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ABSTRACT
Modelling agent preferences has applications in a range of fields
including economics and increasingly, artificial intelligence. These
preferences are not always known and thus may need to be esti-
mated from observed behavior, in which case a model is required
to map agent preferences to behavior, also known as structural
estimation. Traditional models are based on the assumption that
agents are perfectly rational: that is, they perfectly optimize and
behave in accordance with their own interests. Work in the field of
behavioral game theory has shown, however, that human agents
often make decisions that are imperfectly rational, and the field has
developed models that relax the perfect rationality assumption. We
apply models developed for predicting behavior towards estimating
preferences and show that they outperform both traditional and
commonly used benchmark models on data collected from human
subjects. In fact, Nash equilibrium and its relaxation, quantal re-
sponse equilibrium (QRE), can induce an inaccurate estimate of
agent preferences when compared against ground truth.

A key finding is that modelling non-strategic behavior, con-
ventionally considered uniform noise, is important for estimating
preferences. To this end, we introduce quantal-linear4, a rich non-
strategic model. We also propose an augmentation to the popular
quantal response equilibrium with a non-strategic component. We
call this augmented model QRE+L0 and find an improvement in esti-
mating values over the standard QRE. QRE+L0 allows for alternative
models of non-strategic behavior in addition to quantal-linear4.
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1 INTRODUCTION
This paper1 contributes to the study of behavioral models for ini-
tial play and of structural inference of preferences from behavior
in games. The former has shown that rich, parameterized models
of behavior, including non-strategic behavior, give better predic-
tions than more classical equilibrium models. The latter uses strong
equilibrium assumptions to estimate preferences from equilibrium
1The most recent version of this paper, including the appendix can be found at https:
//arxiv.org/abs/2208.06521
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tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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behavior. We conduct experiments that show preferences and be-
havioral models can be simultaneously inferred from initial play.

A main application of structural inference is in counterfactual
estimation. After inferring preferences from behavioral data, coun-
terfactual scenarios can be evaluated. Such evaluation can be used,
for example, in mechanism design for optimizing over many mech-
anisms to find the one with the best equilibrium performance. A
challenge for structural inference is that its predictions are only
guaranteed to be accurate if the assumed model is correct. In con-
trast, randomized controlled trials – called A/B testing by tech-
nology firms – can directly evaluate a novel mechanism, but to
optimize over many mechanisms the sample size that can be allo-
cated to each mechanism is small. Chawla et al. [8], for example,
showed that methods from structural inference have an exponen-
tial improvement for sample complexity in mechanism design over
randomized controlled trials. However, this improvement comes
with the aforementioned reliance on the accuracy of the model.

The literature in behavioral game theory considers models of be-
havior that relax the strong notion of equilibrium of classical game
theory. Especially for initial play, i.e., for behavior of players who do
not have prior experience playing a given game, classical notions of
equilibrium are bad predictors of behavior while behavioral models,
such as those in the quantal cognitive hierarchy (QCH) family, are
good predictors [7, 21]. The QCHmodel combines quantal response
(i.e., choosing actions with probability proportional to the expo-
nentiated payoff of the action) with cognitive hierarchy (i.e., with
levels of strategic thinking and agents at each level responding
only to those at lower levels and with level-0 corresponding to
non-strategic behavior). More recently, Wright and Leyton-Brown
[28] showed that rich level-0 models significantly improve accuracy
of predicted behavior in QCH.

This paper develops behavioral models and conducts experi-
ments within the context of initial play to measure the accuracy of
these models in predicting behavior and inferring preferences. The
experiments again highlight the importance of rich level-0 models
in modeling behavior in initial play. The classical model of level-0
behavior is uniform randomization. Uniform randomization ignores
payoffs and is thus unhelpful for inferring preferences. Our results
on predicted behavior reinforce those of Wright and Leyton-Brown
[28], showing that rich models of level-0 behavior are better pre-
dictors. Moreover, and intuitively, these models take into account
payoffs and, thus, the inferred level-0 behavior aids in the inference
of preferences. In fact, we find that the level-0 model drives most
of the gains in predictive behavior and inferring preferences, and
the choice of strategic model is not as important.

