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ABSTRACT
Abstraction is a commonly used process to represent some low-
level system by a more coarse specification with the goal to omit
unnecessary details while preserving important aspects. While re-
cent work on abstraction in the situation calculus has focused on
non-probabilistic domains, we describe an approach to abstrac-
tion of probabilistic and dynamic systems. Based on a variant of
the situation calculus with probabilistic belief, we define a notion
of bisimulation that allows to abstract a detailed probabilistic ba-
sic action theory with noisy actuators and sensors by a possibly
non-stochastic basic action theory. By doing so, we obtain abstract
Golog programs that omit unnecessary details and which can be
translated to detailed programs for execution. This simplifies the
implementation of noisy robot programs, opens up the possibility
of using non-stochastic reasoning methods (e.g., planning) on prob-
abilistic problems, and provides domain descriptions that are more
easily interpretable.
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1 INTRODUCTION
Abstraction — the “process of mapping a representation of a prob-
lem onto a new representation” [18] — is a ubiquitous concept
both in human behavior and in computing systems, e.g., a sim-
ple activity such as buying milk involves dozens of actions that
a human conveniently abstracts into a single task, and machine
instructions (which itself are abstractions of physical processes)
are abstracted by higher programming languages. It has also seen
widespread usage in several areas of artificial intelligence research
[31], in particular in task planning. Abstraction typically involves
suppressing irrelevant information and therefore allows reasoning
about complex problems that would otherwise be infeasible. In
the context of intelligent agents, abstraction typically serves three
purposes [6]: (1) it provides a way to structure knowledge, (2) it
allows reasoning about larger problems by abstracting the problem
domain, resulting in a smaller search space, (3) it may provide more
meaningful explanations and is therefore critical for explainable
AI. The need for abstraction becomes particularly apparent when
dealing with robots: as a robot acts in a dynamic environment with
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imperfect sensors and actuators, its actions are inherently noisy,
e.g., it may intend tomove but may get stuck with some probability.
However, when programming such a robot, it is desirable to ignore
those probabilistic aspects and instead work with a high-level and
non-stochastic system, where the move action always succeeds, for
all of the reasons above: Correctly designing a probabilistic domain
is challenging, reasoning on such a domain is hard, and understand-
ing how such a system operates is difficult. This becomes even
more important when considering a robot that may get a hardware
upgrade: while the low-level behavior changes (e.g., a new sensor
has a different noise profile), the high-level behavior should not be
affected. By using abstraction, we only need to update the low-level
model and may keep the high-level program as is.

In this paper, we present an abstraction framework for robot
programs with probabilistic belief. Starting with the logic DS [7],
a modal variant of the situation calculus with probabilistic belief,
we describe a transition semantics for noisy Golog programs in
Section 3. Based on this logic, we propose a notion of abstraction of
noisy programs, building on top of abstraction of probabilistic static
models [6] and non-stochastic dynamic models [2]. We do so by
defining a notion of bisimulation of probabilistic dynamic systems
in Section 4 and we show that the notions of sound and complete
abstraction carry over. We also demonstrate how this abstraction
framework can be used to define a high-level domain, where noisy
actions are abstracted away and thus, no probabilistic reasoning is
necessary. We conclude in Section 5.

2 RELATEDWORK
Reasoning about actions. The situation calculus [27, 29] is a log-

ical formalism for reasoning about dynamical domains based on
first-order logic. In the situation calculus, world states are repres-
ened explicitly as first-order terms called situations, where fluents
describe (possibly changing) properties of the world and actions are
axiomatized in basic action theories (BATs). Golog [16, 24] is a pro-
gramming language based on the situation calculus that allows to
control the high-level behavior of robots. ES [22] is a modal variant
and epistemic extension of the situation calculus, where situations
are part of the semantics but do not appear as terms in the language.
ESG extends ES with a transition semantics for Golog programs,
which has been used for program verification [11]. The situation
calculus, ES, and ESG are all deterministic and non-stochastic, i.e.,
the execution of an action always results in a unique successor state.
De Giacomo and Lespérance [15] extend the situation calculus with
non-deterministic actions, where the environment chooses one of
several possible outcomes of an action. Bacchus et al. [1] extend the
classical situation calculus with degrees of belief and noisy actions.
In a similar fashion, DS [7] extends ES with degrees of belief and
probabilistic actions, where the environment again may choose
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an outcome (possibly from an unbounded domain) with some pre-
defined probability, allowing probabilistic representations of robot
actions, in particular noisy sensors and actuators. More recently,
reasoning about actions in DS has been shown to be amenable to
regression [26] and progression [25] analogous to regression and
progression in ES and the classical situation calculus [29].

Abstraction. Giunchiglia and Walsh [18] define abstraction gen-
erally as amapping between a ground and an abstract formal system,
such that the abstract representation preserves desirable proper-
ties while omitting unnecessary details to make it simpler to han-
dle. Abstraction has been widely used in several fields of AI [31].
Hierarchical task network (HTN) planning systems such as SHOP2
[28] decompose tasks into subtasks to accomplish some overall
objective, which has also been used in the situation calculus [17].
Macro planners such as MacroFF [9] combine action sequences
into macro operators to improve planner performance, e.g., by col-
lecting action traces from plan executions on robots [20], or by
learning them from training problems [10]. Similarly, Saribatur and
Eiter [32] use abstraction in Answer Set Programming to reduce the
search space, improving solver performance. Cui et al. [13] leverage
abstraction for generalized planning, i.e., for finding general solu-
tions for a set of similar planning problems. Abstraction has also
been used to analyze causal models [4, 30]. Of particular interest for
this work is the notion of constructive abstraction [5], where the re-
finement mapping partitions the low-level variables such that each
cell has a unique corresponding high-level variable. Holtzen et al.
[21] describe an abstraction framework for probabilistic programs
and also describe an algorithm to generate abstractions. REBA [33]
is a framework for robot planning that uses abstract and deter-
mistic ASP programs to determine a course of action, which are
then translated to POMDPs for execution. Banihashemi et al. [2]
describe a general abstraction framework based on the situation
calculus, where a refinement mapping maps a high-level BAT to
a low-level BAT and which is capable of online execution with
sensing actions [3]. The framework has been used to effectively
synthesize plan process controllers in a smart factory scenario [14].
In contrast to this work, they assume non-probabilistic and deter-
ministic actions. On the other hand, Belle [6] defines abstraction
in a probabilistic but static propositional language and describes
a search algorithm to derive such abstractions. In this paper, we
build on the two approaches to obtain abstraction in a probabilistic
and dynamic first-order language with an unbounded domain.

3 THE LOGIC DSG
We start by introducing the logic DSG, which we will then use to
define abstraction over noisy programs in Section 4. DSG extends
DS [7] with a transition semantics for Golog, analogous to how
ESG [12] extends ES [22]. In the same way as DS, the logic uses a
countably infinite set of rigid designators R, which allows to define
quantification substitutionally. Similar to DS, ES, and ESG, it uses
a possible-worlds semantics, where a world defines the state of
the world not only initially but after any sequence of actions. It
uses the modal operator [·] to refer to the state after executing
some program, e.g., [𝛿]𝛼 states that 𝛼 is true after every possible
execution of the program 𝛿 . Additionally, it uses the modal operator

B to describe the agent’s belief, e.g., B(Loc(2) : 0.5) states the the
agent believes with degree 0.5 to be in location 2.

3.1 Syntax
Definition 1 (Symbols of DSG). The symbols of the language

are from the following vocabulary:

(1) infinitely many variables 𝑥,𝑦, . . . , 𝑢, 𝑣, . . . , 𝑎, 𝑎1, . . .;
(2) rigid function symbols of every arity, e.g., near, goto(𝑥,𝑦);
(3) fluent predicates of every arity, such as At (l); we assume that this

list contains the following distinguished predicates:

• Poss to denote the executability of an action;

• oi to denote that two actions are indistinguishable from the

agent’s viewpoint; and

• 𝑙 that takes an action as its first argument and the action’s

likelihood as its second argument;

(4) connectives and other symbols: =, ∧, ¬, ∀, □, [·], B.
Definition 2 (Terms of DSG). The set of terms of DSG is the

least set such that (1) every variable is a term, (2) if 𝑡1, . . . , 𝑡𝑘 are

terms and 𝑓 is a 𝑘-ary function symbol, then 𝑓 (𝑡1, . . . , 𝑡𝑘 ) is a term.

As inDS, R denotes the set of all ground rigid terms. We assume
that they contain the rational numbers, i.e., Q ⊆ R.

