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ABSTRACT

Online planning has been widely focused in many areas, such as

industry chain and collective intelligence. Due to the trade-off na-

ture of trading computation time for solution quality, Monte-Carlo

tree search (MCTS) methods have shown great success in online

planning. However, the exponential growth of global joint-action

space makes it challenging to apply MCTS to online multiagent

planning (MAP). Our goal in this paper is to design an efficient and

scalable coordinated MCTS method for online MAP. Combining

with coordination graphs, recent Factored Value MCTS (FV-MCTS)

has attempted to recover the trade-off property for MCTS-based

online MAP. However, FV-MCTS directly uses the global payoff

to reward each agent, and has difficulty in finding coordination

actions in multiagent MCTS settings where other agents are also

taking exploratory actions. We overcome this limitation by de-

signing a generalized structural credit assignment (SCA)-guided

coordinated MCTS, where SCA is used to promote coordination

and MCTS is used to search promising global joint-actions. Spe-

cially, we use the Shapley value to provide a fair SCA, which can be

efficiently computed by exploiting locality of interaction between

agents. Moreover, theoretical analysis shows that the proposed

method can bound the bias of the estimated value of the global

join-action under certain conditions. Finally, we conduct extensive

experiments in some typical sequential multiagent coordination do-

mains such as multi-robot warehouse patrolling in industry chain,

etc. to validate the efficiency and scalability of the proposed method

over other benchmarks.
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1 INTRODUCTION

With the rapid development of industrial production, multi-robot

systems have a wide range of application in the industrial chain

[25] and collective intelligence [17, 38]. For example, in multi-robot

warehouse patrolling, a team of mobile robots are deployed to patrol

along regions for implementing persistent surveillance, inspection

and control in industry chain [10, 11]. In such a cooperative multi-

agent system (MAS), coordinating these agents (e.g., robots) that

take sequences of actions to optimize the long-term global payoff is

of crucial importance [7]. Sequential multiagent coordination prob-

lems can be formulated as a multiagent Markov decision process

(MMDP), which has been shown to be computationally intractable

in general [4]. Efficient approximation methods for MMDPs have

attempted to alleviate the computational challenge and trade off

optimality for scalability. Offline multiagent reinforcement learning

(MARL) and online multiagent planning (MAP) are two important

classes of approximation methods.

State-of-the-art offline MARL methods have widely adopted

the framework of centralized training for decentralized execution,

where the policy function of each agent is trained offline using

centralized information and query the policy during execution
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in a decentralized manner [28, 34]. However, such decentralized

MARL always converge to a non-cooperative equilibrium with non-

optimal payoffs due to the randomized policies of agents [26, 35].

Online MAP methods use a quite different strategy to deal with

the large joint-action spaces of MMDPs: they focus only on states

that are reachable from the current state, while computing the next

action at each online planning step [13, 27, 41]. Due to the trade-off

between computation time and solution quality [20], Monte-Carlo

tree search (MCTS) has been recognized as one of the most power-

ful online planning methods [31–33]. Unfortunately, because there

are exponential number of global joint-actions required to be eval-

uated, naive application of MCTS (i.e., search global joint-actions)

for online MAP negates the trade-off nature of MCTS.

The key motivation of this paper is to design an efficient and

scalable coordinated MCTS method for online MAP. Recently, com-

bining with coordination graphs, Factored Value MCTS (FV-MCTS)

[3, 9] has attempted to recover the trade-off property of MCTS-

based online MAP. To avoid exploring global joint-actions, FV-

MCTS allows each agent to explore individual actions directly by

using the global payoff. Since each agent’s reward depends on the

actions of all the other agents, the global payoff-based reward mech-

anism might fail to find coordination behaviors in non-stationary

multiagent MCTS settings where other agents are also taking ex-

ploration actions [2]. Structural credit assignment (SCA), which

determines how a single agent’s action contributes to global payoff,

is critical for evaluating an agent’s action for MASs [1]. Our goal

in this paper is designing SCA-guided coordinated MCTS, where

SCA is used to promote coordination and MCTS is used to select

the most promising coordinated joint-action that can maximize the

long-term global payoffs in an anytime manner.

In summary, the first contribution of this paper is to propose a

generalized SCA-guided coordinatedMCTSmethod for onlineMAP,

which unifies existing multiagent MCTS methods including Decen-

tralized MCTS with difference credit [42] and FV-MCTS with global

payoff credit [3, 9]. Drawing inspiration from cooperative game

theory, a Shapley value-based SCA is proposed to provide a fair

decomposition of the global payoff to each agent. However, comput-

ing the Shapley value is often #P-complete [15]. Exploiting locality

of interaction between agents, our second technical contribution

is efficiently computing the Shapley value. By carefully mapping

the state-action value of each agent to local joint-action value, our

third contribution is to bound the bias of estimated value of the

global joint-action under certain conditions. Finally, we conduct

extensive experiments in some domains such as multi-robot ware-

house patrolling in industry chain, etc. to validate the efficiency and

scalability of the proposed SCA-guided coordinated MCTS method

over existing offline MARL and online MAP benchmarks.

2 RELATEDWORK

MCTS-based online MAP. MCTS is a well-known online plan-

ning strategy for constructing anytime solutions for sequential

decision making [8]. Since the number of global joint-actions grow

exponentially, naive applications of MCTS for online MAP has diffi-

culty in trading-off exploration and exploitation. To reduce search

complexity, single-agent MCTS simply allows one specific agent

to search the policy while all other agents play a fixed common-

knowledge policy [22]. Decentralized MCTS (Dec-MCTS) allows all

agents to search their own policies in turn [6]. In Dec-MCTS, the be-

haviors of other agents can be modeled by greedy heuristics [10, 42]

or learned from previous experience [12]. To improve modeling

accuracy, agents can also communicate and share their policies with

other agents [5, 24]. However, these independent MCTS methods

might yield suboptimal solutions in complex multiagent problems

where reasoning about the effect of joint-actions is necessary [9].

