
The Role of Space, Density and Migration in Social Dilemmas
Jacques Bara

University of Warwick

Coventry, United Kingdom

jack.bara@warwick.ac.uk

Fernando P. Santos

University of Amsterdam

Amsterdam, The Netherlands

f.p.santos@uva.nl

Paolo Turrini

University of Warwick

Coventry, United Kingdom

p.turrini@warwick.ac.uk

ABSTRACT
Cooperation in multi-agent systems often entails a social dilemma.

Cooperators pay a cost to improve public goods whereas defec-

tors free-ride, reaping benefits without incurring any costs or even

producing public bads. Much attention has been devoted to under-

standing cooperation in populations where agents interact with

random peers (well-mixed), interact over complex networks, or

interact in fixed spatial positions. In spatial settings with mobile

agents, however, the effects of cooperation are circumscribed to

arbitrary neighbourhoods and the stability of cooperation depends

on individuals’ capacity to move between sites and form dense

clusters.

In this paper we study spatial public goods games in which

agents either pollute (defectors) or clean (cooperators) their local

area and can migrate to empty sites within range. We ask whether

migration promotes cooperation and reduces the negative impacts

of defection. Analytically and through agent-based simulations, we

show that migration ultimately reduces the pollution felt per-capita

in at least two ways: 1) polluters encourage eco-friendly neighbours

to migrate away, eventually clustering with other cooperators 2)

migration stabilises cooperation in dense population scenarios. Our

results reveal a complex interaction between migration and density

as key factors to promote cooperation in spatial social dilemmas.
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1 INTRODUCTION
Social dilemmas pervade multi-agent systems [2, 9, 10, 14, 15, 20,

22, 24, 29, 33–35]. The challenges of such dilemmas have been

captured, in a stylised way, through the well-known Prisoner’s

Dilemma Game and, its large-scale counterpart, the Public Goods

Game. In the latter, agents in a group of size 𝑁 can either cooperate

— contributing 𝑐 of their wealth to a common pot — or defect —

free-riding in the contributions of others. This interaction results

in a social dilemma, as cooperation is socially desirable yet, from

the individual point of view, defection maximises an agent’s payoff.

The same dilemma ensues if cooperators are required to pay a cost

to prevent producing a public bad or to reduce the chances of a

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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future catastrophe, as it is the case in reducing urban pollution or

solving climate change crises [16, 17, 27, 28].

In real-world scenarios, dilemmas of cooperation are often em-

bedded in space – one paradigmatic example is polluting (defect)

or cleaning (cooperate), which can be costly yet beneficial for indi-

viduals in a local area. Spatial settings can fundamentally impact

the emergence and effects of cooperation: first, the effects of co-

operation are felt on local neighbourhoods and their long-term

consequences depend on how individuals are spatially assorted;

second, even considering fixed agents (an assumption that we relax

in this paper), cooperation can spread in spatial settings as they clus-

ter together and benefit from a relative advantage compared with

defectors [18]; finally, in the specific case of urban pollution, spatial

proximity can mediate the diffusion of environmentally friendly

technologies, as some empirical examples (chiefly, the imitation of

household PV cell adoption between neighbours [26]) illustrate.

Besides introducing a definition of locality, spatial environments

suggest that agents can move. While some models of spatial public

good games have been analysed in the literature, the role of move-

ment in fostering or hindering cooperation among agents acting in

space is still not well understood. Here we develop a new model to

understand how agents’ mobility can impact cooperation dynamics.

Our Contribution. In this paper we study the conditions for which
cooperation emerges on spatial public good games. Cooperators

clean their immediate environment, contributing to increasing the

payoffs of other agents, and defectors that pollute their surround-

ings, worsening their neighbours’ conditions. Agents move around

the space based on the perceived levels of pollution, migrating

within a radius𝑀 , to an empty site with the least pollution.

We study how cooperation depends on migration range (𝑀)

analytically in small cases, finding the regimes in which a social

dilemma arises and themigratory patterns that stabilise cooperation

in dense cities. We then supplement the theory with simulations

of the agent-based model
1
: first, with fixed strategies to isolate

the effects of migration; second, with a behavioural model of im-

itation for a fixed size city; third, varying the density of the city

we identify a transition from sparse to dense (rural to urban). We

find that migration in dense enough areas allows cooperators to

cluster together, thus reducing the per-capita pollution and stabilis-

ing cooperation in the long term evolution of the coevolutionary

process.

In Section 2 we discuss related work after which we formalise our

model in Section 3. In Section 4 we present our theoretical analysis

which we then complement with computational experiments in

Section 5. Finally we discuss the results and conclude in Section 6.

1
All code, data and other supplementary materials (including animations) are openly

available at https://github.com/JBara97/Pollution-Game.
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2 RELATEDWORK
As in our model, many spatial games [5, 18, 19, 21, 23] consider the

underlying space as a discrete periodic 2D lattice (also known as

a toroidal lattice). Most previous works in spatial social dilemmas,

however, assume that each location contains a fixed agent and

dynamics result from strategy evolution. In settings with multiple

agents in a site, it is often assumed that games are played within a

site and not between sites [1]. As in [12], we consider the existence

of empty sites and focus on the movement of agents. Our work adds

the analysis of compound agents - the agglomeration of agents into

collectives - and studies the effects of movement on their formation

and on the agents’ social welfare.

Some related contributions assume space to be continuous - rea-

sonable for sufficiently large distances or population sizes - and

focus on dynamical-systems, partial differential equations (PDE)

and pattern formation. The work of [32] considers cooperators and

defectors as species, that reproduce depending on the average pay-

off of the species, and that move via diffusion; an extension of which

considered directed migration [7]. In these settings cooperators are

universally attractive, defectors are repulsive, and the speed with

which agents move depend on, for example, whether a defector is

moving towards another cooperator.

