sequential evaluation that

we should evaluate Agents 1 and 4, who assisted Agent 2, based on

Agent 2’s kiting moves. The auxiliary agents 0 and 3 are evaluated

at last based on other agents’ actions. The final learned sequence

facilitates a sophisticated cooperation strategy. It is also explicable

to our sequential credit assignment, i.e., evaluations of agents in
the rear of the sequence are based on preceding agents’ actions.

4.3 Performance Comparisons
We compare SeCAwith prominent baselines in this section to verify

SeCA’s effectiveness. SeCA compares with COMA and SCC to show

its superiority as an explicit credit assignment method. COMA is

the representative explicit credit assignment method, and SCC is

the latest one. SCC is improved based on another explicit baseline

SQDDPG and is proved to be better than it; thus, SQDDPG is not

involved in our experiments. Besides the explicit credit assignment

method, we also choose some notable implicit methods. Among

them, LICA is chosen because it is also an on-policy policy-based

method. RIIT combines well-known baselines’ effective modules

and has recently gotten much attention. Thus the comparison with

RIIT can fully illustrate the superiority of SeCA as a new credit

assignment method. All methods are evaluated on six maps that

vary in difficulty by Easy, Hard, and Super Hard. These scenarios
involve homogeneous and heterogeneous teams, symmetric and

asymmetric battles, allowing a holistic study of all methods.

Existing explicit credit assignment methods often perform poorly

in complex environments. However, as illustrated in Figure 6, SeCA

demonstrates its superiority and robustness by achieving competi-

tive performances in these scenarios with various characteristics.

All methods except two explicit credit assignment methods, COMA

and SCC, solve 2s3z and 1c3s5z, indicating the poor performance

of existing explicit methods. However, SeCA performs the best in

convergence speed and stability among all the methods. SeCA’s

advantage is further extended in map 2c_vs_64zg and especially

3s5z. It converges significantly faster than other methods and is

the only method that obtains a 100% win rate on 3s5z. The Zealots
in 3s5z do not purposefully intercept the enemy Zealots, and thus
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Figure 6: We compare SeCA with representative and prominent baselines on six SMAC scenarios with diverse characteristics
to show methods’ performances in different styles of environments. All methods are trained in parallel with 32 actors.

the allied Stalkers die very quickly, leading to a guaranteed loss.

Therefore, another policy-based method, LICA, has a huge variance

in 3s5z, while SeCA maintains effective learning due to the direct

and well-designed guidance for policy optimization. 3s_vs_4z in-
validates COMA and LICA. Stalkers in these maps have to learn to

disperse and “kite" enemies. SeCA significantly outperforms all the

other methods with the sequential evaluation scheme.

From the experimental results, it is clear that SeCA, as an explicit

credit assignment method, obtains higher win rates with more

efficient learning than existing baselines, COMA and SCC. SeCA

is also a policy-based method, achieving better performance than

its counterparts, LICA and RIIT. Notably, RIIT is deemed one of

the best-performing policy-based credit assignment methods that

incorporate effective modules from several prominent baselines.

Thus the above comparisons fully indicate SeCA’s superiority.

4.4 Strengths and Limitations Discussion
Although explicit credit assignment methods offer explicable cred-

its and thus give the team direct learning guidance, existing notable

methods like COMA often perform poorly due to naive implemen-

tation or strict conditions and can hardly win a single battle in

complex environments. This situation leads to popular research

on value-based implicit credit assignment. While implicit methods

have yielded some good results, their learning efficiency is open

to further improvement, and their practical guiding significance in

the real world is not strong because their inexplicable guidance is

not direct and hard to learn. The proposed explicit credit assign-

ment method, SeCA, performs much better than the representative

explicit method COMA and the latest explicit method SCC. Besides,

SeCA makes full use of good design to give explicable and direct

guidance for agents, thus achieving higher efficiency and even bet-

ter results than the mainstream implicit credit assignment methods.

The policy-based method SeCA, with its impressive performance,

offers new possibilities for explicit credit assignment and provides

a competitive baseline for subsequent credit assignment studies.