Definition 3 (Formulas). The formulas of DSG are the least

set such that

(1) if 𝑡1, . . . , 𝑡𝑘 are terms and 𝑃 is a 𝑘-ary predicate symbol, then

𝑃 (𝑡1, . . . , 𝑡𝑘 ) is a formula,

(2) if 𝑡1 and 𝑡2 are terms, then (𝑡1 = 𝑡2) is a formula,

(3) if 𝛼 and 𝛽 are formulas, 𝑥 is a variable, 𝛿 is a program (defined

below),
1
and 𝑟 ∈ Q, then 𝛼 ∧ 𝛽 , ¬𝛼 , ∀𝑥 . 𝛼 , □𝛼 , [𝛿]𝛼 , and

B(𝛼 : 𝑟 ) are formulas.

We read □𝛼 as “𝛼 holds after executing any sequence of actions”,
[𝛿]𝛼 as “𝛼 holds after the execution of program 𝛿” and B(𝛼 : 𝑟 ) as “𝛼
is believed with probability 𝑟”.2 We also write K𝛼 for B(𝛼 : 1), to be
read as “𝛼 is known”.3 We use True as abbreviation for∀𝑥 (𝑥 = 𝑥) to
denote truth. For a formula 𝛼 , we write 𝛼𝑥𝑟 for the formula resulting
from 𝛼 by substituting every occurrence of 𝑥 with 𝑟 . For a finite
set of formulas Σ = {𝛼1, . . . , 𝛼𝑛}, we may just write Σ for the
conjunction 𝛼1 ∧ . . .∧𝛼𝑛 , e.g., KΣ for K(𝛼1 ∧ · · · ∧𝛼𝑛). A predicate
symbol with terms from R as arguments is called an atomic formula,
and we denote the set of atomic formulas with P. Furthermore, a
formula is called bounded if it contains no □ operator, static if it
contains no [·] or □ operators, objective if it contains no B or K,
and fluent if it is static and does not mention Poss, B, or K.

We define the syntax of programs used by the operator [𝛿]:
Definition 4 (Programs).

𝛿 ::= 𝑡 | 𝛼? | 𝛿1;𝛿2 | 𝛿1 |𝛿2 | 𝜋𝑥. 𝛿 | 𝛿∗

where 𝑡 is a ground rigid term and 𝛼 is a static formula. A pro-

gram consists of actions 𝑡 , tests 𝛼?, sequences 𝛿1;𝛿2, nondeterministic

1Note that although the definitions of formulas (Definition 3) and programs (Defini-
tion 4) mutually depend on each other, they are still well-defined: programs only allow
static situation formulas and static situation formulas may not refer to programs.
2The original version of the logic also has an only-knowing modal operator O, which
captures the idea that something and only that thing is known. For the sake of simplicity,
we ignore this operator in our presentation.
3We use “knowledge” and “belief” interchangeably, but do not require that knowledge
be true in the real world (i.e., weak S5).
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branching 𝛿1 |𝛿2, nondeterministic choice of argument 𝜋𝑥. 𝛿 , and non-

deterministic iteration 𝛿∗.

Note that we do not allow interleaved concurrency 𝛿1∥𝛿2 known
from ConGolog [16].4 We also use nil as abbreviation for True?,
the empty program that always succeeds. Similarly to formulas, 𝛿𝑥𝑟
denotes the program resulting from 𝛿 by substituting every 𝑥 with
𝑟 . Furthermore, we define:

if 𝜙 then𝛿1 else𝛿2 fi := (𝜙?;𝛿1) | (¬𝜙?;𝛿2)
if 𝜙1 then𝛿1 elif 𝜙2 then𝛿2 fi := (𝜙1?;𝛿1) | (¬𝜙1 ∧ 𝜙2?;𝛿2)

while𝜙 do𝛿 done := (𝜙?;𝛿)∗;¬𝜙?

3.2 Semantics
As described above, the operator B describes the degree of belief.
In order to capture noisy actions and sensors, we need to talk
about the likelihood of possible outcomes as well as the fact that
when a noisy action is executed, the intended outcome may not
be the same as the desired outcome. The latter is captured using
the notion of observational indistinguishability. Both likelihood of
possible outcomes and observational indistinguishability are built
into the worlds using distinguished symbols and then modelled
using basic action theories, as described in Section 3.3.

Similar toDS, the semantics ofDSG is given in terms of possible
worlds, where a world defines the truth of each fluent both initially
and after any sequence of actions:

Definition 5 (Trace). A trace 𝑧 = ⟨𝑎1, . . . , 𝑎𝑛⟩ is a finite se-

quence of R. We denote the set of traces as Z and the empty trace

with ⟨⟩.

A world defines the truth of each ground atom from P not only
initially but after any sequence of actions:

Definition 6 (World). A world is mapping𝑤 : P ×Z → {0, 1}.
The set of all worlds is denoted as W.

We require that every world𝑤 ∈ W defines a unary predicate
Poss, a binary predicate 𝑙 that behaves like a function (i.e., there is
exactly one 𝑞 ∈ Q such that 𝑤 [𝑙 (𝑎, 𝑞), 𝑧] = 1 for any 𝑎, 𝑧), as well
as an equivalence relation oi ⊆ R × R, which define the possibility,
the likelihood, and the observational indistinguishability of actions.

We call a pair (𝑤, 𝑧) ∈ W ×Z a state, we denote the set of all
states with S, and we use 𝑆, 𝑆𝑖 , . . . ⊆ S to denote sets of states.
Given a state (𝑤, 𝑧), the predicate 𝑙 (𝑎, 𝑞) states that the action like-
lihood of action 𝑎 in state (𝑤, 𝑧) is 𝑞. We can inductively apply 𝑙 to
compute the likelihood of a sequence:

Definition 7 (Action Seqence Likelihood). The action se-

quence likelihood 𝑙∗ : W ×Z → Q≥0
is defined inductively:

• 𝑙∗ (𝑤, ⟨⟩) = 1 for every𝑤 ∈ W,

• 𝑙∗ (𝑤, 𝑧 · 𝑟 ) = 𝑙∗ (𝑤, 𝑧) × 𝑞 where𝑤 [𝑙 (𝑟, 𝑞), 𝑧] = 1.

Next, to deal with partially observable states, we define:
Definition 8 (Observational indistinguishability).

(1) Given a world𝑤 ∈ W, we define ∼w ⊂ Z ×Z inductively:

4The reason will become apparent later on. Intuitively, if we allow interleaved concur-
rency, then the low-level program could pause the execution of a high-level action and
continue with a different high-level action, possibly leading to different effects. This
significantly complicates the formal treatment relating the probabilities of high-level
worlds to their low-level counterparts.

• ⟨⟩ ∼𝑤 𝑧′ iff 𝑧′ = ⟨⟩
• 𝑧 · 𝑟 ∼𝑤 𝑧′ iff 𝑧′ = 𝑧∗ · 𝑟∗, 𝑧 ∼𝑤 𝑧∗,𝑤 [oi(𝑟, 𝑟∗), 𝑧] = 1

(2) We say 𝑤 is observationally indistinguishable from 𝑤 ′
, writ-

ten 𝑤 ≈oi 𝑤 ′
iff for all 𝑎, 𝑎′ ∈ R, 𝑧 ∈ Z: 𝑤 [oi(𝑎, 𝑎′), 𝑧] =

𝑤 ′[oi(𝑎, 𝑎′), 𝑧].
(3) For 𝑤,𝑤 ′ ∈ W, 𝑧, 𝑧′ ∈ Z, we say (𝑤, 𝑧) is observationally

indistinguishable from (𝑤 ′, 𝑧′), written (𝑤, 𝑧) ≈oi (𝑤 ′, 𝑧′), iff
𝑤 ≈oi 𝑤

′
and 𝑧 ∼𝑤 𝑧′.

Intuitively, 𝑧 ∼𝑤 𝑧′ means that the agent cannot distinguish
whether it executed 𝑧 or 𝑧′. For states, (𝑤, 𝑧) ≈oi (𝑤 ′, 𝑧′) is to be
understood as “if the agent believes to be in state (𝑤, 𝑧), it may
also be in state (𝑤 ′, 𝑧′)”, i.e., it cannot distinguish the worlds𝑤,𝑤 ′

and traces 𝑧, 𝑧′. As ≈oi is an equivalence relation, the set of its
equivalence classes on a set of states 𝑆 induces a partition, which
we denote with 𝑆/≈oi.