Our proposed coordinated MCTS attempts to explore and evaluate

the joint-action effectively for better solution quality.

Inmany realisticMASs, agents interact only with a subset of local

agents, where coordination graphs (CGs) can be used to model such

local interactions [16]. Recently, combining with CGs, Factored

Value MCTS (FV-MCTS) attempts to explore local joint-actions

according to the Upper Confidence Bound (UCB) statistics [3, 9].

Existing FV-MCTS directly uses the global payoff (which can be

computed exactly by Variable Elimination [3] or approximately

by Max-sum [9]) to reward each agent. This individual reward is

used to evaluate the local joint-action value. Since each agent’s

reward depends on actions of all the other agents, the global payoff-

based reward mechanism generally suffers from low-payoff non-

cooperative solutions in dynamic mutiagent environments with a

number of exploratory agents [2]. To address the limitation imposed

by FV-MCTS, this paper designs an SCA-guided coordinated MCTS,

where SCA can help to find high-payoff coordinated solutions.

Structural Credit assignment (SCA) for MARL. SCA aims

to distribute the global payoff to each agent’s individual payoff,

and has been a central research topic in MARL. Prior SCA methods

for MARL can be divided into the implicit and explicit approaches.

In implicit methods, the relations between individual and global

Q-values are learned through neural networks [28, 34]. However,

such implicit global payoff decomposition functions make the joint

policy converge to suboptimal solutions [23]. With static coordi-

nation structures, the state-action value of the local interaction

function can be learned by the standard Q-learning and the global

joint-action can be computed by the Max-sum-based coordination

algorithm [18, 21]. With dynamic coordination structures, Agogino

and Tumer [1, 2] first propose an explicit method, where each agent

is rewarded by the difference between global payoff and the coun-

terfactual global payoff without this agent. Recently, borrowing the

concept from the cooperative game-theory [15], the Shapley value

has been proposed as an alternative explicit method, where each

agent is rewarded by the average marginal contribution to each

subset of other agents [23, 37]. Since computing the exact Shapley

value is intractable, recent studies usually use an approximation of

the Shapley value as a substitution. As the main technical contri-

bution of this paper, by exploiting the local coordination structure

between agents, we propose a computationally efficient algorithm

to compute the exact Shapley value.

3 PROBLEM DESCRIPTION

In this section, we start by introducing the multiagent Markov

decision process (MMDP) model which is suitable for various se-

quential multiagent coordination problems. We then briefly de-

scribe the framework of structural credit assignment (SCA)-guided

coordinated MCTS for MMDPs.

MMDP Model. Formally, an MMDP can be defined by a tuple

⟨N ,S,A,P,R⟩: N = {1, 2, · · · ,n} is the set of n agents, S is a
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finite set of global states s of the environment. In an MMDP, each

agent can observe the global state. A = A1 × · · · × An is the set

of joint actions ®a = ⟨a1, · · · ,an⟩. P(s, ®a, s
′) ∈ P is the transition

probability of ending up at state s ′ given that the joint action ®a
is applied at s . R(s, ®a, s ′) ∈ R is the immediate global reward for

taking the joint action ®a at state s and ending at state s ′.
In an MMDP, a joint policy π : S → A maps the global state to

the global joint-action ®a, and is equivalent to a tuple of individual

policies πi : S → Ai . Agents interact with environment in sequence

for T periods. A finite sequence ρπ = ⟨s0, s1, · · · , sT ⟩ of states
generated by a policy π is called a trajectory. For any joint policy

π on an MMDP, the expected discounted cumulative global reward

in state s is V π (s) = Eπ [
∑T−1
k=0 γ

kR(sk , ®ak , sk+1)|s0 = s], where E
denotes the expected value by following π , and γ ∈ [0, 1] is the
discount factor. The objective for solving an MMDP is to find a

joint policy π that can generate a trajectory ρπ to maximize the

cumulative global reward V π (s0) at the starting state s0.
The Framework of SCA-guided Coordinated MCTS. The

proposed SCA-guided coordinated MCTS framework mainly com-

prises two parts:

• Part 1: Shapley Value-based SCA for Individual Action

Evaluation. In this part, we assume a stateless or single-

state multiagent coordination setting. The goal of this part

is to find the optimal joint-action that maximizes the global

payoff and decompose the optimal global payoff for evaluat-

ing the action of each agent. Such individual action evalu-

ation will be used for individual agent selection and global

payoff backpropagation in the coordinated MCTS part. The

main contribution of this part is to use the Shapley value

to provide a fair individual action evaluation and propose

a computationally efficient algorithm to compute the exact

Shapley value.

• Part 2: SCA-Guided Coordinated MCTS. In this part, we

apply MCTS for exploring the most promising joint-action

that maximizes the cumulative long-term global payoff. The

main contribution of this part is to employ SCA to decompose

the state-independent global payoff to reward each agent and

backpropagate the agent reward for joint-action evaluation.

4 SHAPLEY VALUE-BASED SCA FOR

INDIVIDUAL ACTION EVALUATION

This section first reviews a popular multiagent coordination model

that represents local interactions between agents. We then describe

Shapley value-based SCA and show how to compute the Shapley

value efficiently by exploiting the multiagent coordination model.