Regarding the mechanisms for migration, some previous work

considered that migration can be caused by success-driven agents

[12], which move to a site where, under fictitious play, they would

get a higher payoff. Despite some of the criticisms – notably exper-

iments showing that humans are typically conditional cooperators

[4, 6, 8] who do not look at payoffs and may show other forms

of cooperation that punish misbehaviour [13] – this assumption

remains widely used and appealing. Previous agent-based simula-

tions studying cooperation in spatial settings with mobile agents

have also found that mobility, by allowing cooperators to cluster to-

gether, stabilise pro-social actions [11, 12, 25], but their interaction

model ignores the long range effects of undesirable behaviour and,

perhaps for the lack of theoretical predictions, the study overlooks

the role of spatial density, which we find to have a fundamental

impact on the emergence of cooperation.

Relevant, although based on different interaction rules, is also

Schelling’s segregation model [31], in which agents of one type pre-

fer to be surrounded by her own type avoiding the other. Sites are

limited to at most a single agent, each of whom will move to a ran-

dom empty site if their current neighbourhood is not within their

tolerance level. From such simple echanisms emerges the complex

phenomenon of segregation. Here, we similarly find the emergence

of a socially desirable outcome, pollution reduction, via the assort-

ment of agents into compounds. The dynamic network analogue of

our work - networked agents playing uniform Prisoner’s Dilemmas

with the ability to select partners - finds similar cooperator cores

and defector peripheries forming from the coevolutionary process,

despite the very different game and update rules [3].

3 SPATIAL SOCIAL DILEMMAS
3.1 Agents, Interaction and Movement
We consider a 2D periodic lattice of size 𝐿 ×𝐿 populated by 𝑁 ≤ 𝐿2

agents. Each site can only be occupied by up to one agent. A lattice

site, regardless of inhabitant, is denoted by its 2-vector coordinate

𝒓 ∈ {1, · · · , 𝐿}2. Within this space, agents play a spatial social

dilemma, which, for clarity, we frame as a pollution dilemma.

Let the level of pollution at a site 𝒓 be denoted 𝑃 (𝒓); further-
more, let the per-capita pollution (PCP) - pollution averaged over

occupied sites, recalling that these coincide with 𝑁 - be denoted 𝑃 .

PCP depends not only on their strategies but also on their spatial

assortment. Agents have two strategies available to them: defection
(𝐷) i.e. pollution and cooperation (𝐶) i.e. cleaning. Each defector at

location 𝒓𝑑 pollutes each location 𝒓 according to 𝑃 (𝒓) = 1

𝑟 2
, where

𝑟 = ∥𝒓 − 𝒓𝑑 ∥ is the shortest L2 distance from the defector. Moreover,

let such pollution be dubbed a pollution cloud or simply a cloud. This
allows us to discuss the size and shape of polluted areas succinctly;

the cloud of a single defector is spherical and has a 𝑟−2 profile.
As the intensity of pollution decreases at further away sites, it is

also natural to assume a threshold below which pollution levels are

negligible. To this end let us say the pollution cloud from a single

defector can only reach a distance 𝑅 > 1 away. Finally, to deal with

the singularity at 𝑟 = 0, i.e. at the source of pollution, we say the

pollution there is simply 𝑃 (0) = 1. Explicitly, the pollution at site 𝒓
due to a defector living at site 𝒓𝑑 is

𝑃𝑑 (𝒓) =


1 for 𝑟 ≤ 1

1

𝑟 2
for 1 < 𝑟 ≤ 𝑅

0 otherwise.

(1)

where 𝑟 = ∥𝒓 − 𝒓𝑑 ∥.
We conceptualise cooperators as agents who clean pollution – for

example, the neighbour in lockdown who embraced gardening or

picked up litter every week. Formally a cleaner 𝑐 at site 𝒓𝒄 removes

a fixed quantity 𝜙 of pollution from all sites within a distance 1. In

other words the pollution at site 𝒓 due to a single cleaner at 𝒓𝒄 is

given by the following.

𝑃𝑐 (𝒓) =
{
−𝜙 for 𝑟 ≤ 1

0 otherwise.

(2)

In the case of multiple agents pollution is simply additive, such

that if 𝑃𝑖 (𝒓) is the pollution produced/cleansed by agent 𝑖 at 𝒓 , then
the total pollution at 𝒓 is 𝑃 (𝒓) = ∑

𝑖 𝑃𝑖 (𝒓). We allow for negative

pollution levels as agents look at the relative, not absolute, levels;

the behaviour would be equivalent for some constant non-zero

background level.

Cooperation and pollution felt are costly; we consider that every

agent 𝑖 pays 𝐸𝑖 , which can result from a combination of perceived

pollution and financial assets. Specifically let 𝑓 be the fee that an

agent pays to clean and 𝑔 the gain of an agent that defects. As such

an isolated agent – at a distance 𝑟 > 𝑅 from all other agents – will

have an expense of 𝐸𝑖 = 𝑓 − 𝜙 if she cooperates and 𝐸𝑖 = 1 − 𝑔

if she defects. Defection is dominant so long as 𝑓 + 𝑔 > 1 + 𝜙 ,

which, as we will see later is also a sufficient condition for the

unique Nash Equilibrium strategy to be defection, at least in the

two-player game.

The co-existence of cooperators and defectors will determine the

pollution levels felt at each site. This will, in turn, impact agents’

movement. We assume that an agent’s movement is best-response:

that is migrate to an empty site within a radius of𝑀 ≥ 0, henceforth

named the migratory distance, with the lowest level of pollution so

long as it has strictly less pollution than her current site, with ties

Session 2C: Fair Allocations + Public Goods Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

626



Figure 1: Phase diagram for the two-player game depending
on financial parameters 𝑓 +𝑔 and inter-agent distance 𝑟 . The
red dotted line indicates the threshold for the social opti-
mum (SO) while the dashed green line indicates the thresh-
old for the dominant strategy (DS) and unique NE outcome.
A) Cleaning is a DS and SO. B) Social dilemma; defection is
DS but cleaning is SO. C) Defection is DS and SO.

broken randomly. Note this is not necessarily the same as seeking

the best-performing potential neighbour.