We extend the executability of an action to traces:

Definition 9 (Executable trace). For a trace 𝑧, we define

exec(𝑧) inductively:
• for 𝑧 = ⟨⟩, exec(𝑧) := True

• for 𝑧 = 𝑎 · 𝑧′, exec(𝑧) := Poss(𝑎) ∧ [𝑎]exec(𝑧′)

As in BHL and DS, it is possible to permit the agent to entertain
any set of initial distributions. As an example, the initial theory
could say that B(𝑝 : 0.5) ∨ B(𝑝 : 0.6), which says that the agent is
not sure about the distribution of 𝑝 . In this case, there would be at
least two distributions in the epistemic state 𝑒 . As another example,
if we say B(𝑝 ∨ 𝑞 : 1), then this says that the disjunction is believed
with probability 1, but it does not specify the probability of 𝑝 or 𝑞,
resulting in infinitely many distributions that are compatible with
this constraint. Thus, not committing to a single distribution results
in higher expressivity in the representation of uncertainty.

Definition 10 (Compatible States). Given an epistemic state

𝑒 , a world𝑤 , a trace 𝑧, and a formula 𝛼 , we define the states 𝑆
𝑒,𝑤,𝑧
𝛼

compatible to (𝑒,𝑤, 𝑧) wrt to 𝛼 :
𝑆
𝑒,𝑤,𝑧
𝛼 = {(𝑤 ′, 𝑧′) | (𝑤 ′, 𝑧′) ≈oi (𝑤, 𝑧), 𝑒,𝑤 ′ |= exec(𝑧′) ∧ [𝑧′]𝛼}

We write 𝑆𝛼 for 𝑆𝑒,𝑤,𝑧
𝛼 if 𝑒,𝑤, 𝑧 are clear from the context.

To define the semantics of belief, we first define epistemic states,
which assign probabilities to worlds:

Definition 11 (Epistemic state). A distribution is a mapping

W → R≥0. An epistemic state is any set of distributions.

This notion of distribution is not directly a probability distribu-
tion. To obtain probability distributions, we define:

Definition 12 (Normalization). For any distribution 𝑑 and any

set V = {(𝑤1, 𝑧1), (𝑤2, 𝑧2), . . .}, we define:
(1) Bnd(𝑑,V, 𝑟 ) iff there is no 𝑘 s.t.

∑𝑘
𝑖=1 𝑑 (𝑤𝑖 ) × 𝑙∗ (𝑤𝑖 , 𝑧𝑖 ) > 𝑟 .

(2) Eq(𝑑,V, 𝑟 ) iff Bnd(𝑑,V, 𝑟 ) and there is no 𝑟 ′ < 𝑟 such that

Bnd(𝑑,V, 𝑟 ′) holds.
(3) For any U ⊆ V : Norm(𝑑,U,V, 𝑟 ) iff ∃𝑏 ≠ 0 such that

Eq(𝑑,U, 𝑏 × 𝑟 ) and Eq(𝑑,V, 𝑏).

Intuitively, given Norm(𝑑,U,V, 𝑟 ), 𝑟 can be seen as the normal-
ization of the weights of worlds inU in relation to the set of worlds
V as accorded by 𝑑 . The conditions Bnd and Eq are auxiliary con-
ditions to define Norm, where Bnd(𝑑,V, 𝑟 ) states that the weight
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of worlds in V is bounded by 𝑏 and Eq(𝑑,V, 𝑟 ) expresses that the
weight of worlds inV is equal to 𝑏. Belle et al. [8] have shown that
although the set of worlds W is in general uncountable, this leads
to a well-defined summation over the weights of worlds.

To simplify notation, we also write Norm(𝑑,U,V) = 𝑟 for
Norm(𝑑,U,V, 𝑟 ) and Norm(𝑑1,U1,V1) = Norm(𝑑2,U2,V2) if
there is an 𝑟 such that Norm(𝑑1,U1,V1, 𝑟 ) andNorm(𝑑2,U2,V2, 𝑟 ).
Finally, wewrite Norm(𝑑,U1,V)+Norm(𝑑,U2,V) = 𝑟 if there are
𝑟1, 𝑟2 with Norm(𝑑,U1,V, 𝑟1), Norm(𝑑,U2,V, 𝑟2), and 𝑟 = 𝑟1 + 𝑟2.

We continue with the program transition semantics, which de-
fines the traces resulting from executing some program. The transi-
tion semantics is defined in terms of configurations ⟨𝑧, 𝛿⟩, where 𝑧 is
a trace describing the actions executed so far and 𝛿 is the remaining
program. In some places, the transition semantics refers to the truth
of formulas (see Definition 15 below).5

Definition 13 (Program Transition Semantics). The tran-
sition relation

𝑒,𝑤−→ among configurations, given an epistemic state 𝑒

and a world𝑤 , is the least set satisfying

(1) ⟨𝑧, 𝑎⟩ 𝑒,𝑤−→ ⟨𝑧 · 𝑎, nil⟩ if𝑤, 𝑧 |= Poss(𝑎)
(2) ⟨𝑧, 𝛿1;𝛿2⟩

𝑒,𝑤−→ ⟨𝑧 · 𝑎,𝛾 ;𝛿2⟩, if ⟨𝑧, 𝛿1⟩
𝑒,𝑤−→ ⟨𝑧 · 𝑎,𝛾⟩,

(3) ⟨𝑧, 𝛿1;𝛿2⟩
𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩ if

⟨𝑧, 𝛿1⟩ ∈ F 𝑒,𝑤
and ⟨𝑧, 𝛿2⟩

𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩
(4) ⟨𝑧, 𝛿1 |𝛿2⟩

𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩ if
⟨𝑧, 𝛿1⟩

𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩ or ⟨𝑧, 𝛿2⟩
𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩

(5) ⟨𝑧, 𝜋𝑥 . 𝛿⟩ 𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩, if
⟨𝑧, 𝛿𝑥𝑟 ⟩

𝑒,𝑤−→ ⟨𝑧 · 𝑎, 𝛿 ′⟩ for some 𝑟 ∈ R
(6) ⟨𝑧, 𝛿∗⟩ 𝑒,𝑤−→ ⟨𝑧 · 𝑎,𝛾 ;𝛿∗⟩ if ⟨𝑧, 𝛿⟩ 𝑒,𝑤−→ ⟨𝑧 · 𝑎,𝛾⟩

The set of final configurations F 𝑒,𝑤
is the smallest set s.t.

(1) ⟨𝑧, 𝛼?⟩ ∈ F 𝑒,𝑤
if 𝑒,𝑤, 𝑧 |= 𝛼 ,

(2) ⟨𝑧, 𝛿1;𝛿2⟩ ∈ F 𝑒,𝑤
if ⟨𝑧, 𝛿1⟩ ∈ F 𝑒,𝑤

and ⟨𝑧, 𝛿2⟩ ∈ F 𝑒,𝑤

(3) ⟨𝑧, 𝛿1 |𝛿2⟩ ∈ F 𝑒,𝑤
if ⟨𝑧, 𝛿1⟩ ∈ F 𝑒,𝑤

, or ⟨𝑧, 𝛿2⟩ ∈ F 𝑒,𝑤

(4) ⟨𝑧, 𝜋𝑥 . 𝛿⟩ ∈ F 𝑒,𝑤
if ⟨𝑧, 𝛿𝑥𝑟 ⟩ ∈ F 𝑒,𝑤

for some 𝑟 ∈ R
(5) ⟨𝑧, 𝛿∗⟩ ∈ F 𝑒,𝑤

We also write
𝑒,𝑤−→

∗
for the transitive closure of

𝑒,𝑤−→.
Following the transition semantics for a given program 𝛿 , we

obtain a set of program traces:

Definition 14 (Program Traces). Given an epistemic state 𝑒 , a

world𝑤 , and a trace 𝑧, the set ∥𝛿 ∥𝑧𝑒,𝑤 of traces of program 𝛿 is defined

as the following set:

∥𝛿 ∥𝑧𝑒,𝑤 = {𝑧′ ∈ Z | ⟨𝑧, 𝛿⟩ 𝑒,𝑤−→
∗
⟨𝑧 · 𝑧′, 𝛿 ′⟩ and ⟨𝑧 · 𝑧′, 𝛿 ′⟩ ∈ F 𝑒,𝑤}

Compared to ESG, this transition semantics also refers to the
epistemic state 𝑒 , as test formulas can also mention belief operators.
Additionally, in contrast to ESG, it only allows a transition for an
atomic action if the action is possible in the current state. Also,
while ESG allows infinite traces, we only allow finite traces, as we
focus on terminating programs.