Distributed Constraint Optimization (DCOP).Many multi-

agent coordination problems demonstrate the locality of interaction,

i.e., an agent’s action only has an impact on the actions of a subset

of locally interacted agents. DCOP has emerged as a key formal-

ism for such settings where the primary interactions are between

local subsets of agents [16]. Formally, a DCOP can be defined as

a tuple G = ⟨N ,A,D,U⟩ such that: N = {1, 2, · · · ,n} is the set
of agents, A = {a1,a2, · · · ,an } is the set of variables, each ai is
controlled by an agent i , and takes the value from the finite dis-

crete domain Di ∈ D, and U = {u1,u2, · · · ,um } is a set of local
utilities, each uj is defined as a mapping from the assignments

Figure 1: A toy DCOP problem, and the optimal global joint-

action ®a = {1, 1, 2, 1}.

of the involved k variables ®auj = (aj1 , · · · ,ajk ) to a positive real,

i.e., uj : D j1 × D j2 × · · · × D jk → R≥0. Let Nuj denote the set

of agents involved in the utility uj . Without loss of generality, let

noop denote the no operation action, and ∀uj , uj ( ®noop) = 0, i.e.,

there will be no utilities if all agents do nothing. A solution to a

DCOP is to find a global joint action ®a∗ that maximizes the global

payoff u(N) =
∑
uj ∈U uj (®auj ), which is the sum of all local utility

functions, i.e., ®a∗ = argmax ®a u(N).
Exploiting the structure of locality of interaction, we can find

that an agent i’s action has an effect only on the utility functions

that involves i . We give a formal definition of local interacted agents,

which is useful for computing the Shapley value.

Definition 1. Local Interacted Agents. Given a DCOP G =

⟨N ,A,D,U⟩, an agent k is defined as the local interacted agent of

agent i if there exists one utility function that involves both i and

k , i.e., the local interacted agents of i , N loc
i = {k |∃uj ∈ U : i ∈

Nuj&k ∈ Nuj }.

Example 1. Figure 1 shows a DCOP consisting of four agents

{1, 2, 3, 4}. Each agent can select the actions of noop , 1 and 2. This

DCOP also comprises three utility functions u1(a1,a2), u2(a2,a4) and

u3(a2,a3). Agent 1 only interacts with agent 2, thus N loc
1
= {2}.

Similarity, we have N loc
2
= {1, 3, 4},N loc

3
= {2}, and N loc

4
= {2}.

Max-sum for Optimizing DCOP. Given a DCOP, Max-sum

algorithm has been proposed for optimizing the global joint action

®a∗ in a fully decentralized manner [14]. The pseudocode of standard

Max-sum is shown in Algorithm 1. Max-sum first transforms the

DCOP to a factor graph: a bipartite undirected graph that contains

a variable node for each agent i , a function node for each utility

function uj , and an edge connecting a variable node i with a func-

tion node uj if and only if i is involved in uj . Variable nodes and
function nodes can perform computation and send message. On

the factor graph, let Neдi (resp. Neдuj ) denote the set of neighbor
function nodes (resp. variable nodes) of the variable node i (resp.
function node uj ). The operations for variable and function nodes

are similar apart from the content of messages to be sent. A mes-

sage sent from a variable node i to a function node uj at iteration
k , includes for each value ai ∈ Di the sum of utilities for this value

it received from all function neighbors apart from uj at iteration
k − 1. Formally, the message from variable node i to function node

uj includes for each value ai ∈ Di :

Ei→uj (ai ) =
∑
uj′ ∈Neдi ,uj′,uj Fuj′→i (ai ) − α . (1)
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Algorithm 1: Max-sum (0)

Input :The DOCP ⟨N ,A,D,U⟩.

Output : Joint action ®a∗.
1 for k iterations do

2 for variable node i do
3 produce message Ei→uj using messages from

Neдi \ {uj };

4 for funtion node uj do
5 produce message Fuj→i using messages from

Neдuj \ {i};

6 Compute the joint action ®a∗ by Eq.(3);

where Fuj′→i (ai ) is the utility for value ai included in the messages

received from the function nodeuj′ at iteration k−1. α is a constant

to prevent utilities carried by messages from growing arbitrarily.

A message sent from function node uj to variable node i at
iteration k includes for each possible value ai ∈ Di the maximal

utility of any combination of assignments to the variables involved

inuj apart from i . Formally, themessage from functionuj to variable
i includes for each value ai ∈ Di :

Fuj→i (ai ) = max ®auj \ai
(
uj (®auj )+

∑
i′∈Neдuj ,i

′,iEi′→uj (ai′)
)
. (2)

When a variable node makes decisions, it accumulates all utilities

it receives, and selects an action to maximize the sum of utilities.

Formally, each variable node i selects the action by

a∗i = argmaxai
∑
j ∈Neдi Fuj→i (ai ). (3)

Max-sum converges to the optimum for DCOPwith acyclic factor

graphs and provides desirable solutions in cyclic factor graphs [14].

4.1 Shapley Value-based SCA

Given a DCOP, after Max-sum computes the optimal global joint-

action ®a∗ that maximizes the global payoff, the SCA problem is

to evaluate how the individual action a∗i of agent i contributes to
the global payoff, and is critical for promoting coordination. In

this section, we describe the core idea of our Shapley value-based

SCA and show how to efficiently compute the Shapley value by

exploiting the structure of the DCOP.

The Shapley value has recently been used for SCA in multiagent

RL tasks [19, 23, 37]. Since computing the exact Shapley value is

often intractable [15], previous methods use an approximation of

Shapley value as a substitution. Our contribution is to exploit the

locality of interactions of the DCOP, and design a computationally

efficient algorithm to compute the exact Shapley value.