Our experimental analysis introduces a new level-0 model which
is derived from adding quantal response to the linear4 level-0 model
from Wright and Leyton-Brown [28]. The model that best predicts
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behavior and admits the most accurate inference of values is quantal
cognitive hierarchy with this quantal linear4 level-0 model. We
compared this model with the classical equilibrium and behavioral
models without rich level-0 behavior of Nash equilibrium, quantal
response equilibrium [21], and quantal cognitive hierarchy (with
uniform level-0 behavior). We also considered quantal response
equilibrium augmented with the a non-strategic model, including
the aforementioned quantal-linear4 model. Our models outperform
these classical models with Nash equilibrium being the worst at
both inference and prediction.

Our experimental setup considered 3-by-3 bimatrix games with
randomly generated payoffs. This family of games is commonly
studied in the behavioral game theory literature [e.g., 21, 23]. We
assumed payoffs were derived from the classical single-dimensional
linear model of auction theory where payoffs are given linearly as
a value for units of a good (i.e., an allocation) and a payment [20]
(Our games allow payments to be negative, i.e., some payoffs are
given by some units of the good and a negative amount of money.).
A key simplification of our game design is that the players in our
experiments were only aware of the payoffs in the game and not of
the decomposition of those payoffs into allocation and payments.
Thus, we do not see in our data behavioral artifacts related to
whether or not the players can do the utility calculations from
allocations and payments. Moreover, with such a design we are free
in our analysis to consider counterfactual inference questions with
various decompositions of payoffs into allocations and payments.

2 RELATEDWORK
The task of inferring preferences from observed data has generally
been studied under the game theoretic assumption that players
are in equilibrium [e.g. 2, 3, 16, 24]. In cases where the equilib-
rium assumption has been relaxed, this has generally been under
the condition of repeated play (i.e., the subjects play the same
game(s) repeatedly). Crawford and Iriberri [11] and Goeree et al.
[15] use non-equilibrium behavioral models (level-𝑘 thinking) to
explain a widely-observed behavioral phenomenon—overbidding in
private-value auctions—that is inconsistent with the bidders’ being
in equilibrium. However, their experimental evaluation focuses on
estimating parameters of the behavioral model only, taking the val-
ues as known to the analyst. Nekipelov et al. [22] estimate private
values from auction data without equilibrium assumptions, instead
relying on a weaker assumption that agents use some form of no-
regret learning. Similarly, Ling et al. [19] provide a framework to
learn game parameters from actions in zero-sum games, but do not
validate their results on empirical data.

The work that most closely resembles our own is that of Noti
[23], which has a similar objective of using models from behavioral
game theory to infer preferences from empirical data in normal form
games where the values are known but hidden from the analyst. Our
work differs in one key aspect, however; whereas Noti attempts to
estimate values using player responses over repetitions in a single
game, agents in our scenario only see each game once. None of
these aforementioned works study value estimation in initial play;
each either relies upon repetition across games, and/or does not
estimate values at all.

Value estimation has also been studied empirically under condi-
tions resembling initial play in the field of school matching. Value
estimation is necessary for counterfactual evaluation of mecha-
nisms and there are several papers [e.g. 1, 6, 17, 18] which attempt
to infer preferences of agents to evaluate the welfare of alterna-
tive mechanisms. The way in which preferences are modelled vary
between an equilibrium model to assuming all agents use simple
behavioral rules. Notably, Calsamiglia et al. [6] construct a model
of strategic and non-strategic agents in which strategic agents best-
respond noisily to all other agents, including non-strategic agents,
similar in principle to QRE+L0. Whereas non-strategic agents di-
rectly report their true preferences in the school choice setting,
our framework allows us to consider scenarios where an indirect
mechanism maps the preferences of non-strategic agents to actions.

Behavioral game theory aims to predict empirical human behav-
ior better than traditional game theoretic concepts such as Nash
equilibrium. One well known model, quantal response equilibrium
[21], relaxes the strict optimization assumption made by Nash equi-
librium, while maintaining the assumption that agents mutually
respond to each others’ strategies. In contrast, iterative behavioral
models such as level-𝑘 models [25] and cognitive hierarchy [7]
assume that agents perform a fixed number of iterations of strate-
gic reasoning, starting from a default strategy called the level-0
strategy. Wright and Leyton-Brown [27] found that a combination
of the two approaches, quantal cognitive hierarchy, performs best
at predicting actual initial play in human subject experiments. In
later work, they showed that prediction performance can be further
improved by specifying parameterized level-0 models that com-
bine simple decision rules, instead of the uniform randomization
specification that is most frequently studied [28].