Finally, we can define the semantics for DSG formulas:

Definition 15 (Truth of Formulas). Given an epistemic state

𝑒 , a world𝑤 , and a formula 𝛼 , we define for every 𝑧 ∈ Z:

5As above, although they depend on each other, the semantics is well-defined, as the
transition semantics only refers to static formulas which may not contain programs.

(1) 𝑒,𝑤, 𝑧 |= 𝐹 (𝑡1, . . . , 𝑡𝑘 ) iff𝑤 [𝐹 (𝑡1, . . . , 𝑡𝑘 ), 𝑧] = 1
(2) 𝑒,𝑤, 𝑧 |= B(𝛼 : 𝑟 ) iff ∀𝑑 ∈ 𝑒 : Norm(𝑑, 𝑆𝛼 , 𝑆True, 𝑟 )
(3) 𝑒,𝑤, 𝑧 |= (𝑡1 = 𝑡2) iff 𝑡1 and 𝑡2 are identical
(4) 𝑒,𝑤, 𝑧 |= 𝛼 ∧ 𝛽 iff 𝑒,𝑤, 𝑧 |= 𝛼 and 𝑒,𝑤, 𝑧 |= 𝛽

(5) 𝑒,𝑤, 𝑧 |= ¬𝛼 iff 𝑒,𝑤, 𝑧 ̸ |= 𝛼

(6) 𝑒,𝑤, 𝑧 |= ∀𝑥 . 𝛼 iff 𝑒,𝑤, 𝑧 |= 𝛼𝑥𝑟 for all 𝑟 ∈ R.
(7) 𝑒,𝑤, 𝑧 |= □𝛼 iff 𝑒,𝑤, 𝑧 · 𝑧′ |= 𝛼 for all 𝑧′ ∈ Z
(8) 𝑒,𝑤, 𝑧 |= [𝛿]𝛼 iff 𝑒,𝑤, 𝑧 · 𝑧′ |= 𝛼 for all 𝑧′ ∈ ∥𝛿 ∥𝑧𝑒,𝑤 .

Note in particular that Item 2 states that the degree of belief in
a formula is obtained by looking at the normalized weight of the
possible worlds that satisfy the formula.

We write 𝑒,𝑤 |= 𝛼 for 𝑒,𝑤, ⟨⟩ |= 𝛼 . Also, if 𝛼 is objective, we
write𝑤, 𝑧 |= 𝛼 for 𝑒,𝑤, 𝑧 |= 𝛼 and𝑤 |= 𝛼 for𝑤, ⟨⟩ |= 𝛼 . Additionally,
for a set of sentences Σ, we write 𝑒,𝑤, 𝑧 |= Σ if 𝑒,𝑤, 𝑧 |= 𝜙 for all
𝜙 ∈ Σ, and Σ |= 𝛼 if 𝑒,𝑤 |= Σ entails 𝑒,𝑤 |= 𝛼 for every model
(𝑒,𝑤).

3.3 Basic Action Theories
A basic action theory (BAT) defines the effects of all actions of the
domain, as well as the initial state:

Definition 16 (Basic Action Theory). Given a finite set of

predicates F including oi and 𝑙 , a set Σ of sentences only mentioning

fluent predicates in F is called a basic action theory (BAT) over F iff

Σ = Σ0 ∪ Σpre ∪ Σpost and

(1) Σ0 is any set of fluent sentences,

(2) Σpre consists of a single sentence of the form □Poss(𝑎) ≡ 𝜋 ,

where 𝜋 is a fluent formula with free variable 𝑎,6

(3) Σpost is a set of successor state axioms (SSAs) of the form

□Poss(𝑎) ⊃ ([𝑎]𝐹 ( ®𝑥) ≡ 𝛾𝐹 ), one for each fluent predicate

𝐹 ∈ F and where 𝛾𝐹 is a fluent formula with free variables

among 𝑎 and ®𝑥 .

Given a BAT Σ, we say that a program 𝛿 is a program over Σ if
it only mentions fluents and actions from Σ.

Note that the SSAs slightly differ from ES and ESG, where they
have the form □[𝑎]𝐹 ( ®𝑥) ≡ 𝛾𝐹 . In contrast to ES and ESG, the
SSAs in DSG only define the effects of an action if the action is
currently possible and otherwise do not say anything about the
action’s effects. This is necessary because we include Poss(𝑎) in the
transition semantics (Definition 13). To understand why, consider
the following example: if𝑤, 𝑧 |= ¬Poss(𝑎), then by Definition 15.8,
𝑤, 𝑧 |= [𝑎]¬𝐹 () is vacuously true for any fluent 𝐹 because there
is no trace 𝑧′ ∈ ∥𝑎∥𝑧𝑒,𝑤 , contradicting to a SSA □[𝑎]𝐹 () ≡ 𝛾𝐹 .
Restricting the SSA to possible actions avoids this issue.7

3.3.1 A Noisy BAT. We present a BAT for a simple robotics sce-
nario with noisy actions, inspired from [1, 7]. In this scenario, a
robot moves towards a wall and it is equipped with a sonar sensor
that can measure the distance to the wall. A BAT Σmove defining
this scenario may look as follows:
6We assume that free variables are universally quantified from the outside, □ has lower
syntactic precedence than the logical connectives, and [· ] has the highest priority, so
that □Poss (𝑎) ≡ 𝜋 stands for ∀𝑎.□(Poss (𝑎) ≡ 𝛾 ) and □Poss (𝑎) ⊃ ( [𝑎]𝐹 ( ®𝑥) ≡ 𝛾𝐹 )
stands for ∀𝑎, ®𝑥.□(Poss (𝑎) ⊃ ( [𝑎]𝐹 ( ®𝑥) ≡ 𝛾𝐹 )) .
7Claßen [11] proposes a different solution by allowing an action transition even if the
action is impossible and then augmenting the program by guarding each action with a
test Poss (𝑎)?. We prefer the presented solution because the transition semantics only
allows actions that are actually possible without augmenting the program.
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• Amove action is possible if the robot moves one step to the back
or to the front. A sonar action is always possible:

□Poss(𝑎) ≡ ∃𝑥,𝑦 (𝑎 = move(𝑥,𝑦) ∧ (𝑥 = 1 ∨ 𝑥 = −1))
∨ ∃𝑧 (𝑎 = sonar (𝑧))

• After doing action 𝑎, the robot is at position 𝑥 if 𝑎 is a move

action that moves the robot to location 𝑥 , if 𝑎 is a sonar action
that measures distance 𝑥 , or if 𝑎 is neither of the two actions and
the robot was at location 𝑥 before

□Poss(𝑎) ⊃
(
[𝑎]Loc(𝑥) ≡

∃𝑦, 𝑧, (𝑎 = move(𝑦, 𝑧) ∧ Loc(𝑙) ∧ 𝑥 = 𝑙 + 𝑧)
∨ 𝑎 = sonar (𝑥)
∨ ¬∃𝑦, 𝑧 (𝑎 = move(𝑦, 𝑧) ∨ 𝑎 = sonar (𝑦)) ∧ Loc(𝑥)

)
• For the sonar action, the likelihood that the robot measures the

correct distance is 0.8, the likelihood that it measures a distance
with an error of ±1 is 0.1. Furthermore, for the move action, the
likelihood that the robot moves the intended distance 𝑥 is 0.6,
the likelihood that the actual movement 𝑦 is off by ±1 is 0.2:
□𝑙 (𝑎,𝑢) ≡
∃𝑧 (𝑎 = sonar (𝑧) ∧ Loc(𝑥) ∧ 𝑢 = Θ(𝑥, 𝑧, .8, .1))
∨ ∃𝑥,𝑦 (𝑎 = move(𝑥,𝑦) ∧ 𝑢 = Θ(𝑥,𝑦, .6, .2))
∨ ¬∃𝑥,𝑦, 𝑧 (𝑎 = move(𝑥,𝑦) ∨ 𝑎 = sonar (𝑧)) ∧ 𝑢 = .0

where Θ(𝑢, 𝑣, 𝑐, 𝑑) =


𝑐 if 𝑢 = 𝑣

𝑑 if |𝑢 − 𝑣 | = 1
0 otherwise

.