Marginal Contribution. Given a DCOP G = ⟨N ,A,D,U⟩

and a global joint-action ®a = {a1, · · · ,an } returned by Max-sum,

let u(C) =
∑
uj uj (a

C
j1
, · · · ,aCjk

) denote the total utility achieved by

the coalition C ⊆ N , where aCi = ai if the agent i ∈ C, a
C
i = noop

otherwise. Themarginal contribution △ ®ai of the agent i to a coalition
C ⊆ N \ {i} is the increase in the utility of C as a result of i joining
it and taking action ai , i.e.,

△ ®ai (C) = u(C ∪ {i}) − u(C). (4)

Shapley Value. The Shapley value of each agent i taking action

ai , ϕ
®a
i is the average of its marginal contribution to all coalitions:

ϕ ®ai =
∑
C⊆N\{i }

|C |!(n−|C |−1)!
n! △ ®ai (C). (5)

The Shapley value can be interpreted as that all agents are arranged

in some order, all orderings being equally likely, and then ϕ ®ai is the

expected marginal contribution, over all orderings, of agent i to the
set of agents who precede him.

Shapley value-based SCA is to assign the credit of agent i by

the Shapley value ϕ ®ai . This value not only gives a fair division of

the utilities of coordination between agents, but also satisfies the

efficiency property [15].

Lemma 1. Efficiency. Given a DCOP G = ⟨N ,A,D,U⟩, let ®a
denote any global joint-action, then the global payoff generated by

the grand coalition N is equal to the sum of the Shapley value-based

credits of all agents, i.e.,

∑
i ϕ
®a
i = u(N).

Computing the Shapley value. Although Shapley value pro-

vides a fair SCA, its main drawback is the complexity of computing

it. Fortunately, in DCOP, an agent i’s action has an effect only on the
utilities of the coalition that involves the locally interacted agents

of i . This insight indicates that the marginal contribution of i to all

coalitions that do not involve any locally interacted agent of i is the
same (i.e., zero). We illustrate this insight using Example 1 again.

Example 1 (cont.). In Figure 1, the optimal global joint-action is

®a = {1, 1, 2, 1}, where u1(a1,a2) = 20, u2(a2,a4) = 15, u3(a2,a3) =
12. Agent 1 only interacts with agent 2, then, agent 1’s action does not

have an effect on the utilities of these irrelevant coalitions C1 = {3},

C2 = {4}, and C3 = {3, 4}. Themarginal contribution of the agent 1 to

all these irrelevant coalitions will be zero, i.e., △ ®a
1
(Ci ) = 0 (1 ≤ i ≤ 3).

On the other hand, for these relevant coalitions C4 = {2}, C5 = {2, 3},

C6 = {2, 4}, and C7 = {2, 3, 4} that involve the locally interacted

agent 2, agent 1’s marginal contributions to them are also the same,

i.e., △ ®a
1
(Ci ) = u(Ci ∪ {i}) − u(Ci ) = 18 (4 ≤ i ≤ 7).

The above example indicates that it is typically not necessary

to enumerate all possible coalitions, and finding these common

coalitions that have the same marginal contribution can reduce the

computation complexity. In the following, we exploit such interac-

tion structure and compute the exact Shapley value efficiently.

Theorem 1. Given the agent i , let N loc
i denote the subset of the

locally interacted agents (defined in Definition 1) and nloci = |N loc
i |,

and N ir r
i = N \ N loc

i denote the subset of irrelevant agents that do

not interact with agent i and nir ri = |N ir r
i |. The Shapley value of i ,

ϕ ®ai then can be rewritten by

ϕ ®ai =
1

n!

∑
C⊆Nloc

i
H (|C|,nir ri )△

®a
i (C). (6)

where the operatorH (|C|,nir ri ) only depends on the number of locally

interacted agents and the number of irrelevant agents, i.e.,

H (|C|,nir ri ) =
∑nir ri
k=0

(nir ri
k

)
(|C| + k)!(n − |C| − k − 1)! (7)

Proof. For each subset of agents C, dividing it into disjoint

coalitions of locally interacted agents C1 ⊆ N
loc
i and irrelevant
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agents C2 ⊆ N
ir r
i of agent i , we have

ϕ ®ai =
1

n!

∑
C⊆N \{i } |C|!(n − |C| − 1)!△

®a
i (C)

=
1

n!

∑
C1⊆N loc

i

∑
C2⊆N ir r

i
|C1 ∪ C2 |!(n − |C1 ∪ C2 | − 1)!△

®a
i (C1 ∪ C2)

=
1

n!

∑
C1⊆N loc

i

∑
C2⊆N ir r

i
|C1∪ C2 |!(n−|C1∪ C2 |− 1)!△

®a
i (C1) (8)

=
1

n!

∑
C1⊆N

loc
i

∑
C2⊆N

ir r
i
(|C1 | + |C2 |)!(n − |C1 | − |C2 | − 1)!△

®a
i (C1)

=
1

n!

∑
C1⊆N

loc
i

∑nir ri
k=0

(nir ri
k

)
(|C1 | + k)!(n − |C1 | − k − 1)!△

®a
i (C1)

=
1

n!

∑
C1⊆N

loc
i

H (|C1 |,n
ir r
i )△

®a
i (C1).

The reason that Eq.(8) holds is that given a local coalition C1 ⊆

N loc
i , for any irrelevant coalition C2 ⊆ N

ir r
i , the agent i has the

same marginal contribution to such a joint coalition C1 ∪ C2, that

is ∀C2,C′
2
⊆ N ir r

i , △ ®ai (C1 ∪ C2) = △
®a
i (C1 ∪ C

′
2
). □

It should be noted that the operator H (|C|,nir ri ) only depends

on the size of local coalitions (i.e., |C|) and the number of these

irrelevant agents nir ri , rather than the actions of other agents. Thus,

we can pre-compute and store H (x ,y) (1 ≤ y ≤ n, 0 ≤ x ≤ n − y)
in an offline manner to mitigate the online computation load.