3.2 Strategy Adoption
We consider a deterministic short-distanced imitation model in

which an agent 𝑖 at position 𝒓𝑖 imitates the strategy of an agent 𝑗

at site 𝒓 𝑗 who has the minimal expense 𝐸 𝑗 of all agents within a

distance 𝑀𝜈 . Explicitly for 𝜎𝑖 (𝑡) the strategy of 𝑖 at time 𝑡 , agent

𝑖’s strategy at the next time step is 𝜎𝑖 (𝑡 + 1) = 𝜎 𝑗 (𝑡) where

𝑗 = argmin

𝑘 :∥𝒓𝑘−𝒓𝑖 ∥≤𝑀𝜈

𝐸𝑘 (3)

and where𝑀𝜈 is the neighbourhood radius, the furthest distance an
agent can be in order to be imitated. In order to reduce complexity

we henceforth set𝑀𝜈 = 1 since, in principle, an agent 𝑖 may act in

the following sequence: 1) see a best performing agent 𝑗 a distance

𝑀 away, 2) migrate to a location next to her and 3) imitate 𝜎 𝑗 . Thus,

in effect, it does not matter if 𝑀𝜈 > 1, since migration allows an

agent to reach a far away alter and subsequently imitate them.

4 THEORETICAL ANALYSIS
In this section we present two analytic frameworks. First, a game-

theoretic analysis on the 𝑁 ∈ {2, 3} one-shot game (effectively

the first part of a single time-step of the whole game) for static

agents in Section 4.1. Second, assuming fixed strategies, we analyse

migratory patterns arising out of pollution for 𝑁 ∈ {1, 2, 3} in

Section 4.2. Third, we extend the fixed-strategy analysis to the

stable structures that arise in larger 𝑁 -agent cities in Section 4.3

and finally the mechanisms by which migration reduces pollution

in Section 4.4.

4.1 Static Agents
Two Agents. For an isolated agent 𝑖 , the arrival of agent 𝑗 com-

plicates her strategic choices not only as she now has to consider

𝜎 𝑗 but also consider how far away 𝑗 is. In Table 1 we first show

the expense 𝐸𝑖 of agent 𝑖 , given her opponent’s strategy 𝜎 𝑗 if 𝑗

is a distance 𝑟 away from her. From these expense values, we ar-

rive at Figure 1 which shows the phase diagram for the financial

parameters 𝑓 + 𝑔 and the inter-agent distance, highlighting the

regions defined by two analytic thresholds: one which separates

when defection is dominant and the other which defines when

cooperation-cooperation is the social optimum.

Table 1: Two-player game. Expense 𝐸𝑖 for an agent 𝑖 whose
strategy, 𝜎𝑖 , is either Clean (left column) or Defect (right col-
umn) with a single neighbour 𝑗 at distance 𝑟 away, whose
strategy 𝜎 𝑗 is Clean (top row) or Defect (bottom row). I[·] is
an indicator function which is 1 when its argument is true
and 0 otherwise.

(𝜎 𝑗 , 𝜎𝑖 ) Clean Defect

Clean

𝑓 − 𝜙

− I[𝑟 ≤ 1]𝜙
− 𝑔 + 1

− I[𝑟 ≤ 1]𝜙

Defect

𝑓 − 𝜙

+ I[𝑟 ≤ 1]
+ I[𝑟 > 1]𝑟−2

− 𝑔 + 1

+ I[𝑟 ≤ 1]
+ I[𝑟 > 1]𝑟−2

When 𝑓 +𝑔 < 1+𝜙 , we are in the regime of region A in Figure 1,

that is the dominant strategy - and therefore the two-player Nash
Equilibrium (NE) - is to clean. This coincides with the analysis of the

single agent game where an isolated agent’s best choice depends

on the difference in 𝑓 +𝑔− (1+𝜙). If on the other hand 𝑓 +𝑔 > 1+𝜙
then the dominant strategy - and the two-player NE - is to defect,

as in regions B and C.

The social optimum is the set of strategies that, in this case,

minimises the total expense of both agents. In region C, defection is

the social optimum since the financial benefits more than outweigh

the environmental factors, which notably depends on the inter-

agent distance 𝑟 . For 𝑟 ≤ 1 the choice for one agent to clean impacts

both agents, while for 𝑟 ≤ 𝑅 the choice to defect affects both agents.

For 𝑟 > 𝑅 the game collapses to two single-agent games each of

which has a threshold of 𝑓 + 𝑔 = 1 + 𝜙 above which defection is

dominant and below which cleaning is dominant.

Below the red dotted line that defines region C, in regions B and

A, the SO is to clean. Only in region B, therefore , where the NE is

to defect and the SO is to clean, does a social dilemma arise. Given
a cloud size of 𝑅, a social dilemma is guaranteed to occur for two

nearby agents if 1 + 𝜙 < 𝑓 + 𝑔 < 1 + 𝜙 + 𝑅−2. Notice finally that

even when cooperators clean nothing, 𝜙 = 0, region B can still exist

due to precisely the profile of a pollution cloud given by Equation

1. In fact for any non-zero cloud profile 𝑃𝑑 (𝑟 ) ≠ 0, region B always

exists and is defined by 1 +𝜙 < 𝑓 +𝑔 < 𝑃𝑑 (𝑟 ) + I[𝑟 ≤ 1] where I[·]
is an indicator function which is 1 when its argument is true and 0

otherwise.