Although SeCA is feasible to deal with multi-agent systems with

complex interactions theoretically, there may be particular cases

where several agents analyzed together would yield more desirable

results. In addition, in tasks with plenty of agents, some agents may

have no coordination in any way, and it would not be significant

to determine a sequence among them. Therefore, we consider in-

tegrating coordination graphs into our sequential framework to

enhance SeCA. In addition, the contribution-based sequence adjust-

ment is only a possible implementation to inspect sequential credit

assignment. More robust adjustments are worthwhile exploring to

offer profound viewpoints. As mentioned in Section 4.2, our future

interest also includes studying dynamic stage learning to adjust the

sequence per stage for adaptive learning.

5 CONCLUSION
This paper presented SeCA, a sequential cooperative MARL frame-

work with explicit credit assignment.We first introduce a sequential

MARL evaluation framework and then propose a sequential advan-

tage function for each agent under this framework to realize an

explicit credit assignment. We also provide an implementation of

sequence adjustment and compare it with other intuitive attempts.

SeCA factorizes the complex interaction study among multiple

agents into a sequence of accessible evaluations, enabling nontriv-

ial explicit analyses of each agent’s action and thus providing direct

and explicable guidance for their policy optimization. SeCA dra-

matically improves the performances of explicit credit assignment

methods and achieves higher efficiency and better results than other

credit assignment methods. In the future, we will enhance SeCA

by exploring new evaluation formulations and sequence adjust-

ments. We believe SeCA will be a new start and a good baseline for

subsequent research on the multi-agent credit assignment problem.



ACKNOWLEDGMENTS
This work was supported in part by the Natural Science Foundation

of China under Grant No. 62076238 and 61902402, in part by the

National Key Research and Development Program of China under

Grant No. 2020AAA0103401, 2022ZD0116401 and 2022ZD0116400,

in part by the CCF-Tencent Open Fund, and in part by the Strategic

Priority Research Program of Chinese Academy of Sciences under

Grant No. XDA27000000.

REFERENCES
[1] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. 2012. An overview

of recent progress in the study of distributed multi-agent coordination. IEEE
Transactions on Industrial informatics 9, 1 (2012), 427–438.

[2] Yu-han Chang, Tracey Ho, and Leslie Kaelbling. 2004. All learning is local:

Multi-agent learning in global reward games. In Advances in Neural Information
Processing Systems. 808–814.

[3] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-

chuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is independent

learning all you need in the StarCraft multi-agent challenge? arXiv preprint
arXiv:2011.09533 (2020).

[4] Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. 2019. LIIR:

Learning individual intrinsic reward in multi-agent reinforcement learning. In

Advances in Neural Information Processing Systems. 4403–4414.
[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In AAAI
Conference on Artificial Intelligence. 2974–2982.

[6] Sven Gronauer and Klaus Diepold. 2021. Multi-agent deep reinforcement learning:

A survey. Artificial Intelligence Review (2021), 1–49.

[7] Jayesh KGupta,Maxim Egorov, andMykel Kochenderfer. 2017. Cooperativemulti-

agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multi-Agent Systems. 66–83.

[8] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and

critique of multiagent deep reinforcement learning. In International Conference
on Autonomous Agents and Multi-Agent Systems. 750–797.

[9] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. 2017. Guided

deep reinforcement learning for swarm systems. arXiv preprint arXiv:1709.06011
(2017).

[10] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-

ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.

[11] Jiahui Li, Kun Kuang, Baoxiang Wang, Furui Liu, Long Chen, Fei Wu, and Jun

Xiao. 2021. Shapley counterfactual credits for multi-agent reinforcement learning.

In ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 934–942.
[12] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

2017. Multi-agent actor-critic for mixed cooperative-competitive environments.

In Advances in Neural Information Processing Systems. 6382–6393.
[13] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.

MAVEN: Multi-agent variational exploration. In Advances in Neural Information
Processing Systems. 7611–7622.

[14] Rupam Mahmood, Hado van Hasselt, and Richard Sutton. 2014. Weighted im-

portance sampling for off-policy learning with linear function approximation. In

Advances in Neural Information Processing Systems. 3014–3022.
[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[16] Frans A Oliehoek and Christopher Amato. 2016. A concise introduction to decen-

tralized POMDPs. Springer.
[17] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. 2008. Optimal and

approximate Q-value functions for decentralized POMDPs. Journal of Artificial
Intelligence Research 32 (2008), 289–353.