5 SCA-GUIDED COORDINATED MCTS

Combining Shapley value-based SCA, this section presents coordi-

natedMCTS for MMDPs. Since search is time consuming and the co-

ordination structure is dynamic (i.e., the DCOP is state-dependent),

the key implementation procedures of coordinated MCTS are indi-

vidual action selection and global payoff backpropagation.

Individual Action Selection. Given the current state s , we
first formulate the current DCOP G(s) = ⟨N ,A,D,U⟩. On the

one hand, agents need to coordinate their joint-action ®a by Max-

sum and optimize the immediate global payoff. On the other hand,

it is also necessary to explore promising joint-actions that are ben-

eficial for the long-term cumulative global payoffs. As mentioned

previously, directly exploring the global joint-action is infeasible.

By exploiting the message-passing procedure in a DCOP, we can

instead explore the individual action ai of agent i at the final ac-
tion selection procedure (i.e., Eq.(3)). Specifically, we keep track of

corresponding frequency statistics for each individual action ai of
agent i . A natural exploration over individual action is to add the

Upper Confidence Bound (UCB) bonus during the action selection:

a∗i = argmaxai
[∑

j ∈Neдi Fuj→i (ai ) + c
√

lnN (s)
Ni (s,ai )

]
. (9)

where c is the exploration parameter, Ni (s,ai ) is the number of

visits of the individual action ai of agent i at state s , and N (s) is the
total number of visits of state s .

Global Payoff Backpropagation. In the standard single-agent

MCTS, the values of all ancestor nodes of the root node s are updated
by backpropagating the payoff from the leaf nodes to s . However, in
MMDPs, exploring the global joint-actions is infeasible, and directly

backpropagating the global payoff to update global joint-action sta-

tistics can not apply. We address this issue by employing Shapley

Algorithm 2: SCA-guided Coordinated MCTS

Input : time limit, depth, c , state s , discounted factor γ .
Output : Joint Action ®a∗.

1 while time limit not reached do

2 Simulate(s ,depth);

3 ®a∗ ←Max-sum(0) by Algorithm 1;

4 Function Simulate(s ,depth):
5 if depth=0 then

6 return 0;

7 InitializeState(s);

8 ®a ←Max-sum(c), s ′ ∼ P(s, ®a, s ′);

9 for each agent i ∈ N do

10 Ri (s,ai , s
′) = ϕ ®ai via Eq.(6);

11 qi (s,ai ) ←
Ri (s,ai , s

′) + γ · Simulate(s ′, depth − 1).Ri ;

12 Updatestate(s ,®a,u);

13 Function InitializeState(s):
14 if s is a new state then

15 Formulate G(s) = ⟨N ,A,D,U⟩;

16 for each agent i ∈ N & ai ∈ Di do

17 Initialize Ni (s,ai ) = 0;

18 for each utility function uj ∈ U & ®auj ∈ Duj do

19 Initialize u j (s, ®auj ) = 0, and Nuj (s, ®auj ) = 0;

20 Function Max-Sum(c):
21 Steps 1-5 of Max-sum(0) by Algorithm 1;

22 Compute the global joint-action ®a∗ by Eq.(9);

23 Function Updatestate(s ,®a,u):
24 for each agent i ∈ N do

25 Ni (s,ai )+ = 1;

26 for each utility function uj ∈ U do

27 Nuj (s, ®auj )+=1, quj (s, ®auj ) =
∑
i ∈Neдuj (s)

qi (s,ai )
|Neдi (s) |

;

28 u j (s, ®auj )+ =
quj (s, ®auj )−u j (s, ®auj )

Nuj (s, ®auj )
;

value-based SCA to decompose the global payoff to individual re-

ward, and backpropagating the individual reward to update the

statistics of individual actions as well as local joint-actions.

Updating IndividualAction andLocalUtility Function.Given

the DCOP G(s) = ⟨N ,A,D,U⟩ at state s , let ®a = (a1, · · · ,an ) de-
note the global joint-action, where ai is selected by Eq.(9), and

R(s, ®a, s ′) denote the immediate global reward achieved by taking

®a and ending the state s ′. We first use the Shaley value to deter-

mine the immediate individual reward, i.e., ∀i,Ri (s,ai , s ′) = ϕ ®ai . In
coordinated MCTS, the key is to model each local utility function

uj ∈ U at state s , which is necessary for individual action selection.

Let qi (s,ai ) denote the discounted cumulative individual reward of

i by taking action ai at state s . The discounted cumulative rewards

of each local utility function uj can be defined as the sum of the

weighted cumulative individual rewards of agent i ∈ Neдuj (s), i.e.,

quj (s, ®auj ) =
∑
i ∈Neдuj (s)

qi (s,ai )
|Neдi (s) |

. (10)
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whereNeдuj (s) denotes the set of neighbor agents ofuj andNeдi (s)
denotes the neighbors of the agent i at current DCOP G(s). This
way of updating local utility function can preserve the efficiency

property of Shapley value, shown as follows.

Lemma 2. Given a DCOP G = ⟨N ,A,D,U⟩, let ®a denote any

global joint-action, ϕ ®ai denote the Shapley value of agent i , and

quj (®auj ) =
∑
i ∈Neдuj

ϕ ®ai
|Neдi |

denote the decomposed value of local

utility function uj . By summing the values of all utility functions, we

also guarantee the efficiency property, i.e., u(N) =
∑
uj ∈U quj (®auj ).

Finally, we defineu j (s, ®auj ), the mean of the local utility function

uj obtained so far when the local joint-action ®auj is selected at state
s , and update it standard average of the simulated future reward:

u j (s, ®auj ) = u j (s, ®auj ) +
quj (s, ®auj ) − u j (s, ®auj )

Nuj (s, ®auj )
. (11)

where Nuj (s, ®auj ) is the visit frequency of the local joint-action

®auj . The local utility statistics u j (s, ®auj ) represent the cumulative

long-term utility function, which will be used in message passing

procedure (i.e., Eq.(2)) for the global joint-action selection.