• The robot cannot detect the distance that it has actually moved,
i.e., any actions move(𝑥,𝑦) and move(𝑥, 𝑧) are o.i.:
□oi(𝑎, 𝑎′) ≡ 𝑎 = 𝑎′ ∨ ∃𝑥,𝑦, 𝑧 (𝑎 = move(𝑥,𝑦) ∧ 𝑎′ = move(𝑥, 𝑧))
• Initially, it is 3 units away from the wall: Loc(𝑥) ≡ 𝑥 = 3

Based on this BAT, we define a program that first moves the
robot close to the wall and then back:8

sonar ();
while¬K∃𝑥 (Loc(𝑥) ∧ 𝑥 ≤ 2) domove(−1); sonar () done ;
while¬K∃𝑥 (Loc(𝑥) ∧ 𝑥 > 5) domove(1); sonar () done

The robot first measures its distance to the wall and then moves
closer until it knows that its distance to the wall is less than two
units. Afterwards, it moves away until it knows that is more than
five units away from the wall. As the robot’s move action is noisy,
each move is followed by sonar to measure how far it is away from
the wall. One possible execution trace of this program may look as
follows:

𝑧𝑙 = ⟨sonar (3),move(−1, 0), sonar (3),move(−1,−1),
sonar (2),move(−1,−1), sonar (1),move(1, 1),
sonar (3),move(1, 1), sonar (2),move(1, 1),
sonar (4),move(1, 1), sonar (6)⟩

(1)

First, the robot (correctly) senses that it is three units away from the
wall and starts moving. However, the first move does not have the
8The unary move (𝑥) can be understood as abbreviation move (𝑥) := 𝜋𝑦move (𝑥, 𝑦) ,
where nature nondeterministically picks the distance 𝑦 that the robot really moved
(similarly for sonar ()).

desired effect: the robot intended to move by one unit but actually
did not move (indicated by the second argument being 0). After
the second move, the robot is at Loc(2), as it started at Loc(3) and
moved successfully once. However, as its sensor is noisy and it
measured sonar (2), it believes that it could also be at Loc(3). Hence,
it executes another move and then senses sonar (1), after which it
knows for sure that it is at most two units away from the wall.
In the second part, the robot moves back until it knows that it is
further than five units away from the wall. As this simple example
shows, the trace 𝑧𝑙 is already quite hard to understand. While it is
clear from the BAT what each action does, the robot’s intent is not
immediately obvious and the trace is cluttered with noise.

3.3.2 An Abstract BAT. We present a second, more abstract BAT
for the same scenario without noisy actions:
• Initially, the robot is in the middle: At (𝑙) ≡ 𝑙 = mid

• The robot may goto the locations near and far :9

□Poss(𝑎) ≡ 𝑎 = goto(near) ∨ 𝑎 = goto(far)

• After doing action 𝑎, the robot is at location 𝑙 if 𝑎 is goto(𝑙) or if
𝑎 is no goto action and the robot has been at 𝑙 before:

□Poss(𝑎) ⊃(
[𝑎]At (𝑙) ≡ 𝑎 = goto(𝑙) ∨ ¬∃𝑥 (𝑎 = goto(𝑥)) ∧ At (𝑙)

)
• The action likelihood axiom states that no action is noisy:

□𝑙 (𝑎,𝑢) ≡ (𝑎 = goto(near) ∨ 𝑎 = goto(far)) ∧ 𝑢 = 1.0
∨ ¬∃𝑥 (𝑎 = goto(𝑥)) ∧ 𝑢 = 0.0

• The agent can distinguish all actions: □oi(𝑎, 𝑎′) ≡ 𝑎 = 𝑎′

In the following, we will connect the low-level BAT Σmove with
the high-level BAT Σgoto by using abstraction.

4 ABSTRACTION
In this section, we define the abstraction of a low-level BAT Σ𝑙 with
a high-level BAT Σℎ . This will allow us to construct abstract Golog
programs over the high-level BAT, which are equivalent and can be
translated to some program over the low-level BAT. For the sake of
simplicity10, we assume in the following that an epistemic state 𝑒
is always a singleton, i.e., 𝑒ℎ = {𝑑ℎ} and 𝑒𝑙 = {𝑑𝑙 }. To translate the
high-level BAT Σℎ into the low-level BAT Σ𝑙 , we map Σℎ to Σ𝑙 by
mapping each high-level fluent to a low-level formula, and every
high-level action to a low-level program:

Definition 17 (Refinement Mapping). Given two basic action

theories Σ𝑙 over F𝑙 and Σℎ over Fℎ . The function𝑚 is a refinement
mapping from Σℎ to Σ𝑙 iff:

(1) For every action 𝑎( ®𝑥) mentioned in Σℎ , 𝑚(𝑎( ®𝑥)) = 𝛿𝑎 ( ®𝑥),
where 𝛿𝑎 ( ®𝑥) is a Golog program over the low-level theory Σ𝑙
with free variables among ®𝑥 .

(2) For every fluent predicate 𝐹 ∈ Fℎ ,𝑚(𝐹 ( ®𝑥)) = 𝜙𝐹 ( ®𝑥), where
𝜙𝐹 ( ®𝑥) is a static formula over F𝑙 with free variables among ®𝑥 .

9For the sake of brevity, we do not allow the robot to go to mid.
10The technical results do not hinge on this, but allowing arbitrary epistemic states
would make the main results and proofs more tedious. For the general case, we need
to set up for every distribution on the high level a corresponding distribution on the
low level and establish a bisimulation for each of those pairs.
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Figure 1: An example for epistemic isomorphism.

For a formula 𝛼 over Fℎ , we also write 𝑚(𝛼) for the formula
obtained by applying𝑚 to each fluent predicate and action men-
tioned in 𝛼 . For a trace 𝑧 = ⟨𝑎1, 𝑎2, . . .⟩ of actions from Σℎ , we also
write 𝑚(𝑧) for ⟨𝑚(𝑎1),𝑚(𝑎2), . . .⟩. For a program 𝛿 over Σℎ , the
program𝑚(𝛿) is the same program as 𝛿 with each primitive action
𝑎 replaced by𝑚(𝑎) and each formula 𝛼 replaced by𝑚(𝛼).

Continuing our example, we define a refinement that maps Σgoto
to Σmove by mapping each high-level fluent to a low-level formula
and each high-level action to a low-level program:
• The high-level fluent At (𝑙) is mapped to a low-level formula by

translating the distance to near , mid, and far :

At (𝑙) ↦→ 𝑙 = near ∧ ∃𝑥 (Loc(𝑥) ∧ 𝑥 ≤ 2)
∨𝑙 = mid ∧ ∃𝑥 (Loc(𝑥) ∧ 𝑥 > 2 ∧ 𝑥 ≤ 5)
∨𝑙 = far ∧ ∃𝑥 (Loc(𝑥) ∧ 𝑥 > 5)

• The action goto is mapped to a program that guarantees that the
robot reaches the right position:

goto(𝑥) ↦→ sonar ();
if 𝑥 = near then

while¬K∃𝑥 (Loc(𝑥) ∧ 𝑥 ≤ 2) domove(−1); sonar () done
elif 𝑥 = far then

while¬K∃𝑥 (Loc(𝑥) ∧ 𝑥 > 5) domove(1); sonar () done fi

To show that a high-level BAT indeed abstracts a low-level BAT,
we first define a notion of isomorphism, intuitively stating that two
states satisfy the same fluents:

Definition 18 (Objective Isomorphism). We say (𝑤ℎ, 𝑧ℎ) is
objectively𝑚-isomorphic to (𝑤𝑙 , 𝑧𝑙 ), written (𝑤ℎ, 𝑧ℎ) ∼𝑚 (𝑤𝑙 , 𝑧𝑙 ) iff
for every atomic formula 𝛼 mentioned in Σℎ :

𝑤ℎ, 𝑧ℎ |= 𝛼 iff𝑤𝑙 , 𝑧𝑙 |=𝑚(𝛼)

Additionally, because we need to relate degrees of belief, we
need to connect the two BATs in terms of epistemic states. To do
so, we define epistemic isomorphism as follows:

Definition 19 (Epistemic Isomorphism). For every (𝑤ℎ, 𝑧ℎ) ∈
S and 𝑆𝑙 ⊆ S, we say that (𝑑ℎ,𝑤ℎ, 𝑧ℎ) is epistemically𝑚-isomorphic

to (𝑑𝑙 , 𝑆𝑙 ), written (𝑑𝑙 ,𝑤ℎ, 𝑧ℎ) ∼𝑒 (𝑑𝑙 , 𝑆𝑙 ) iff for the partition 𝑃 =

𝑆𝑙/≈oi, for each 𝑆
𝑖
𝑙
∈ 𝑃 and (𝑤𝑖

𝑙
, 𝑧𝑖
𝑙
) ∈ 𝑆𝑖

𝑙
:

Norm(𝑑ℎ, {(𝑤ℎ, 𝑧ℎ)}, 𝑆
𝑒ℎ,𝑤ℎ,𝑧ℎ
True

) = Norm(𝑑𝑙 , 𝑆𝑖𝑙 , 𝑆
𝑒𝑙 ,𝑤

𝑖
𝑙
,𝑧𝑖
𝑙

True
)

The intuition of epistemic isomorphism is illustrated in Figure 1:
As the high-level state (𝑤1

ℎ
, 𝑧1
ℎ
) is more abstract than the low-level

states 𝑆𝑙 , multiple low-level states (highlighted in orange) may be
isomorphic to the same high-level state. Hence, each high-level
state is mapped to a set of low-level states. To be epistemically
isomorphic, they must entail the same beliefs, so the corresponding
normalized weights must be equal. However, we do not require
the low-level states 𝑆𝑙 to be observationally indistinguishable. In-
deed, since we have a high-level action corresponding to many
low-level actions, low-level states are typically not observationally
indistinguishable. Thus, we partition 𝑆𝑙 according to ≈oi, obtain-
ing 𝑆1

𝑙
and 𝑆2

𝑙
and we require the normalized weight of (𝑤ℎ, 𝑧ℎ)

(in relation to the compatible states 𝑆
𝑒ℎ,𝑤

1
ℎ
,𝑧1
ℎ

True ) to be the same as
the normalized weight of each member 𝑆𝑖

𝑙
of the partition (in rela-

tion to the corresponding compatible states, 𝑆
𝑒𝑙 ,𝑤

1
𝑙
,𝑧1
𝑙

True and 𝑆
𝑒𝑙 ,𝑤

3
𝑙
,𝑧3
𝑙

True
respectively).

Having established objective and epistemic isomorphisms, we
can now define a suitable notion of bisimulation:

Definition 20 (Bisimulation).
A relation 𝐵 ⊆ S × S is an𝑚-bisimulation between (𝑒ℎ,𝑤ℎ) and
(𝑒𝑙 ,𝑤𝑙 ) if ((𝑤ℎ, 𝑧ℎ), (𝑤𝑙 , 𝑧𝑙 )) ∈ 𝐵 implies that

(1) (𝑤ℎ, 𝑧ℎ) ∼𝑚 (𝑤𝑙 , 𝑧𝑙 ),
(2) (𝑑ℎ,𝑤ℎ, 𝑧ℎ) ∼𝑒

(
𝑑𝑙 ,

{
(𝑤 ′

𝑙
, 𝑧′
𝑙
) | ((𝑤ℎ, 𝑧ℎ), (𝑤 ′

𝑙
, 𝑧′
𝑙
)) ∈ 𝐵

})
,

(3) 𝑤ℎ |= exec(𝑧ℎ) and𝑤𝑙 |= exec(𝑧𝑙 ),
(4) for every high-level action 𝑎, if 𝑤ℎ, 𝑧ℎ |= Poss(𝑎), then there is

𝑧′
𝑙
∈ ∥𝑚(𝑎)∥𝑧𝑙𝑒𝑙 ,𝑤𝑙

such that ((𝑤ℎ, 𝑧ℎ · 𝑎), (𝑤𝑙 , 𝑧𝑙 · 𝑧′𝑙 )) ∈ 𝐵,

(5) for every high-level action 𝑎, if there is 𝑧′
𝑙
∈ ∥𝑚(𝑎)∥𝑧𝑙𝑒𝑙 ,𝑤𝑙

, then

𝑤ℎ, 𝑧ℎ |= Poss(𝑎) and ((𝑤ℎ, 𝑧ℎ · 𝑎), (𝑤𝑙 , 𝑧𝑙 · 𝑧′𝑙 )) ∈ 𝐵,

(6) for every (𝑤 ′
ℎ
, 𝑧′
ℎ
) with (𝑤 ′

ℎ
, 𝑧′
ℎ
) ≈oi (𝑤ℎ, 𝑧ℎ), 𝑑ℎ (𝑤 ′

ℎ
) > 0,

and 𝑒ℎ,𝑤
′
ℎ
|= exec(𝑧′

ℎ
), there is (𝑤 ′

𝑙
, 𝑧′
𝑙
) ≈oi (𝑤𝑙 , 𝑧𝑙 ) such that

((𝑤 ′
ℎ
, 𝑧′
ℎ
), (𝑤 ′

𝑙
, 𝑧′
𝑙
)) ∈ 𝐵,

(7) for every (𝑤 ′
𝑙
, 𝑧′
𝑙
) with (𝑤 ′

𝑙
, 𝑧′
𝑙
) ≈oi (𝑤𝑙 , 𝑧𝑙 ), 𝑑𝑙 (𝑤 ′

𝑙
) > 0, and

𝑒𝑙 ,𝑤
′
𝑙
|= exec(𝑧′

𝑙
), there is (𝑤 ′

ℎ
, 𝑧′
ℎ
) ≈oi (𝑤ℎ, 𝑧ℎ) such that

((𝑤 ′
ℎ
, 𝑧′
ℎ
), (𝑤 ′

𝑙
, 𝑧′
𝑙
)) ∈ 𝐵.

We call a bisimulation 𝐵 definite if ((𝑤ℎ, 𝑧ℎ), (𝑤𝑙 , 𝑧𝑙 )) ∈ 𝐵 and

((𝑤 ′
ℎ
, 𝑧′
ℎ
), (𝑤𝑙 , 𝑧𝑙 )) ∈ 𝐵 implies (𝑤ℎ, 𝑧ℎ) = (𝑤 ′

ℎ
, 𝑧′
ℎ
).

We say that (𝑒ℎ,𝑤ℎ) is bisimilar to (𝑒𝑙 ,𝑤𝑙 ) relative to refinement

mapping𝑚, written (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ), if and only if there exists a
definite𝑚-bisimulation relation 𝐵 between (𝑒ℎ,𝑤ℎ) and (𝑒𝑙 ,𝑤𝑙 ) such
that ((𝑤ℎ, ⟨⟩), (𝑤𝑙 , ⟨⟩)) ∈ 𝐵.

The general idea of bisimulation is that two states are bisimilar
if they have the same local properties (i.e., they are isomorphic)
and each reachable state from the first state has a corresponding
reachable state from the second state (and vice versa) such that
the two successors are again bisimilar. Here, properties 1, 2, and 3
refer to static properties of (𝑤ℎ, 𝑧ℎ) and (𝑤𝑙 , 𝑧𝑙 ). While property 1
establishes objective isomorphism of (𝑤ℎ, 𝑧ℎ) and (𝑤𝑙 , 𝑧𝑙 ), property
2 establishes epistemic isomorphism between (𝑤ℎ, 𝑧ℎ) and all states
(𝑤 ′

𝑙
, 𝑧′
𝑙
) that occur in 𝐵. As usual in bisimulations, we also require

that if we follow a high-level transition of the system, there is a
corresponding low-level transition (and vice versa). Here, such a
transition may be an action that is executed (properties 4 and 5), or
it may be an epistemic transition from the current state to another
observationally indistinguishable state (properties 6 and 7).

Our notion of bisimulation is similar to bisimulation for ab-
stracting non-stochastic and objective basic action theories [2].
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In comparison, the notion of objective isomorphism (property 1)
and reachable states via actions (properties 4 and 5) are analogous,
while epistemic isomorphism (property 2) and reachable states
via observational indistinguishability (properties 6 and 7) have no
corresponding counterparts.