Another work that focuses on human behavior in initial play for
normal form games is that of Fudenberg and Liang [14]. Starting
from the premise that initial play is reasonably approximated by
level-1 of iterated reasoning, they algorithmically generate games
that are not captured well by level-1 reasoning and construct a
decision tree based model that improves on the prediction of the
modal action in normal form games over that of previous economic
models. A key point to note is that their level-1 response relies on
uniform randomization by non-strategic (level-0) agents. Further
work by the same authors [12, 13] continues to rely on this uni-
form assumption. Our work focuses on inferring preferences of the
agents and so exploits a richer model of level-0 behavior in which
non-strategic agents are sensitive to their own preferences.

3 PRELIMINARIES AND SETUP
The analyst’s objective is to predict how much participants value
a unit of some good, given their behavior in a set of normal form
games. Each player 𝑖 receives both an allocation of 𝑥𝑖 units of the
good, and a payment 𝑝𝑖 in currency. We assume that player 𝑖’s
utility is linear in both payments and allocations; i.e., player 𝑖’s
utility is 𝑢𝑖 (𝑥, 𝑝) = 𝑣𝑥𝑖 + 𝑝𝑖 , where 𝑣 ∈ R is 𝑖’s value (in currency
units) for each unit of the good. In this work, we will assume that
the valuation 𝑣 is common across all players.

It is challenging to translate this setting into an experiment.
The main challenge is that we need to endow our experimental
participants with a specific value for the good, which is common
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knowledge across all participants. Presenting participants in the
experiment with a valuation is not sufficient: participants may not
believe the valuation presented to them (i.e. they will believe the
purpose of the study is something other than what is presented to
them), or behavioral issues (e.g., arithmetic errors) may arise.

To resolve these issues, we translate our setting into an exper-
iment in a slightly less direct way. Instead of presenting the out-
comes of a game as a decomposition of units of good allocated and
units of payment to the participant, we instead present the induced
utilities. That is, we perform the arithmetic for the participants of
converting an allocation and payment to a utility. We then map
the behavior observed in these translated games (which we refer to
as payoff games) to a utility-equivalent decomposed game (which
we refer to as allocation games) and perform our analysis as if the
players had chosen their actions in the allocation games. Notice
that, for any given payoff game, any number of utility-equivalent
allocation games can be constructed. As we will see, this allows
us to repeat our analysis for different games and even different
valuations using the same dataset of observations. We provide a
more detailed explanation in Section 3.6.

Table 1: A summary of the strategic and non-strategic com-
ponents included in our evaluation and the parameters 𝜃 for
each component.

Strategic Component 𝜃𝑆 Non-strategic Component 𝜃𝑁𝑆

Nash ∅ none ∅
QRE 𝛽, 𝜆 uniform randomization ∅
PQCH 𝜏, 𝜆 quantal-linear4 𝑤𝐿0, 𝜆0,
None ∅

3.1 Behavioral Models
Our behavioral models combine a component modelling strategic
behavior with a component that models non-strategic behavior. At
a high level, strategic behavior is that which responds to the antici-
pated actions of other agents while non-strategic behavior does not.
The strategic models we consider are: Nash equilibrium, quantal
response equilibrium (QRE), quantal cognitive hierarchy (QCH),
and no strategic behavior. Of the strategic models, Nash and QRE
are equilibrium models while QCH is not. The non-strategic models
we consider are: uniform randomization, quantal linear4 (QL4), and
no non-strategic behavior. These non-strategic models satisfy the
formal definition of non-strategic behavior given in Wright and
Leyton-Brown [29]. With the exception of Nash equilibrium, each
of the components just described have free parameters that must be
learned from the data. We refer to these parameters as “behavioral
parameters”, to distinguish them from the valuation parameters
describing agent preferences that we also estimate from data. Ta-
ble 1 summarizes the behavioral parameters for each component
included in our main evaluation.