5.1 The Algorithm

The SCA-based coordinated MCTS algorithm is formally shown in

Algorithm 2, which cycles among the InitializeState, Simulate,

Max-sum and Updatestate functions.

InitializeState(s) (Steps 13-19): for a new state s , we first build
the DCOP model G(s) = ⟨N ,A,D,U⟩ (Step 15). We then initialize

the frequency statistics of each individual action Ni (s,ai ) and local
joint-action Nuj (s, ®auj ), and the mean value of the utility u j (s, ®auj )

for each local joint action ®auj (Steps 16-19).
Simulate(s , depth) (Steps 4-12): starting from the current state

s , the Simulate function incrementally grows a search tree of sim-

ulating and evaluating local utilities until depth or time limit is

reached. At Step 8, Max-sum(c) is used to select the global joint-

action ®a, and transit to state s ′. Given the global joint-action ®a,
we use the Shapley value to determine the individual reward for

each agent i , i.e., Ri (s,ai , s
′) = ϕ ®ai (Step 10). At Step 11, by further

simulation, the cumulative state-action reward qi (s,ai ) of agent i
is computed by summing the discounted future individual reward

γ · Simulate(s ′, depth − 1).Ri , where .Ri indicates the individual
reward of agent i returned at state s ′.

Max-sum(c) (Steps 20-22): once the message passing procedure

(i.e., Steps 1-5 in Algorithm 1, Max-sum(0)) converges, each agent

selects his individual action by Eq.(9), in which the parameter c
makes a tradeoff between exploration and exploitation.

Updatestate(s ,®a,u) (Steps 23-28): at state s , given the global

joint-action ®a, for each utility functionuj , the cumulative local joint-

action reward quj (s, ®auj ) is computed by summing the weighted

individual rewards of neighbor agents i ∈ Neдuj (i.e., Eq.(10)). The
mean statistic of the local utility function uj with respect to the

local joint-action ®auj , u j (s, ®auj ) then is updated by Eq.(11).

5.2 Theoretical Analysis

We first show that state-independent global payoffs can be back-

probagated to the root state by our coordinated MCTS.

Lemma 3. Let ρ = ⟨s0, s1, · · · , sT ⟩ denote the trace of states vis-
ited by the simulated global joint-action ⟨®a0, ®a1, · · · , ®adepth⟩. The cu-

mulative global payoff of ρ is V τ (s0, ®a0) =
∑depth

k=0 γkR(sk , ®ak , sk+1),

where R(sk , ®a, sk+1) is the global payoff of the global joint-action ®a at

state sk . At the root state s0, letquj (s0, ®a0,uj , s1) denote the cumulative

local utilities of uj obtained from ρ, we have

V τ (s0, ®a0) =
∑
uj ∈G(s0)quj (s0, ®a0,uj , s1) (12)

Our main result is to bound the bias between the global payoff

achieved by our coordinated MCTS and the optimal global payoff

at the root state under certain conditions.

Theorem 2. At the current state s , let u∗(N) denote the optimal

expected global payoff and E[u(N)] denote the expected global payoff
returned by coordinated MCTS. Under the condition that except the

specific utility function uj′ , the bias between the expected value of

other local utility functions u j and its real value is bounded by ϵ , i.e.,
∀uj , uj′ , ®auj ∈ Duj , |E[u j (®auj )] − u

∗
j (®auj )| ≤ ϵ , the bias between

u∗(N) and E[u(N)], |E[u(N)] − u∗(N)| = O( lnTT ), where T is the

number of simulations at state s .

Proof. For single-agent MCTS, let E[Qt (s,a)] denote the esti-
mated payoff of taking action a at state s , andQ∗(s,a) be the optimal

(expected) payoff that can be returned by the action a, then the

bias between Q∗(s,a) and E[Qt (s,a)] can be bounded O( lnTT ). To
achieve this bound, two sufficient conditions should be satisfied

[20]:

Condition 1: The expected payoff Qt (s,a) should be updated

by the average of the simulated payoff, i.e.,

Qt (s,a) = Qt−1(s,a) +
v(s,a) −Qt−1(s,a)

N (s,a)
(13)

wherev(s,a) is the discounted cumulative payoff returned by taking

a at state s at the (t − 1)th simulation.

Condition 2: The action is selected according to the UCB value:

a∗t = argmaxak ∈Dk [Qt (s,a) + c
√

lnN (s)
N (s,ak )

]. (14)

Since we select the individual action by the UCB value according to

Eq.(9) (i.e., Condition 2 is satisfied), we only need to prove Condition

1. At the (t-1)th simulation, let ®at−1 denote the optimal global

joint-action returned by Eq.(9), utj′ denote the estimated value of

local-action ®auj′ of the utility function uj′ , andQ
t
i (s,ai ) denote the

estimated value of agent i ∈ Neдuj′ taking action ai . According to

Eq.(9), the expected value Q
i
t (s,ai ) can be updated by

Q
t
i (s,ai ) = maxk ∈N\i,ak ∈Dk

[
utj′(®auj′ ) +

∑
uj ∈U \u′j

ut−1j (®auj )
]

= maxk ∈N\i,ak ∈Dk

[
ut−1j′ (®auj′ ) +

∑
al ∈uj′

qt−1l (al )
Neдl

−ut−1j′ ( ®auj′ )

Nuj′ (s, ®au′j
)

+
∑
uj ∈U \uju

t−1
j (®auj )

]
= maxk ∈N\i,ak ∈Dk

[ ∑
uj ∈U ut−1j (®auj )

+

∑
al ∈uj′

qt−1l (al )
Neдl

+
∑
uj ,al ∈Neдuj

qt−1l (al )
Neдl

−
∑
uj ∈U ut−1j (®auj )+Kϵ

Nuj′ (s, ®au′j )