[18] Afshin Oroojlooy and Davood Hajinezhad. 2022. A review of cooperative multi-

agent deep reinforcement learning. Applied Intelligence (2022), 1–46.
[19] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.

Weighted QMIX: Expanding monotonic value function factorisation. In Advances

in Neural Information Processing Systems. 10199–10210.
[20] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic value function factori-

sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. 4295–4304.

[21] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-

quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,

Jakob Foerster, and Shimon Whiteson. 2019. The StarCraft multi-agent challenge.

CoRR abs/1902.04043 (2019).

[22] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi.

2019. QTRAN: Learning to factorize with transformation for cooperative multi-

agent reinforcement learning. In International Conference on Machine Learning.
5887–5896.

[23] Jianyu Su, Stephen Adams, and Peter Beling. 2021. Value-decomposition multi-

agent actor-critics. In AAAI Conference on Artificial Intelligence. 11352–11360.
[24] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution

for deep networks. In International Conference on Machine Learning. 3319–3328.
[25] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl

Tuyls, et al. 2018. Value-decomposition networks for cooperative multi-agent

learning based on team reward. In International Conference on Autonomous Agents
and Multi-Agent Systems. 2085–2087.

[26] Richard S Sutton. 1988. Learning to predict by themethods of temporal differences.

Machine learning 3, 1 (1988), 9–44.

[27] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In International Conference on Machine Learning. 330–337.
[28] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.

QPLEX: Duplex dueling multi-agent Q-learning. In International Conference on
Learning Representations. 1–9.

[29] Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. 2020. Shapley Q-

value: A local reward approach to solve global reward games. In AAAI Conference
on Artificial Intelligence. 7285–7292.

[30] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. 2020. ROMA:

Multi-agent reinforcement learning with emergent roles. In International Confer-
ence on Machine Learning. 9876–9886.

[31] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and

Chongjie Zhang. 2021. RODE: Learning roles to decompose multi-agent tasks. In

International Conference on Learning Representations. 1–9.
[32] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray

Kavukcuoglu, and Nando de Freitas. 2017. Sample efficient actor-critic with

experience replay. In International Conference on Learning Representations. 1–12.
[33] Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. 2019. Credit

assignment techniques in stochastic computation graphs. In International Con-
ference on Artificial Intelligence and Statistics. PMLR, 2650–2660.

[34] DaanWierstra and Jürgen Schmidhuber. 2007. Policy gradient critics. In European
Conference on Machine Learning. Springer, 466–477.

[35] David H Wolpert and Kagan Tumer. 2002. Optimal payoff functions for members

of collectives. In Modeling complexity in economic and social systems. World

Scientific, 355–369.

[36] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen,

Yujing Hu, Changjie Fan, and ZhongyuWei. 2020. Q-value path decomposition for

deep multiagent reinforcement learning. In International Conference on Machine
Learning. 10706–10715.

[37] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong

Liu, and Hongyao Tang. 2020. Qatten: A general framework for cooperative

multiagent reinforcement learning. arXiv preprint arXiv:2002.03939 (2020).
[38] Dayong Ye, Minjie Zhang, and Yun Yang. 2015. A multi-agent framework for

packet routing in wireless sensor networks. Sensors 15, 5 (2015), 10026–10047.
[39] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,

and Yi Wu. 2022. The surprising effectiveness of PPO in cooperative multi-

agent games. In Advances in Neural Information Processing Systems Datasets and
Benchmarks Track.

[40] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-

ment learning: A selective overview of theories and algorithms. Handbook of
Reinforcement Learning and Control (2021), 321–384.

[41] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. Learn-

ing implicit credit assignment for cooperative multi-agent reinforcement learning.

In Advances in Neural Information Processing Systems. 11853–11864.


	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Sequential MARL Evaluation Framework
	3.2 Sequential Credit Assignment under The Sequential MARL Evaluation Framework
	3.3 Dynamic Sequence Adjustment

	4 Experiments
	4.1 Experimental Setup
	4.2 Why SeCA Works Well: Component Studies
	4.3 Performance Comparisons
	4.4 Strengths and Limitations Discussion

	5 Conclusion
	Acknowledgments
	References