3.2 Strategic Models
The strategic models of Nash equilibrium, quantal response equilib-
rium, and quantal cognitive hierarchy are defined formally below.

Definition 3.1 (Nash equilibrium). Let 𝐵𝑅𝑖 (𝑠−𝑖 ) = {𝑠𝑖 ∈ Δ(𝐴𝑖 ) |
𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) ≥ 𝑢𝑖 (𝑠′𝑖 , 𝑠−𝑖 )∀𝑠

′
𝑖
∈ Δ(𝐴𝑖 )} be the set of best responses to

𝑠−𝑖 . Then a mixed strategy profile 𝑠 is a Nash equilibrium if every
agent 𝑖’s mixed strategy 𝑠𝑖 is a best response to the profile 𝑠−𝑖 of
mixed strategies of the other agents: 𝑠𝑖 ∈ 𝐵𝑅𝑖 (𝑠−𝑖 ).

The non-Nash equilibrium models that we consider are based
on a relaxation of best response called quantal best response (QBR),
in which agents play higher-utility strategies with higher proba-
bility (rather than strictly maximizing). QBR is parameterized by
a precision (denoted by 𝜆), indicating agents’ sensitivity to utility
differences.

Definition 3.2 (Quantal best response). Let 𝑢𝑖 (𝑎𝑖 , 𝑠−𝑖 ) be agent 𝑖’s
expected utility when playing action 𝑎𝑖 ∈ 𝐴𝑖 against mixed strategy
profile 𝑠−𝑖 in game 𝐺 . Then a quantal best response 𝑄𝐵𝑅𝑖 (𝑠−𝑖 ;𝐺, 𝜆)
by agent 𝑖 to 𝑠−𝑖 is a mixed strategy 𝑠𝑖 such that

𝑠𝑖 (𝑎𝑖 ) =
exp[𝜆 · 𝑢𝑖 (𝑎𝑖 , 𝑠−𝑖 )]∑

𝑎′
𝑖
∈𝐴𝑖

exp[𝜆 · 𝑢𝑖 (𝑎′𝑖 , 𝑠−𝑖 )]
. (1)

Definition 3.3 (Quantal response equilibrium). A strategy profile 𝑠
of a game 𝐺 is a quantal response equilibrium (QRE) with precision
𝜆 > 0 when each agent quantally best responds to the strategies of
the other agents; that is, when 𝑠𝑖 = 𝑄𝐵𝑅𝑖 (𝑠−𝑖 ;𝐺, 𝜆) for all agents
𝑖 ∈ 𝑁 .

Quantal cognitive hierarchy (QCH) is a non-equilibrium model,
in which agents are heterogeneous in the number of steps of strate-
gic reasoning they can perform. Higher-level agents choose their ac-
tions in response to the strategies of lower-level agents. The lowest
level agents (level-0 agents) choose their actions non-strategically;
that is, without reasoning about the actions of the other agents.
Level-0 agents are commonly specified to simply play a uniform
distribution over actions; we evaluate that specification, but we
also evaluate QCH using a richer specification of level-0 behavior
(see Section 3.3, below).

Definition 3.4 (Quantal cognitive hierarchy). Quantal cognitive
hierarchy with precision 𝜆 > 0, level distribution 𝐿, and level-
0 specification 𝑓 specifies that each agent 𝑖 has a level 𝑘𝑖 ∼ 𝐿.
Let 𝜋𝑖,𝑘 ∈ Δ(𝐴𝑖 ) be the distribution over actions predicted for
an agent 𝑖 with level 𝑘 . Level-0 agents play actions according to
𝜋𝑖,0 = 𝑓 (𝐺), where 𝑓 is some non-strategic function of the game
payoffs. Agents with level 𝑘 > 0 play according to the distribution
𝜋𝑖,𝑘 = 𝑄𝐵𝑅𝑖 (𝜋−𝑖,0:𝑘−1;𝐺, 𝜆), where

𝜋𝑖,0:𝑘 =

∑𝑘
ℓ=0 𝐿(ℓ)𝜋𝑖,ℓ∑𝑘
ℓ ′=0 𝐿(ℓ)

is the distribution over actions induced by conditioning on the level
being at most 𝑘 .