Three Agents. The two agent-case is, though complex, easily

tractable and intuitively simple to understand - as shown by Figure

1 - simply by considering the parameters 𝑓 , 𝑔 and 𝜙 as well as

the inter-agent distance. The three-agent case, on the other hand,

is significantly complicated by spatial arrangement. Even if all

three agents are restricted to a single contiguous cluster (that is all
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agents have at least one immediate neighbour) there are 12 cases

to consider as we do in Table 2. In this case both Nash Equilibrium

and social optimum are likely to be mixed strategies.

Some work has been done on the theory of Nash Equilibria in

three-player partially asymmetric zero-sum games [30] however in

more general cases calculations of mixed Nash Equilibria become

computational rather than analytically tractable. In our case, for

example, although a straight line of three agents plays a three-

player, partially asymmetric game, it is not zero-sum. When in the

alternative assortment (the L-shape) the three agents no longer

play a partially asymmetric game.

Table 2: Three-player game. Expense 𝐸𝑖 for each of the three
players, given their assortment and their strategies 𝜎𝑖 .

Assortment (𝜎1, 𝜎2, 𝜎3) 𝐸1 𝐸2 𝐸3

1

2

3

(C, C, C) −2𝜙 + 𝑓 −3𝜙 + 𝑓 −2𝜙 + 𝑓

(D, C, C) 1 − 𝜙 − 𝑔 1 − 2𝜙 + 𝑓 0.25 − 2𝜙 + 𝑓

(C, D, C) 1 − 𝜙 + 𝑓 1 − 2𝜙 − 𝑔 1 − 𝜙 + 𝑓

(D, D, C) 2 − 𝑔 2 − 𝜙 − 𝑔 1.25 − 𝜙 + 𝑓

(D, C, D) 1.25 − 𝜙 − 𝑔 2 − 𝜙 + 𝑓 1.25 − 𝜙 − 𝑔

(D, D, D) 2.25 − 𝑔 3 − 𝑔 2.25 − 𝑔

2 3

1

(C, C, C) −2𝜙 + 𝑓 −3𝜙 + 𝑓 −2𝜙 + 𝑓

(D, C, C) 1 − 𝜙 − 𝑔 1 − 2𝜙 + 𝑓 0.5 − 2𝜙 + 𝑓

(C, D, C) 1 − 𝜙 + 𝑓 1 − 2𝜙 − 𝑔 1 − 𝜙 + 𝑓

(D, D, C) 2 − 𝑔 2 − 𝜙 − 𝑔 1.5 − 𝜙 + 𝑓

(D, C, D) 1.5 − 𝜙 − 𝑔 2 − 𝜙 + 𝑓 1.5 − 𝜙 − 𝑔

(D, D, D) 2.5 − 𝑔 3 − 𝑔 2.5 − 𝑔

4.2 Movement with Few Fixed-Strategy Agents
Here we analyse the migratory patterns that form assuming fixed

agent-strategies. Equivalently, the regime of fixed agent-strategies

can be thought of as the regime of rapid migration and immensely

slow strategic change. Regardless, as strategies are fixed, in this

subsection we only deal with the pollution felt by an agent, rather

than her full expense. In particular we use the per-capita pollution

(PCP) 𝑃 as a measure of city-wide pollution.

Single Agent. Consider an isolated agent, entirely by herself with

no other agents in the city. If she cooperates then her pollution

is simply −𝜙 and, importantly, she would be at a local minimum

– all sites have a pollution of 0 except hers and her immediate

neighbouring sites, which have a pollution of −𝜙 . As such her

optimal migratory strategy would be simply to remain stationary.

On the other hand were she a defector then she would experience

a pollution of 1 and thus inhabit a local maximum for pollution. The

migratory distance now plays an important factor in her optimal

strategy: if 𝑀 ≤ 1 she would be unable to see past sites immedi-

ately next to her, so the optimal strategy would be to remain. If

instead𝑀 > 1 then she is able to move beyond her immediate neigh-

bourhood to find greener pastures. However she is now cursed to

endlessly roam since, wherever she ends up, her immediate neigh-

bourhood will be the peak of pollution hence she will move away.

Her overall movement is thus Brownian Motion: for 1 < 𝑀 < 𝑅

she will move to a random empty site exactly a distance𝑀 away

and for𝑀 > 𝑅 she will move to a site that is a distance 𝑅 < 𝑚 ≤ 𝑀

away. In either case her direction of movement is random.

Two Defectors. Consider two defectors, 0 and 1, at sites 𝒓0 and
𝒓1 respectively. If the inter-agent distance is less than a cloud size,

𝑟 ≤ 𝑅, then both would be weakly repelled by one another. Con-

cretely, if an agent looks to all sites within a distance𝑚, the isopleth

with the least amount of pollution is the arc of radius𝑚 that is fur-

thest from the opposing defector (see, as an example, Figure 1 in

Supplementary Material). As such, assuming agent 0 is fixed in

place, if 𝑀 < 𝑅 the best locations lie precisely on this isopleth.

Otherwise for𝑀 ≥ 𝑅 then she would jump to any point outside of

the clouds within range. As the two defectors entirely avoid one

another, so long as the space is large enough, then each will feel

the effect of only themselves – in other words 𝑃 = 1.

Two Cooperators. Regardless of 𝑟 , the optimal choice for either

cooperator would be to remain stationary. If 𝑟 = 1, i.e. the two are

next to one another, then they already achieve optimal pollution

at 𝑃 = −2𝜙 , else if 𝑟 > 1 then they are still at optimal pollution at

𝑃 = −𝜙 .
There is a singular degenerate case when one of the cooperators

will move. Consider a cooperator 𝑐0 at 𝒓𝑐0 = (𝑥,𝑦) and another 𝑐1
at some 𝒓𝑐1 . If 𝑐1 is diagonally next to 𝑐0 – that is 𝒓𝑐1 = (𝑥 ± 1, 𝑦± 1)
or (𝑥 ± 1, 𝑦 ∓ 1) – then the site that is coadjacent to both agents has

a pollution level of −2𝜙 despite each only feeling −𝜙 . Either agent
will move to this space and stabilise the system with 𝑃 = −2𝜙 .