Given a corresponding𝑚-bisimulation, we want to show that
(𝑒ℎ,𝑤ℎ) is a model of a formula 𝛼 iff (𝑒𝑙 ,𝑤𝑙 ) is a model of the
mapped formula𝑚(𝛼). To do so, we first show that this is true for
static formulas, not considering programs. In the second step, we
will show that the high-level and low-level models induce the same
program traces, which will then allow us to extend the statement
to bounded formulas, which may refer to programs. We start with
static formulas:11

Theorem 1. Let (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ) with definite𝑚-bisimula-

tion 𝐵. For every static formula 𝛼 and every pair of traces 𝑧ℎ, 𝑧𝑙 with

((𝑤ℎ, 𝑧ℎ), (𝑤𝑙 , 𝑧𝑙 )) ∈ 𝐵:

𝑒ℎ,𝑤ℎ, 𝑧ℎ |= 𝛼 iff 𝑒𝑙 ,𝑤𝑙 , 𝑧𝑙 |=𝑚(𝛼)

Proof Idea. By structural induction on 𝛼 . The interesting case
is 𝛼 = B(𝛽 : 𝑟 ). Let

Norm(𝑑ℎ, 𝑆
𝑒ℎ,𝑤ℎ,𝑧ℎ
𝛽

, 𝑆
𝑒ℎ,𝑤ℎ,𝑧ℎ
True ) = 𝑟ℎ

Norm(𝑑𝑙 , 𝑆
𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
𝑚 (𝛽) , 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True ) = 𝑟𝑙

We need to show that 𝑟ℎ = 𝑟𝑙 .
≤: Let (𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
) ∈ 𝑆

𝑒ℎ,𝑤ℎ,𝑧ℎ
𝛽

. We can ignore those (𝑤𝑖
ℎ
, 𝑧𝑖
ℎ
) with

𝑑ℎ (𝑤𝑖
ℎ
) = 0 because they do not contribute to 𝑟ℎ . By Definition 20.6,

there is a (𝑤𝑖
𝑙
, 𝑧𝑖
𝑙
) with ((𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
), (𝑤𝑖

𝑙
, 𝑧𝑖
𝑙
)) ∈ 𝐵 and (𝑤𝑖

𝑙
, 𝑧𝑖
𝑙
) ≈oi

(𝑤𝑙 , 𝑧𝑙 ). From Definition 20.2 and Definition 19, we know that
for each such (𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
), (𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
) is epistemically isomorphic to the

union 𝑆𝑙 of all bisimilar (𝑤 ′
𝑙
, 𝑧′
𝑙
), i.e., (𝑑ℎ,𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
) ∼𝑒 (𝑑𝑙 , 𝑆𝑙 ), where

𝑆𝑙 = {(𝑤 ′
𝑙
, 𝑧′
𝑙
) | ((𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
), (𝑤 ′

𝑙
, 𝑧′
𝑙
)) ∈ 𝐵}. Using the partition 𝑃 =

𝑆𝑙/≈oi, there is 𝑆𝑖𝑙 ∈ 𝑃 with (𝑤𝑖
𝑙
, 𝑧𝑖
𝑙
) ∈ 𝑆𝑖

𝑙
. It follows:

Norm(𝑑ℎ, {(𝑤𝑖
ℎ
, 𝑧𝑖
ℎ
)}, 𝑆𝑒ℎ,𝑤

𝑖
ℎ
,𝑧𝑖
ℎ

True ) = Norm(𝑑𝑙 , 𝑆𝑖𝑙 , 𝑆
𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True )

As 𝐵 is definite, we can directly take the union of both sides to
obtain the overall probability of 𝑆𝑒ℎ,𝑤ℎ,𝑧ℎ

𝛽
:

Norm(𝑑ℎ, 𝑆
𝑒ℎ,𝑤ℎ,𝑧ℎ
𝛽

, 𝑆
𝑒ℎ,𝑤ℎ,𝑧ℎ
True ) = Norm(𝑑𝑙 ,

⋃
𝑖

𝑆𝑖
𝑙
, 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True )

Furthermore, by induction, for each (𝑤 ′
𝑙
, 𝑧′
𝑙
) ∈ 𝑆𝑖

𝑙
, it follows that

𝑒𝑙 ,𝑤
′
𝑙
|= [𝑧′

𝑙
]𝑚(𝛽) and therefore, 𝑆𝑖

𝑙
⊆ 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
𝑚 (𝛽) . With that,

Norm(𝑑𝑙 ,
⋃
𝑖

𝑆𝑖
𝑙
, 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True ) ≤ Norm(𝑑𝑙 , 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
𝑚 (𝛽) , 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True )

Thus, 𝑟ℎ ≤ 𝑟𝑙 .
≥: For each (𝑤𝑖

𝑙
, 𝑧𝑖
𝑙
) ∈ 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
𝑚 (𝛽) with 𝑑𝑙 (𝑤𝑖

𝑙
) > 0, by Definition 20.7,

there is a (𝑤𝑖
ℎ
, 𝑧𝑖
ℎ
) with ((𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
), (𝑤𝑖

𝑙
, 𝑧𝑖
𝑙
)) ∈ 𝐵. As above, with

Definition 20.2, this (𝑤𝑖
ℎ
, 𝑧𝑖
ℎ
) is epistemically isomorphic to the

union 𝑆𝑙 of all bisimilar (𝑤 ′
𝑙
, 𝑧′
𝑙
). Let 𝑃 = 𝑆𝑙/≈oi and 𝑆𝑖

𝑙
∈ 𝑃 with

(𝑤𝑖
𝑙
, 𝑧𝑖
𝑙
) ∈ 𝑆𝑖

𝑙
. It can be shown that

Norm(𝑑𝑙 ,
⋃
𝑖

𝑆𝑖
𝑙
, 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True ) = Norm(𝑑ℎ,

⋃
𝑖

{
(𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
)
}
, 𝑆

𝑒ℎ,𝑤ℎ,𝑧ℎ
True )

11All proofs can be found in the extended technical report [19].

We can partition 𝑆𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
𝑚 (𝛽) into {𝑆1

𝑚 (𝛽) , 𝑆
1
𝑚 (𝛽) , . . .} such that for each

𝑖 , 𝑆𝑖
𝑚 (𝛽) ⊆ 𝑆𝑖

𝑙
. Clearly,

Norm(𝑑𝑙 ,
⋃
𝑖

𝑆𝑖
𝑚 (𝛽) , 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True ) ≤ Norm(𝑑𝑙 ,

⋃
𝑖

𝑆𝑖
𝑙
, 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True )

Finally, by induction, 𝑒ℎ,𝑤𝑖
ℎ

|= [𝑧𝑖
ℎ
]𝛽 , thus (𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
) ∈ 𝑆

𝑒ℎ,𝑤ℎ,𝑧ℎ
𝛽

,
and therefore

⋃
𝑖 {(𝑤𝑖

ℎ
, 𝑧𝑖
ℎ
)} ⊆ 𝑆

𝑒ℎ,𝑤ℎ,𝑧ℎ
𝛽

. We obtain:

Norm(𝑑𝑙 , 𝑆
𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
𝑚 (𝛽) , 𝑆

𝑒𝑙 ,𝑤𝑙 ,𝑧𝑙
True ) ≤ Norm(𝑑ℎ, 𝑆

𝑒ℎ,𝑤ℎ,𝑧ℎ
𝛽

, 𝑆
𝑒ℎ,𝑤ℎ,𝑧ℎ
True )

Thus, 𝑟ℎ ≥ 𝑟𝑙 . □

Using Theorem 1, we show that if (𝑒ℎ,𝑤ℎ) is bisimilar to (𝑒𝑙 ,𝑤𝑙 ),
then they induce the same traces of a program 𝛿 :

Lemma 1. Let (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ) with𝑚-bisimulation 𝐵 such

that ((𝑤ℎ, 𝑧ℎ), (𝑤𝑙 , 𝑧𝑙 )) ∈ 𝐵 and let 𝛿 be an arbitrary program.

(1) If 𝑧′
𝑙
∈ ∥𝑚(𝛿)∥𝑧𝑙𝑒𝑙 ,𝑤𝑙

is a low-level trace, then there is a high-

level trace 𝑧′
ℎ

∈ ∥𝛿 ∥𝑧ℎ𝑒ℎ,𝑤ℎ
such that 𝑧′

ℎ
= ⟨𝑎1, . . . , 𝑎𝑛⟩, 𝑧′𝑙 =

⟨𝑚(𝑎1), . . . ,𝑚(𝑎𝑛)⟩, and (𝑧ℎ · 𝑧′
ℎ
, 𝑧𝑙 · 𝑧′𝑙 ) ∈ 𝐵.

(2) If 𝑧′
ℎ
= ⟨𝑎1, . . . , 𝑎𝑛⟩ ∈ ∥𝛿 ∥𝑧ℎ𝑒ℎ,𝑤ℎ

is a high-level trace, then there is

a low-level trace 𝑧′
𝑙
∈ ∥𝑚(𝛿)∥𝑧𝑙𝑒𝑙 ,𝑤𝑙

such that

𝑧′
𝑙
= ⟨𝑚(𝑎1), . . . ,𝑚(𝑎𝑛)⟩ and (𝑧ℎ · 𝑧′

ℎ
, 𝑧𝑙 · 𝑧′𝑙 ) ∈ 𝐵.