The overall distribution of actions predicted by quantal cognitive
hierarchy is 𝜋𝑖 =

∑∞
𝑘=0 𝐿(𝑘)𝜋𝑖,𝑘 .

For the distribution of levels in QCH, a Poisson distribution is
commonly used [e.g. 7, 12]. We do the same and estimate a mean
parameter 𝜏 on a truncated Poisson distribution where the max
level of an agent is 3.

Definition 3.5 (Poisson quantal cognitive hierarchy). Poisson quan-
tal cognitive hierarchy is a specification of QCH in which the level
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distribution 𝐿 is specified by a Poisson distribution with the mean
parameter 𝜏 :

𝐿𝜏 ;0:𝑘 =

𝑘=3∑︁
ℓ=0

Poisson(ℓ ;𝜏)∑𝑘
ℓ ′=0 Poisson(ℓ′;𝜏)

where 𝐿𝜏 ;ℓ is the proportion of agents at level ℓ given mean 𝜏

and with 𝐿𝜏 ;0:𝑘 sums to 1.

3.3 Non-strategic Models
It is standard in the literature to assume that non-strategic agents
randomize uniformly over their actions. Recently,Wright and Leyton-
Brown [28] found that using a linear combination of simple decision
rules as a level-0 specification markedly improves the prediction
performance of QCH. In this model, called linear4, each decision
rule identifies an action from 𝐴𝑖 that optimizes some simple crite-
rion (e.g., maximizing the sum of all players’ utilities), and predicts
that player 𝑖 will play that action.2 The predictions of the simple
decision rules are then linearly combined into an overall prediction,
using weights that are free parameters of the model.

We evaluate a level-0 model adapted from linear4 that we refer
to as quantal-linear4. The key difference between the two models
is that in quantal-linear4, each decision rule computes its predic-
tion as a quantal response to the different actions’ criterion values.
In contrast, the predictions for linear4 are computed using strict
optimization—each decision rule assigns probability 0 to each ac-
tion that does not optimize its criterion. This extension is motivated
by two considerations. First, behavioral models that assume quantal
response to preferences have tended to predict better than equiva-
lent models based on strict optimization: QRE predicts better than
Nash equilibrium, QCH predicts better than cognitive hierarchy,
and the level-𝑘 model using quantal response predicts better than
level-𝑘 using best response [27]. It is thus natural to expect that
modeling non-strategic agents as responding quantally will also im-
prove prediction performance. Second, the likelihood for linear4 is
continuous in the weights of the decision rules (i.e., in its behavioral
parameters), but discontinuous in the valuation parameter. This
leads to poor optimization performance when attempting to learn
the agent valuations. In contrast, the likelihood for quantal-linear4
is continuous and differentiable in both its behavioral parameters
and the valuation.

Definition 3.6 (Quantal-linear4). A quantal-linear4 (QL4) strategy
for a player 𝑖 in a game 𝐺 with precision 𝜆0 > 0 and weights
𝑤max,𝑤min,𝑤eff,𝑤fair,𝑤unif is a linear sum of the form

𝑓𝑖 (𝐺) =
∑︁

𝑑∈{max,min,eff,fair,unif}
𝑤𝑑 𝑓

𝑑
𝑖 (𝐺),

where the weights are constrained to lie between 0 and 1 and to
sum to exactly 1.

Each function 𝑓 is a soft maximization over a specific feature
for each action. The features are: the maximum utility that 𝑖 can
receive by playing an action; the minimum utility that 𝑖 can receive
by playing an action; the smallest-magnitude unfairness attainable
by playing an action (defined as the difference between the smallest
utility and the largest; this is always negative); and the largest sum
2In the case of ties, the decision rule predicts a uniform distribution over the criterion-
optimizing actions.

of utilities across players that is possible by playing a given action.
Formally,

𝑓 max
𝑖 (𝐺) (𝑎𝑖 ) =

exp[𝜆0max𝑎−𝑖 ∈𝐴−𝑖 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )]∑
𝑎′
𝑖
∈𝐴𝑖

exp[𝜆0max𝑎−𝑖 ∈𝐴−𝑖 𝑢𝑖 (𝑎′𝑖 , 𝑎−𝑖 )]