Cooperator and Defector. For 𝑟 > 𝑅 the problem reduces to the

single agent case, that is the cooperator remains stationary while

the defector randomly migrates as in Brownian Motion. In the short

term the defector will be unaffected by the cooperator and vice-

versa, however over a long enough period of time, 𝑡 = 𝑂 (𝑟/𝑀),
the defector will have drifted close enough to the cooperator to be

able to see its effects (i.e. be within distance 𝑟 ≤ 𝑀 of it). Once this

occurs the defector will be attracted towards the cooperator.

If the cooperator is unaffected by the defector, that is 𝑟 > 𝑅,

then in one step the defector will move (at random) into one of the

neighbouring sites of the cooperator, while she remains stationary.

From this point the distance between them will be less than a cloud

size 𝑟 < 𝑅 and a game of cat-and-mouse commences, regardless of

scheduling and whether they move simultaneously or sequentially.

The cooperator will keep trying to run away from the defector but

the defector keeps chasing her down, since they both share the

same migratory distance𝑀 .

Table 3: Behaviour of a 1-cooperator-1-defector system for
different values of 𝜙 and𝑀/𝑅.

𝜙 < 0.25 𝜙 = 0.25 𝜙 > 0.25

𝑀/𝑅 < 1 𝑀-drift 𝑀- and 1-drift 1-drift

𝑀/𝑅 ≥ 1 Teleport Teleport and 1-drift 1-drift

The cat-and-mouse will carry on forever, but whether or not the

defector can ever occupy an adjacent site to the cooperator depends

on the ratio of migration to cloud size 𝑀/𝑅. If 𝑀/𝑅 ≥ 1 then the

cooperator can certainly escape the cloud and will thus spend some

of its time being stationary.

This long-distance jump away from the defector (though still

within a distance𝑀), hence dubbed teleporting, causes the coopera-
tor to 1) escape the cloud(s) of the pursuant defector(s) and 2) to

Session 2C: Fair Allocations + Public Goods Games
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

628



(a)𝑇 = 0 (b)𝑇 = 200

Figure 2: Snapshots at times 𝑇 of a city of size 𝐿 = 30 har-
bouring 𝑁 = 50 agents. We see the clustering of cooperators,
surrounded by a plethora of defectors, i.e., the formation of
compound agents.

land in an empty site that is a (mostly) random direction from the

defector. Specifically for the latter, by a (mostly) random direction

we mean one that is not necessarily along the direction 𝒓𝑐 − 𝒓𝑑 .
On the other hand if 𝑀/𝑅 < 1 then she will always move as

the defector is guaranteed to at least keep her inside the cloud.

Moreover given the cooperator 𝑐 is stuck inside the cloud, i.e. all

sites within distance 𝑀 of her are within the cloud, then the site

with the least amount of pollution will be a distance𝑀 away exactly

along the direction of 𝒓𝑐 − 𝒓𝑑 . Such movement, where there is a

unique site some distance𝑚 away that has minimal pollution, we

dub an𝑚-drift. In particular, as the defector has the same migratory

distance, this will cause the two to drift endlessly along the direction

of 𝒓𝑐 − 𝒓𝑑 . Table 3 showcases this for different values of 𝜙 and𝑀/𝑅.
Let us also consider the pollution levels, in particular the per-

capita pollution before and after the two agents have merged. When

sufficiently far away from one another 𝑟 > 𝑅 then 𝑃 = (1 − 𝜙)/2
whereas once they are next to one another then 𝑃 = 1 − 𝜙 . In other

words if the cleaning rate is insufficient (𝜙 < 1) then pollution

is overall increased when the two agents are adjacent. If instead

𝜙 > 1 pollution per-capita has significantly decreased. This effect

is important in the large 𝑁 regime where, as we will see in Section

5.2, migration significantly decreases pollution over time for 𝜙 > 1

and somewhat increases pollution otherwise. Table 4 summarises

the 𝑁 = 2 systems in terms of per-capita pollution.

Table 4: Per-capita pollution 𝑃 for the 𝑁 = 2 system with dif-
ferent number of defectors 𝐷 . The left column gives values
of 𝑃 if the two agents are sufficiently far away 𝑟 > 𝑅while the
right column gives values for when they are adjacent 𝑟 = 1.

𝑟 = 1 𝑟 > 𝑅

𝐷 = 0 −2𝜙 −𝜙
𝐷 = 1 1 − 𝜙

1−𝜙
2

𝐷 = 2 2 1

4.3 Stable Clusters
In this section we analyse small configurations of agents which are

theoretically stable; we dub compound agent, or agent cluster, as a set
of agents spatially near one another that behaves, effectively, as one

collective. These compound agents are critical in how migration can

affect pollution. In particular the stability, formation and clustering

of compound agents allow us to understand and predict macro-scale

phenomenon even for large𝑁 or 𝐿. For snapshots of their formation

see Figure 2 or see the GIFs in the Supplementary Material.

Drifters. For sparse cities any local areas with very few agents

will exhibit behaviour similar, if not identical, to the two agent case,

due to the short-range nature of interactions. Consider a cooperator

𝑐 with several defectors in hot pursuit. If 𝑐 drifts - either because they

cannot escape the defectors’ clouds and so moves to a neighbouring

site or because 𝜙 is sufficiently high that a neighbouring site to

𝑐 has less pollution than all other sites - then the defectors will

equally drift to the same relative position prior to the move. In this

way the set of 𝑐 and her defectors form a compound agent that

collectively drifts, as exemplified by the two-agent case with 𝐷 = 1.