]
Kϵ ∈ [−(m − 1)ϵ, (m − 1)ϵ] is a constant, and m is the number

of utility functions. The last equation holds since 1) the Shapley
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value-based local utility is efficient (i.e., Lemma 2), and 2) the bias

of other utility functions uj , uj′ is bounded by ϵ . Further, we have

Q
t
i (s,ai )

= maxk ∈N\i,ak ∈Dk

[ ∑
uj ∈U ut−1j (®auj ) +

V (s, ®at−1)−
∑
uj ∈U ut−1j ( ®auj )

Nuj′ (s, ®au′j
)

]
(15)

= maxk ∈N\i,ak ∈Dk

V (s, ®at−1)+(Nuj′ (s, ®au′j
)−1)(

∑
uj ∈U ut−1j ( ®auj ))

Nuj′ (s, ®au′j
)

=
V (s, ®at−1) + (Nuj′ (s, ®au′j ) − 1)Q

t−1
i (s,ai )

Nuj′ (s, ®au′j )
(16)

= Q
t−1
i (s,ai ) +

V (s, ®at−1) −Q
t−1
i (s,ai )

Nuj′ (s, ®au′j )

Eq.(15) holds since 1) the constant Kϵ does not depend on the op-

timal global-joint action maxk ∈N\i,ak ∈Dk , and 2) the cumulative

global payoff can be preserved (i.e., Lemma 3), where V (s, ®at−1) is
the cumulative global payoffs achieved by the global joint-action

®at−1 at s . Eq.(16) holds since maxk ∈N\i,ak ∈Dk

∑
uj ∈U ut−1j (®auj ) =

Qi
t−1(s,ai ). Given that the estimated state-action value Q

t
i (s,ai )

of agent i satisfies both Conditions 1 and 2, we have that the

bias between expected global payoff achieved by the optimal ac-

tion argmaxai Q
T
i (s,ai ) and the optimal global payoff Q

∗
(s,a∗) is

O( lnTT ). Since Max-sum can always optimize the global joint action,

i.e., each individual agent selects the optimal action with the same

global payoff, we can conclude that the bias between the (expected)

global payoff of the final global joint-action ®a and the optimal global

payoff is bounded by O( lnTT ). □

6 EXPERIMENTS

All computations are performed on a 64-bit workstation with 64 GB

RAM and a 16-core 3.5 GHz processor. All records are averaged over

40 instances, and use standard errors as the confidence intervals.

6.1 Experimental Domains

We first conduct the experiments in the multi-robot warehouse

patrolling in industry chain. Moreover, to improve the generality

of our approach, we also conduct additional experiments in traffic

signal control and security traffic patrolling for industrial chain.

6.1.1 Multi-Robot Warehouse Patrolling (MRP) [30]. In MRP, mul-

tiple mobile robots are deployed to patrol along sensitive regions

where persistent surveillance, inspection and control are required.

The MRP problem can be formulated as a graph G = ⟨V ,E⟩, where
V is the set of regions and ei j ∈ E denotes the regions vi and vj are
adjacent. The robots can navigate between adjacent regions. The

instantaneous idleness for a region at current period is the number

of periods elapsed since the last visit. The objective of MRP task is

to coordinate patrolling strategies of robots in order to minimize

the average idleness of all regions over the whole horizon.

ComparedMethods.We compare our coordinatedMCTSmethod

with three baselines: 1)Naive MCTS, where the global joint-action

is explored and evaluated, 2) FV-MCTS [9], where the individual

action is evaluated according to the global payoff, and 3) MARL

[30], where each agent adopts a model-free Q-learning to learn the

patrolling policy.

6.1.2 Traffic Signal Control (TSC) [43]. We evaluate the proposed

methods on the TSC problem on the Cityflow simulation platform

[43] within real-world and synthetic traffic networks. Two syn-

thetic grid-like traffic networks syn_3 × 3 and syn_4 × 4 are gener-

ated by the Cityflow. Two representative real-world traffic datasets

jinan_3×4 and hangzhou_4×4 are collected from two cities [40]. In

each traffic network, each vehicle is described as (o, t ,d), where o is
the origin location (i.e., link), t is time, and d is destination location.

The ultimate objective of TSC is to minimize the average travel time

of vehicles. In our coordinated MCTS, we model each intersection

as an autonomous agent, and use the number of vehicles that exit

the traffic network at planning step as the immediate global payoff.

Compared Methods. Besides the online FV-MCTS, we com-

pare our coordinated MCTS method with: 1) a traditional trans-

portation method Maxpressure [36], which greedily activates the

phase with the maximum pressure, 2) PressLight [39]: a multia-

gent reinforcement learning (MARL) method, where each agent

learns the policy of choosing next phase by vanilla DQN, and 3) a

variant of our coordinated MCTS, where the lookahead depth=1.

6.1.3 Security Traffic Patrolling (STP) [29]. In STP, a set of police of-
ficers (i.e., agents) is deployed for traffic enforcement, with the aim

of preventing drivers’ illegal behaviors. The interaction between

the police and drivers can be cast as a defender-attacker Stackelberg

game. The defender (the police) commits to a pure patrol strategy,

which is used to generate daily patrol schedules for each police

officer. A daily patrol schedule consists of a trajectory through the

road network, i.e., a sequence of regions to patrol. The attacker

(i.e., drivers) follows the opportunistic behavior model, and reacts

to police enforcement in the current and past periods. The risk of

accidents measures how likely a serious traffic accident to occur at

each region each period. The STP problem is interested in coordi-

nating these police officers’ patrolling strategies and minimizing

the risks of accidents occurring throughout the game.