𝑓 min
𝑖 (𝐺) (𝑎𝑖 ) =

exp[𝜆0min𝑎−𝑖 ∈𝐴−𝑖 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 )]∑
𝑎′
𝑖
∈𝐴𝑖

exp[𝜆0min𝑎−𝑖 ∈𝐴−𝑖 𝑢𝑖 (𝑎′𝑖 , 𝑎−𝑖 )]

𝑓 fair𝑖 (𝐺) (𝑎𝑖 ) =
exp[𝜆0max𝑎−𝑖 ∈𝐴−𝑖 min𝑗, 𝑗 ′∈𝑁 𝑑𝑖, 𝑗 ]∑

𝑎′
𝑖
∈𝐴𝑖

exp[𝜆0max𝑎−𝑖 ∈𝐴−𝑖 min𝑗, 𝑗 ′∈𝑁 𝑑′
𝑖, 𝑗
]

where
𝑑𝑖, 𝑗 = (𝑢 𝑗 (𝑎𝑖 , 𝑎−𝑖 ) − 𝑢 𝑗 ′ (𝑎𝑖 , 𝑎−𝑖 ))

and
𝑑′𝑖, 𝑗,𝐴𝑖

= (𝑢 𝑗 (𝑎′𝑖 , 𝑎−𝑖 ) − 𝑢 𝑗 ′ (𝑎′𝑖 , 𝑎−𝑖 ))

𝑓 eff𝑖 (𝐺) (𝑎𝑖 ) =
exp[𝜆0max𝑎−𝑖 ∈𝐴−𝑖

∑
𝑗∈𝑁 𝑢 𝑗 (𝑎𝑖 , 𝑎−𝑖 )]∑

𝑎′
𝑖
∈𝐴𝑖

exp[𝜆0max𝑎−𝑖 ∈𝐴−𝑖
∑

𝑗∈𝑁 𝑢 𝑗 (𝑎′𝑖 , 𝑎−𝑖 )]

𝑓 unif𝑖 (𝐺) (𝑎𝑖 ) =
1
|𝐴𝑖 |

.

3.4 Separating Models into Strategic and
Non-strategic Components

Recalling that quantal cognitive hierarchy requires a non-strategic
model in its inductive definition of behavior, it is straightforward
to combine QCH and non-strategic models. Equilibrium models
such as Nash equilibrium and quantal response equilibrium can
also be augmented with non-strategic behavior. To combine equilib-
rium strategic models with a non-strategic component, we assume
that some fraction of agents behave non-strategically, and that the
strategic agents respond to this probability of non-strategic behav-
ior as well as the behavior of the remaining probability of strategic
agents.

We separate each of our models into a non-strategic component
and a strategic component that responds to the non-strategic com-
ponent, where each model is denoted by the naming convention
"STRAT-NONSTRAT". In this way, conventional models such as
PQCH can be rethought of as PQCH-uniform, and QRE can be
rethought of as QRE-none (for the sake of simplicity and in keep-
ing with convention, we do not list the non-strategic component
in a model if there is none and so QRE-none remains QRE). For
equilibrium models we augment with a non-strategic component,
we assign the parameter 𝛽 ∈ (0, 1), to the probability of agents be-
having non-strategically, with the strategic agents being assigned
the remaining probability 1− 𝛽 . Unlike QCH, in which agents have
heterogeneous and incorrect beliefs about the strategies of the other
agents, the strategic agents in our equilibrium models augmented
in this way are assumed to have correct beliefs.

The parameters for each model are thus 𝜃 = (𝜃𝑆 , 𝜃𝑁𝑆 ), according
to Table 1.