Cooperative Clusters. Consider a cooperator 𝑐 that has 𝑑 ≤ 4

defectors as immediate neighbours (|𝒓𝑐 − 𝒓𝑑 | = 1). If 𝜙 > 𝑑 then

regardless of 𝑀/𝑅, the site of minimal pollution for 𝑐 will either

be a) the empty site(s) immediately next to her if 𝑑 < 4 or b) 𝒓𝑐 if
𝑑 = 4, i.e. all the sites that she cleans are full. In case a) her best

option would be to 1-drift/teledrift - a teleport where all candidate

sites are within distance 1 - into one of the empty sites that she

cleans, after which the defectors will follow suit. This compound

agent of 𝑐 and the 𝑑 defectors now moves collectively via 1-drifts

or teledrifts, as above. On the other hand, in case b), the optimal

strategy for 𝑐 is to become stationary as there are no sites within

range that has strictly less pollution than 𝒓𝑐 . The defectors’ optimal

strategy would subsequently be to stay in place. In other words this

compound agent, a cooperator entirely surrounded by defector, is

fully stabilised, in arrangement and movement, due to the defectors.

Consider now several drifters in the lattice. When two drifters,

collide two (or more) constituent cooperators may end up occupy-

ing adjacent sites. In this case both cooperators feel the cleansing

effects of themselves and of each other. As such the two coopera-

tors will, with very high probability, be stabilised by one another

to the extent that no defectors could knock them away from one

another. To see this consider, the case of two drifting clusters one

consisting of a cooperator 𝑐1 surrounded by 𝑑1 < 4 defectors the

other consisting of cooperator 𝑐2 surrounded by 𝑑2 < 4 defectors.

A sufficient condition for cooperators stability is 𝜙 > (𝑑1 + 𝑑2)/2.
For a stricter lower bound, i.e., a necessary condition, one would

need to consider the specific spatial arrangement. For example, for

𝑑1 = 𝑑2 = 3 each cooperator has a pollution level of 𝑃 = 4.25 − 2𝜙 ;

therefore the necessary condition would be 𝜙 > 2.125.

Depending on 𝜙 and the spatial configuration, the collision will

generically be enough to stabilise both cooperators. For a site 𝒓 to
be more appealing than either 𝑐1 or 𝑐2 ’s current site there needs to

be at least 2 other cooperators, 𝑐4 and 𝑐5, neighbouring site 𝒓 . But
should such a site exist, then there is a reasonable chance either 𝑐4
or 𝑐5 will immediately occupy it. In other words, having such an

attractive site existing in range and for no other agents to move in

first is generally unlikely.

Finally, taking the inverse perspective, we see that for a fixed

𝜙 = 𝑎 then 𝑑 < 𝑎 defectors can stably surround a single cooperator.

Stability comes from the cooperator experiencing negative pollution

at her site 𝑃 (𝒓𝑐 ) = 𝑑 − 𝑎, and thus having no incentive to teleport
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away, butmay still (tele)drift. Defectors similarly have 𝑃 (𝒓𝑑 ) < 𝑑−𝑎,
as they are further than 1 space away from one another, and are

therefore also stable.

4.4 Beyond Small Agent Systems
Our theoretical analysis of small fixed-strategy systems suggests

two hypotheses on mechanisms for pollution reduction, which we

will substantiate for large (𝑁 = 𝐿 = 50) systems using agent-based

simulations in Section 5.2.

Hypothesis 1. Under fixed strategies, migration reduces PCP.

This does so by a two-fold mechanism. One, that defectors kick

otherwise stationary cooperators out of complacency and cause

them to move sites. We can clearly see this behaviour already from

the two-agent and single-agent cases. Two, as cooperators move

and are pushed around by defectors, they will eventually collide

with one another thus forming stable clusters. Because of this fact,

all the constituents generally experience lower amounts of pollu-

tion. These compounds will have a cooperator core and a defector

periphery or border (see Figure 2). The defectors on the outskirts

feel the effects of one or two cooperators and a minimal amount

from their defective neighbours, while the core enjoy the effects

of multiple (up to 4) cooperators. The cooperators stabilise one

another even with these defectors who attempt to penetrate the

core. As a result per-capita pollution drops.

Hypothesis 2. Migratory defectors destabilise single cooperators
into drifters. The collision of multiple drifters cause stable clusters to
form. All agents in a compound experience lower pollution, particu-
larly the cooperators in the core, and hence PCP drops.

5 EXPERIMENTAL ANALYSIS
5.1 Experimental Setup
Below we present the results from three different experiments, each

with slightly different parameter setups. All simulations, however,

share the same environmental factors (𝑅 and 𝜙) of pollution with

clouds of size 𝑅 = 6 and a cleaning rate of 𝜙 = 5, for a city of fixed

size 𝐿 = 50 running for 𝑇 = 201 timesteps over multiple runs. The

code can be found in the Supplementary Materials.

Fixed Strategies. First, we fix strategies to isolate the effects of

migration on pollution and to validate our hypotheses. To do so

we look at a city of 𝑁 = 50 agents across a variety of migratory

distances𝑀 and initial number of defectors𝐷 (alongside𝐶 = 𝑁 −𝐷
cooperators) across 50 runs. In particular, as we are only concerned

by migration, the financial parameters (𝑓 and 𝑔) bare no effect in

this case. In doing so we can verify both hypotheses and build an

intuition to how migration impacts a city absent strategic evolution.

Cooperation Stability. Second, we allow strategies to evolve, again

with 𝑁 = 50 agents but focusing on initial conditions with a ma-

jority of defectors, 𝐷 = 30. Financial parameters are now set to

𝑓 = 𝑔 = 3.5 such that 1 + 𝜙 < 𝑓 + 𝑔 < 2 + 2𝜙 , in other words agents

next to one another feel a social dilemma (region B in Figure 1)

while those further away benefit from defection always (region C).