Note that Lemma 1 would not hold if 𝛿 contained interleaved
concurrency. Intuitively, this is because for a high-level program
such as 𝑎1

ℎ
∥𝑎2

ℎ
, the only valid high-level traces would be ⟨𝑎1

ℎ
, 𝑎2

ℎ
⟩

and ⟨𝑎2
ℎ
, 𝑎1

ℎ
⟩, i.e., one action is completely executed before the

other action is started. On the other hand, with 𝑚(𝑎1
ℎ
) = 𝑎1

𝑙
;𝑎2

𝑙

and 𝑚(𝑎2
ℎ
) = 𝑎3

𝑙
;𝑎4

𝑙
, we may obtain interleaved traces such as

⟨𝑎1
𝑙
, 𝑎3

𝑙
, 𝑎2

𝑙
, 𝑎4

𝑙
⟩, which does not have a corresponding high-level

trace.12
With Lemma 1, we extend Theorem 1 to bounded formulas:

Theorem 2. Let (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ). For all bounded formulas

𝛼 and traces 𝑧ℎ, 𝑧𝑙 with (𝑧ℎ, 𝑧𝑙 ) ∈ 𝐵:

𝑒ℎ,𝑤ℎ, 𝑧ℎ |= 𝛼 iff 𝑒𝑙 ,𝑤𝑙 , 𝑧𝑙 |=𝑚(𝛼)

It directly follows that the high- and low-level models entail the
same formulas after executing some program 𝛿 :

Corollary 1. Let (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ). Then for any high-level

Golog program 𝛿 and static high-level formula 𝛽 :

𝑒𝑙 ,𝑤𝑙 |= [𝑚(𝛿)]𝑚(𝛽) iff 𝑒ℎ,𝑤ℎ |= [𝛿]𝛽

4.1 Sound and Complete Abstraction
In the previous section, we described properties of abstraction with
respect to particular models (𝑒ℎ,𝑤ℎ) and (𝑒𝑙 ,𝑤𝑙 ). However, we are
usually more interested in the relationship between a high-level
BAT Σℎ and a low-level BAT Σ𝑙 :13

12While a limited form of concurrency could be permitted by only allowing interleaved
execution of high-level actions (i.e., each𝑚 (𝑎) must be completely executed before
switching to a different branch of execution), we omit this for the sake of simplicity.
13Notice that we require the real world to have the same physical laws as that believed
by the agent, which is fairly standard. We do not require the agent knows everything
about the real world, nor that the agent beliefs are also true in the real world.
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B(Loc(3) : 1)

B(Loc(3) : 0.2)
B(Loc(4) : 0.8)

B(Loc(3) : 1)

. . .

sonar(2)

B
(
Loc(3) : 2

3

)

B
(
Loc(4) : 1

3

)

. . .

sonar(3)

B
(
Loc(3) : 1

33

)

B
(
Loc(4) : 32

33

)

B
(
Loc(3) : 1

165

)

B
(
Loc(4) : 36

165

)

B
(
Loc(5) : 128

165

)

. . .

sonar(. . .)

B(Loc(5) : 1)

sonar(6)

move(1)

sonar(4)

B(Loc(4) : 1)

. . .

sonar(5)

move(1)

B(At(mid) : 1)

B(At(far) : 1)

goto(far)

Figure 2: Bisimulation for the running example, where sets
of states are summarized by the belief that they entail.

Definition 21 (SoundAbstraction). We say that Σℎ is a sound
abstraction of Σ𝑙 relative to refinement mapping𝑚 if and only if

for each model (𝑒𝑙 ,𝑤𝑙 ) |= KΣ𝑙 ∧ Σ𝑙 , there exists a model (𝑒ℎ,𝑤ℎ) |=
KΣℎ ∧ Σℎ such that (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ).

Conclusions by Σℎ are consistent with Σ𝑙 :

Theorem 3. Let Σℎ be a sound abstraction of Σ𝑙 relative to map-

ping𝑚. Then, for every bounded formula 𝛼 , if KΣℎ ∧ Σℎ |= 𝛼 , then

KΣ𝑙 ∧ Σ𝑙 |=𝑚(𝛼).
While a sound abstraction ensures that any entailment of the

high-level BAT Σℎ is consistent with the low-level BAT Σ𝑙 , the Σℎ
may have less information than Σ𝑙 , e.g., Σℎ may consider it possible
that some program 𝛿 is executable, while Σ𝑙 knows that it is not.
This leads to a second notion of abstraction:

Definition 22 (Complete Abstraction). We say that Σℎ is a

complete abstraction of Σ𝑙 relative to refinement mapping𝑚 if and

only if for each model (𝑒ℎ,𝑤ℎ) |= KΣℎ ∧ Σℎ , there exists a model

(𝑒𝑙 ,𝑤𝑙 ) |= KΣ𝑙 ∧ Σ𝑙 such that (𝑒ℎ,𝑤ℎ) ∼𝑚 (𝑒𝑙 ,𝑤𝑙 ).
Indeed, if we have a complete abstraction, then Σℎ must entail

everything that Σ𝑙 entails:

Theorem 4. Let Σℎ be a complete abstraction of Σ𝑙 relative to
mapping𝑚. Then, for every bounded formula 𝛼 , if KΣ𝑙 ∧ Σ𝑙 |=𝑚(𝛼),
then KΣℎ ∧ Σℎ |= 𝛼 .

The strongest notion is the combination of both:
Definition 23 (Sound and Complete Abstraction).

We say that Σℎ is a sound and complete abstraction of Σ𝑙 rela-
tive to refinement mapping𝑚 if Σℎ is both a sound and a complete

abstraction of Σ𝑙 wrt𝑚.

Theorem 5. Let Σℎ be a sound and complete abstraction of Σ𝑙
relative to refinement mapping𝑚. Then, for every bounded formula

𝛼 , KΣℎ ∧ Σℎ |= 𝛼 iff KΣ𝑙 ∧ Σ𝑙 |=𝑚(𝛼).
Coming back to our example, we can show that Σgoto is indeed

a sound and complete abstraction of Σmove :

Proposition 1. Σgoto is a sound and complete abstraction of Σmove

relative to refinement mapping𝑚.

Figure 2 shows an exemplary bisimulation for the running exam-
ple. The single transition for goto of the high-level BAT is shown on
the left. The agent knows that it is initially in the middle and after
doing goto(far), it is far away from the wall. Some corresponding
transitions of the low-level BAT are shown on the right: Initially,
the agent knows that it is at Loc(3), which is a bisimilar state to the
initial high-level state (blue). Eventually, it reaches a state where
it knows that it is at Loc(5), which is again a bisimilar state to the
corresponding high-level state (orange).

With Theorem 5, it follows that both BATs entail the same
(mapped) formulas. Therefore, we can use Σgoto for reasoning and
planning, e.g., we may write a high-level Golog program in terms
of Σgoto and then use a classical Golog interpreter to find a ground
action sequence that realizes the program. To continue the example,
we may write a very simple abstract program 𝛿ℎ that first moves to
the wall if necessary and then moves back:

if ¬At (near) then goto(near) fi ; goto(far)
If the robot is initially not near the wall (as in our example), the
following sequence is a realization of the program:

⟨goto(near), goto(far)⟩
This high-level trace is much simpler than the trace of the low-level
program shown in Equation 1. At the same time, as Σgoto is a sound
and complete abstraction of Σmove , this sequence may be translated
to Σmove by applying the refinement mapping𝑚 and the translated
program then takes care of noisy sensors and actuators.

5 CONCLUSION
In this paper, we have presented a framework for abstraction of
probabilistic dynamic domains. More specifically, in a first step,
we have defined a transition semantics for Golog programs with
noisy actions based on DS, a variant of the situation calculus with
probabilistic belief. We have then defined a suitable notion of bi-
simulation in the logic that allows the abstraction of noisy robot
programs in terms of a refinement mapping from a high-level to
a low-level basic action theory. This abstraction method allows to
obtain a significantly simpler high-level domain, which can be used
for reasoning or high-level programming without the need to deal
with stochastic actions. Furthermore, the resulting programs and
traces are much easier to understand, because they do not contain
noisy actions and are often much shorter.

While abstractions need to be manually constructed, future work
may explore abstraction generation algorithms based on [6, 21].
A further extension might be to provide conditions under which
we can modify the low-level program, e.g., with new sensors with
different error profiles, without modifying the high-level program.

Interestingly, as the logics DS and ES are fully compatible for
non-probabilistic formulas not mentioning noisy actions [7] and
abstraction allows to get rid of probabilistic formulas and noisy
actions, we may construct ES programs that are sound and com-
plete abstractions of DS programs. This is a step towards cog-
nitive robotics as envisioned by Reiter [23], where the classical
non-probabilistic situation calculus machinery may prove entirely
sufficient to define the behavior and termination of real-world
robots.
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