3.5 Estimation Methods
To obtain our parameter estimate 𝜃 of 𝜃 and 𝑣 of 𝑣 , we performed
log-likelihood maximization with respect to 𝑣 and 𝜃 jointly using L-
BFGS-B [5, 30]. To evaluate the performance of our value estimation,
we take the estimated value 𝑣 at the maximum likelihood estimate
of each model and compare it to the endowed value.
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3.5.1 Estimation of Equilibrium Models. To estimate equilibrium
models (QRE, QRE+L0, and Nash), we chose the (𝑣, 𝜆, 𝛽, 𝜆0,𝑤𝐿0)
that maximized the likelihood of the empirical behavior of the
participants under the assumption that each strategic agent was
quantally best responding to the empirically observed distribution
𝑠
𝑔

−𝑖 defined by

𝑠
𝑔

−𝑖 (𝑎) =

���{ 𝑗 ≠ 𝑖 | 𝑔 ∈ 𝐺 ( 𝑗) ∧ 𝑎
𝑔

𝑗
= 𝑎}

���
|{ 𝑗 ≠ 𝑖 | 𝑔 ∈ 𝐺 ( 𝑗)}| .

For equilibrium models we maximize the following likelihood:

logL(𝜆, 𝑣, 𝛽, 𝜆0,𝑤𝐿0) =∑︁
𝑖

∑︁
𝑔∈𝐺 (𝑖 )

log [ 𝛽 𝑓 𝐿0 (𝐺𝑔 (𝑣); 𝜆0,𝑤𝐿0) (𝑎
𝑔

𝑖
)

+ (1 − 𝛽)𝑄𝐵𝑅𝑖 (𝑠𝑔−𝑖 | 𝐺𝑔 (𝑣), 𝜆) (𝑎𝑔𝑖 ) ] (2)

where 𝑣 is the value parameter being estimated; 𝜆 is the be-
havioral precision parameter; 𝛽 is the proportion of non-strategic
agents between 0 and 1; (𝜆0,𝑤𝐿0) are the behavioral precision and
weight parameters for quantal-linear4, respectively; 𝐺𝑔 (𝑣) is the
payoff game induced from an allocation game 𝑔 and valuation 𝑣 ;
𝑠
𝑔

−𝑖 is the empirical distribution of play in allocation game 𝑔; and
𝑎
𝑔

𝑖
is the action taken by participant 𝑖 in game 𝑔.34
The econometric approach of computing QRE by assuming all

agents are quantally responding against other agents in the em-
pirically observed distribution of actions is commonly used [e.g.
4, 9, 15, 23]. What is not common is the simultaneous estimation
of both the precision of agents 𝜆 as well as the value parameter 𝑣 .
The previously listed works all do a two-step estimation method of
either first estimating 𝑣 and then 𝜆 | 𝑣 or vice versa. This is because
given an observed action 𝑠𝑖 (𝑎𝑖 ) generated from a logit model which
takes as an input observed utility 𝑢𝑖 of the form 𝑢𝑖 = 𝜆𝑣 , there are
infinitely many combinations of 𝜆 and value that could result in the
same observed utility. This motivates the inclusion of a payment
profile 𝑝 in our allocation games. Including a static payoff 𝑝 allows
us to simultaneously estimate both 𝑣 and 𝜆 by anchoring 𝜆 to a
specific scale; indeed we find that when constraining 𝑝 = 0, our
estimates are incorrect by up to an order of magnitude (refer to
Table 8 in the appendix).

Nash equilibrium does not have model parameters to estimate.
When estimating values using the Nash equilibrium model, we
approximate best response using quantal best response with a high
value of 𝜆,5 and select the value that maximizes equation (2). This
approach allows us to select a single value that is most consistent
with best response, rather than a set of values that are consistent
with all agents’ best-responding. More critically, it also ensures that
every possible action has positive probability. When assuming best
response with no error model, a single action by a single agent that
is not consistent with best response can lead to the entire dataset’s
having probability 0. Under our approach, actions inconsistent with

3For models with uniform randomization as the non-strategic component, we do not
estimate (𝜆0, 𝑤𝐿0 ) .
4We fix 𝛽 = 0 when estimating models without a non-strategic component
5Weused𝜆 = 100 in our experiments, as we found that both the predictive performance
and value estimate converge at precision 𝜆 ≥ 100; refer to Figure 5 in the appendix
for details.

best response will instead be assigned a very low, but positive,
probability.