In order to explore the phase space of possible configurations more

efficiently we further introduce a mutation rate 𝜖 = 0.01 whereby

an agent has probability 𝜖 to flip her strategy and 1 − 𝜖 to imitate

(a) Final change in per-capita pollution Δ𝑃

(b) Percentage of agents that formed clusters

Figure 3: Fixed-strategy agents. a) A heat map of the fi-
nal change in per-capita pollution Δ𝑃 ; negative values are
overall reductions in pollution, while positive values are in-
creases in pollution. b) The percentage of agents that formed
clusters after 𝑇 = 201 time-steps. The migratory distance 𝑀

is varied along the x-axis while the number of defectors 𝐷
lies on the y-axis.

a nearest neighbour by the mechanism outlined in Section 3.2. To

compensate for the noise we ran the simulations over 300 runs.

Density Dependence. Third, we investigate the dependence on
density by varying the number of agents 𝑁 ∈ {5, 10, · · · , 100} while
fixing the city size 𝐿 = 50. The number of initial defectors is always

fixed 𝐷 = 0.6𝑁 . As we still vary𝑀 to compensate for computation

time we reduce runs to 200 per set of parameters.

5.2 Fixed Strategies
In absence of genuine units of pollution, such as parts per million

(ppm) of CO2, we use the initial value of per-capita pollution 𝑃 (0)
as a baseline to compare 𝑃 (𝑡) against and quantify how migration

affects PCP; if 𝑃 (𝑡) − 𝑃 (0) > 0 then individuals are worse off

than how they started, whereas if 𝑃 (𝑡) − 𝑃 (0) < 0 then there is a

decrease in pollution. To account for stochastic effects we report a

time-average over the final 50 time-steps. For the full evolution of

𝑃 over time see Figure 2 in the Supplementary Material.

To verify Hypothesis 2, we observe all the compounds at the end

of each run. Computationally, a compound is taken to be a set of

agents that occupy a contiguous sub-region of the city, for example

if agent 0 is adjacent to agent 1 and 1 is adjacent to 2 then {0, 1, 2}
is taken to be a compound. From this ensemble of clusters, we get

an average number of clusters, the average size of clusters and the

fraction of the population that exists inside a cluster per run.
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As we see in Figure 3a there are two major factors that lead to

an increase in the reduction in pollution (i.e. agents are better off

than being housed at random): a decrease in 𝐷 and an increase in

𝑀 . We also find that an increase in 𝜙 also reduces pollution.

The first trend is fairly self-explanatory: the fewer the defectors

the smaller the competition to live next to a cooperator. Equiva-

lently, there are more cooperators and thus more clean sites avail-

able for an agent to move into. The increase in 𝜙 has two effects:

first for the same number of cooperators 𝐶 , a higher 𝜙 naturally

removes more pollution by definition; second is its effect on the

stability of clusters (Section 4.3) allowing for larger clusters to form.

This thus leads us naturally to the trends due to𝑀 . For a start,

when 𝜙 is very low (𝜙 < 1) migration benefits defectors far more

than it benefits cooperators. The reason for this is that cooperative

clusters are very difficult to stabilise for low 𝜙 . By the analysis of

Section 4.3, a single cooperator can only stably neighbour 𝑑 < 𝜙

defectors, in other words only drifters are even meta-stable, in so

far as they teleport together. When two such drifters collide even

the double cleaning by two cooperators cannot fully stabilise the

compound. As such the likelihood to form bigger clusters which

are stable becomes negligible.

On the other hand, for all other 𝜙 , there is a large reduction in

𝑃 for larger 𝑀 (see Figure 3 in Supplementary Material) and thus

have compelling evidence for Hypothesis 1. Now, in order to verify

the mechanism for this effect, in other words Hypothesis 2, we look

to Figure 3b. First, we see that over half of the population over time

have gravitated towards each other and formed clusters. Moreover

there is a clear correlation between the migratory distance 𝑀 and

the percentage of agents in clusters, confirming our analysis that

migration promotes clustering.

Figure 4: Final cleaning rate after 𝑇 = 201 timesteps against
different values of migration 𝑀 . The black line represents
the ensemblemeanwhile the vertical line of coloured circles
represent the empirical distribution as a histogram over 300
runs. The colour and center of a circle denotes the location
of the bin while size denotes the bin count.

We find that clusters grow larger and more numerous the more

mobile agents are. For a large enough𝜙 where compounds are stable,

it is simply a matter of time that the disorder of random allocations

organises itself into ordered and stable clusters. In this way, a higher

Figure 5: For a range of migratory distance 𝑀 (x-axis) and
number of agents 𝑁 (y-axis), a heatmap of final mean clean-
ing rate𝐶/𝑁 is plotted. For cross-sections see Figure 4 in Sup-
plementary Material.

𝑀 is akin to a higher speed of movement, or equivalently a shorter

amount of time, in the agents’ frame of reference, to stabilise.

5.3 Cooperation Stability
We now focus on agents that are able to migrate and imitate strate-

gies. In Figure 4 we see for cities of 𝑁 = 50 agents migration tends

to increase the ensemble mean cleaning rate𝐶/𝑁 (for the analogous

distribution in per-capita expense see Figure 3 in Supplementary

Material). It does so by abruptly transferring some of the mass of

the defection peak at 𝐶/𝑁 = 0 to the cooperation peak at 𝐶/𝑁 = 1.

As shown by Figure 4, this abrupt transition occurs at𝑀 = 𝑅 = 6

when suddenly a significant cooperative peak appears. From Sec-

tion 4.2 the significance of 𝑀 = 𝑅 is clear: agents are now able

to escape the pollution clouds of neighbouring defectors. After

this threshold, however, migration becomes a double-edged sword.

Cooperators can escape defectors yet defectors can chase cooper-
ators. In particular, although stable cooperative compounds can

form, further away defectors can infiltrate these compounds and

potentially destroy them as proposed in Hypothesis 2. As such we

see a broadening of both peaks such that not all runs end in pure

cooperation nor pure defection.