Compared Methods. Besides online baselines Naive MCTS

and FV-MCTS, we also compared against a randomized patrolling

policy (Random) and Binary integer programming (BIP) [29],

where BIP is used to formulate the pure strategy for traffic enforce-

ment and a master/slave-based optimization is used for scale up.

6.2 Experiment Results

Test the efficiency. Figure 2 shows the efficiency of our coordi-

nated MCTS on improving system performance in different do-

mains. In the MRP domain, we evaluate methods on a synthetic

16 × 16 grid-like graph, and vary the number of agents between 5

and 30. The performance is evaluated on average idleness of nodes.

Figure 2(a) shows that our Coordinated MCTS can achieve the min-

imum average idleness. In the case that there is a smaller number

of agents (i.e., 5), Naive MCTS performs better than FV-MCTS. This

can be explained by the fact that Naive MCTS can explore promis-

ing global joint-actions when team size is small. However, Naive

MCTS reaches the timeout even in problems with 10 agents.

In the TSC domain, we evaluate methods on two synthetic net-

works syn_3 × 3 and syn_4 × 4, and two real-world road networks

jinan_3 × 4 and hangzhou_4 × 4. The performance is evaluated
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(a) Results on MRP (b) Results on TSC (c) Results on STP

Figure 2: Experimental results. LEFT: in MRP, methods are evaluated on average idleness of nodes (the lower the better),

MIDDLE: in TSC, methods are evaluated on average travel time of vehicles (the lower the better), and RIGHT: in STP, methods

are evaluated on reducing risks of accidents (the higher the better). Methods that exceeded the timeout (i.e., 10 minutes) do

not appear.

Metric

Traffic Network syn_3 × 3 syn_4 × 4 jinan_3 × 4 hangzhou_4 × 4

ST (ms) ATT ST (ms) ATT ST (ms) ATT ST (ms) ATT

#simulation=500

Coordinated MCTS (depth=1) 10.3 144.1 19.8 180.3 13.4 290.9 19.3 355.0

Coordinated MCTS (depth=2) 10.9 138.4 20.5 176.3 14.4 287.6 20.5 344.7

Coordinated MCTS (depth=3) 11.1 138.4 20.4 176.1 16.3 287.2 21.0 344.4

Table 1: Test the computation time of our coordinated MCTS in the TSC domain. ST: the computation time (ms) for each

simulation step in Algorithm 2, and ATT: the average travel time of vehicles.

on the average travel time of vehicles. From Figure 2(b), we can

find that in all networks, compared with online MAP and offline

RL baselines, our coordinated MCTS method generates the least

average travel time. The potential reason is that for complex road

networks with a number of intersections, it is hard for RL methods

to train desirable coordination solutions. In contrast, our method

enables coordination between neighboring intersections and aims

to optimize global traffic. Moreover, within time limits, it is better

to use a longer planning horizon (i.e., Coordinated MCTS depth=2)

than a shorter planning horizon (i.e., Coordinated MCTS depth=1).

In the STP domain, we evaluate methods on a real-world road

network consisting of 284 intersections and 355 roads. The number

of agents (i.e., police officers) is set to 30, and the number of planning

steps (i.e.,T ) varies between 8 and 40. The performance is evaluated

on the risk (of accidents) reduction between the no-enforcement

condition and the provided methods. From Figure 2(c), we can find

that compared to FV-MCTS, our coordinated MCTS can reduce

the risk by a further 5%. Since BIP returns always the optimal

solutions, BIP can reduce the largest risks. However, the complexity

of BIP exponentially increases with planning steps (T ), preventing
it applying to larger problems (e.g., T ≥ 32).

Test the scalability. In TSC domain (i.e., Figure 2(b)), since the

traffic changes in seconds, we set the the time limits for online

computation by 5 seconds. In all traffic networks, our coordinated

MCTS can return the best solution in an online manner. In MRP and

STP domains, since agents need to patrol at a region for some time,

we can compute the online plans for next step during patrolling.

Thus, in MRP and STP domains, we set the time limits for online

computation by 60 seconds. Figure 2(a) and Figure 2(c) show the

scalability of our coordinated MCTS with respect to the number of

agents n and planning steps (T ), from which we can find that our

coordinated MCTS and FV-MCTS can apply to large-scale problems

with tens of agents (i.e.,n = 30) and long planning steps (i.e.,T = 40).

In comparison, Figure 2(a) shows that Naive MCTS cannot apply

to problems with more than 10 agents, and Figure 2(c) shows that

BIP cannot apply to problems with more than 32 planning steps.

Test the computation time. Table 1 shows the computation

time of our coordinated MCTS in the TSC domain. From Table 1,

it can be found that 1) the computation time for the simulation

step increases linearly with the number of agents, and 2) given

the limited time budget (i.e., #simulation=500), our coordinated

MCTS with depth=2 performs better (with respect to ATT) than

the variant with depth=1, but nearly the same with that of depth=3.

In conclusion, the setting of depth depends both on the time budget

and the number of agents. For small budget and large number of

agents, the short depth is better, while for large budget and small

number of agents, the long depth is better.

7 CONCLUSION

This paper studies the online MAP problem that has a wide range

of applications in MASs, and proposes a SCA-based coordinated

MCTS method. Our method comprises two parts: Shapley value-

based SCA and coordinated MCTS. In the former part, by exploiting

structure of DCOP, we can compute Shapley value exactly and effi-

ciently. This Shapley value can be used to provide a fair evaluation

of individual action, which is crucial for promoting coordination

between agents. In the latter MCTS part, at each state, Shapley

value-based SCA is used to decompose the global payoff to each

agent. This individual reward backpropagates through the (search)

tree to the root state to update local utilities. Experimental results

show that combining SCAwith MCTS, coordinated MCTS has great

advantages on efficiency and scalability.
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