5.4 Density Dependence
Here we look at how the city density impacts migration and pol-

lution. In particular we will see that for dense cities migration

improves cleaning rate while in sparse cities migration facilitates

more defection. For that we need a formal treatment of density.

Consider a city of size 𝐿 which contains 𝑁 agents, a fraction 𝛿 of

which are defectors such that 𝐷 = 𝛿𝑁 . For pollution clouds of area

𝐴, the total amount of cloud area is given by 𝐷𝐴. A necessary con-

dition for the entire city to be covered in pollution clouds, assuming

no overlaps, is for 𝐿2/(𝐷𝐴) ≥ 1, or similarly for the number of

agents to exceed some critical value 𝑁 ≥ 𝑁∗, given below.

𝑁∗ =
𝐿2

𝛿𝐴
(4)
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(a) Dependence on migration for low- and high- density cities. (b) For high migration, the dependence on density is sigmoidal.

Figure 6: Final cleaning rate for a range of different migratory distances𝑀 (left figure) and different number of agents 𝑁 (right
figure). a) Two trend lines for a low-density (𝑁 = 5; orange squares) and high-density (𝑁 = 90; blue circles) city. b) Cleaning rate
as a function of density for 𝑀 = 10; solid black line represents the sigmoid 𝑓𝑠 (𝑁 ) found by ordinary least squares, the dashed
purple line the inferred parameter 𝑁0 and the shaded purple area the theoretical bounds on 𝑁∗, namely [𝑁−

∗ , 𝑁
+
∗ ].

In particular we use 𝑁∗ to define the high-density and low-

density regimes as 𝑁 ≥ 𝑁∗ and 𝑁 < 𝑁∗ respectively. As we will see
from Figure 6b, this not only has a priori physical meaning but coin-

cides with an important threshold that emerges out of the dynamics.

Note that for perfectly circular clouds, the area of an individual

cloud is 𝐴 = 𝜋𝑅2 while for discretised circles 𝐴 = 𝐴𝑑 ≤ 𝜋𝑅2 - there

is in general no explicit form for𝐴𝑑 given arbitrary 𝑅, however this

can be found algorithmically. As such we can bound𝑁∗ ∈ [𝑁−
∗ , 𝑁

+
∗ ]

where 𝑁−
∗ = 𝐿2/(𝜋𝑅2) and 𝑁 +

∗ = 𝐿2/𝐴𝑑 . For our specific physi-

cal parameters (𝐿 = 50, 𝑅 = 6) we find the lower bound on 𝑁∗ as
𝑁−
∗ = 36.84 (4s.f.) and the upper bound as 𝑁 +

∗ = 42.96 (4s.f.).

Looking at Figures 5 and 6a one can see that the two density

regimes do behave very differently. In low-density cities (𝑁 <

𝑁∗) migration reduces the cleaning rate and often leads to mass

defection (black and dark regions for 𝑁 ≲ 40). In the sparse city,

agents largely teleport around and, due to the comparative size of a

cloud versus a cleaning area, are more likely to encounter a defector

than a cleaner. In this way, cleaners are very unlikely to cluster

together and thus cleaning cannot be sustained and stabilised.

In contrast, in high-density cities (𝑁 ≥ 𝑁∗) migration improves

cleaning rate by giving agents more manoeuvrability to first escape

defectors and second, as a cooperator, quickly cluster with other

cooperators. By speedily forming compound agents with stable

cooperator cores cleaning becomes a viable strategy. Not all cities

will reach 100% cooperation or defection - although these are cer-

tainly meta-stable states up to some mutations - and in those with

somewhat intermediate values of cleaning rate, a compound of

cleaners surrounded by defectors is a common motif.

Finally, Figure 6b shows that the value of this threshold, by which

to define high- and low- density regimes, does coincide with 𝑁∗. In
the latter we fit a sigmoid, 𝑓𝑠 (𝑁 ) = 𝜃 (1 + exp(−𝑘 (𝑁 − 𝑁0))−1 + 𝑏,
to the final cleaning rate for lengthy migration 𝑀 = 10 by or-

dinary least squares and infer the parameters as (𝜃, 𝑁0, 𝑘, 𝑏) =

(0.5344, 40.98, 0.08862,−0.02870). In particular notice that the mid-

point of the sigmoid, 𝑁0, lies within the bounds of our theoretical

𝑁∗ of [36.84, 42.96] confirming that there is a qualitative difference

between the high- and low- density cities.

6 CONCLUSION
We provided a theoretical and computational analysis of migration

in spatial public good games, stylised as urban pollution, show-

ing that migration enables the formation of stable compounds -

contiguous sets of agents that behave collectively - which in turn

reduces the per-capita pollution over time. As agents imitate the

strategies of their neighbours, migration leads to a form of strategic

coexistence and polarisation. Coexistence is due to the formation

of stable compounds, a core of cooperators who stabilise one an-

other surrounded by a periphery of defectors. Polarisation on the

other hand occurs because compounds are either destabilised into

mass defection or the cores fully engulf the periphery such that all

defectors flip into cooperators.

Contrarily to what believed in the literature, migration does not,

alone, promote cooperation. We identified a density threshold be-

low which migration favours defectors and above which it favours

cooperators. For sparse cities, defectors are able to effectively fol-

low cooperators preventing stable cooperative clusters to emerge.

For dense cities, migration allows cooperators to quickly find one

another, cluster and stabilise, thus resisting the allure of defectors.

An interesting and important line of research to follow concerns

the policy implications. From a system designer point of view we

want to use our findings to suggest potential policies - such as the

introduction of ‘parks’ as areas of fixed negative pollution, which

may serve as nucleation points for cooperators (and defectors) to

cluster around. Moreover in reality movement is almost always

costly, and thus presents an important avenue for future work.

Finally, finding suitable datasets to test the model against real-world

application is an important research direction.
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