3.5.2 Estimation of Poisson Quantal Cognitive Hierarchy. For Pois-
son quantal cognitive hierarchy, we estimate (𝑣, 𝜆, 𝜏, 𝜆0,𝑤𝐿0) by
maximizing the following likelihood:

logL(𝜆, 𝑣, 𝜏, 𝜆0,𝑤𝐿0) =∑︁
𝑖

∑︁
𝑔∈𝐺 (𝑖 )

log [ 𝐿𝜏 ;0 𝑓 𝐿0 (𝐺𝑔 (𝑣); 𝜆0,𝑤𝐿0) (𝑎
𝑔

𝑖
)

+
3∑︁

ℓ=1
𝐿𝜏 ;ℓ𝑄𝐵𝑅𝑖 (𝐺𝑔 (𝑣), 𝜆 | ℓ𝑖 |0:ℓ−1) (𝑎

𝑔

𝑖
) ] (3)

In contrast to the equilibrium models, the likelihood for PQCH
does not treat the empirically observed distribution as the distri-
bution of actions being responded to; we instead find the mean
parameter 𝜏 that generates a distribution which maximizes the like-
lihood against the empirical data. Assuming that strategic QCH
agents respond to the empirical distribution of lower-level agents
would require us to estimate the levels (or posterior level distribu-
tions) for each agent, in order to estimate which agents’ empirical
behavior is being responded to; e.g., to determine what empirical
distribution is being responded to by level-2 agents, we must first
determine which agents are level-0 and level-1. This is a much more
complex estimation problem, both statistically and computationally.
For this reason, we take the simpler approach of estimating the
mean parameter 𝜏 instead.6

3.5.3 Utilization of Panel Structure in Estimation of Values. In our
experimental setup, we collected panel data where the individual
actions of each player for each game are recorded, in contrast to
other common data sets in which the actions of all agents are pooled
together. This panel structure allows the estimation of model pa-
rameters that are heterogeneous across agents but stable for a given
agent 𝑖 . The level of an individual agent in QCH-based models is
an example of a parameter that could match this description.7 8 If
a player’s level is the same in every game, then using a likelihood
that explicitly encodes this has the potential to provide more ac-
curate estimates than one that assumes that each player’s level is
re-sampled before every action. (4) gives the likelihood for a model
with parameters 𝜃 , a stable level ℓ𝑖 for agent 𝑖 distributed according
to Pr(ℓ𝑖 = ℓ | 𝜃 ), in which agent 𝑖 takes action 𝑎 in a game 𝑔 with
probability Pr(𝑎𝑔

𝑖
| ℓ𝑖 = ℓ, 𝜃 ).

log Pr(𝐷 | 𝜃, 𝑣) =
∑︁
𝑖

∑︁
𝑔∈𝐺 (𝑖 )

log

[∑︁
ℓ

Pr(ℓ𝑖 = ℓ | 𝜃 ) Pr
(
𝑎
𝐺𝑔 (𝑣)
𝑖

| ℓ𝑖 = ℓ, 𝜃

)]
(4)

6We also estimated our equilibrium models by finding the optimal parameter 𝜆 that
maximizes the likelihood against our data; we did not find a significant difference
in the estimated 𝑣, which provides assurances that estimating against the empirical
distribution provides a reasonable approximationwhile beingmuch simpler to compute.
Refer to Table 9 in the appendix.
7This same discussion applies to QRE+L0, if we treat strategic agents as having a level
ℓ𝑖 = 1 and non-strategic agents as having a level ℓ𝑖 = 0.
8Our definition implies that every non-strategic agent plays a mixture over a number
of level-0 decision rules. However, one could also imagine a definition in which there
is a population of non-strategic agents, each using a single level-0 rule. Under this
assumption, the assignment of decision rules to agents could also fit this description
of a heterogeneous but stable behavioral parameter.
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In contrast, the likelihood for an otherwise-identical model in
which each agent’s level can vary between games is given by (5).

log Pr(𝐷 | 𝜃, 𝑣) =
∑︁
𝑖

log

∑︁
ℓ

Pr(ℓ𝑖 = ℓ | 𝜃 )
∏

𝑔∈𝐺 (𝑖 )
Pr

(
𝑎
𝐺𝑔 (𝑣)
𝑖

��� ℓ𝑖 = ℓ, 𝜃

)
(5)

When running our analysis on synthetic data we find that the
likelihood of (5) is more numerically stable than that of (4), while
returning a similar value estimate. We therefore report the parame-
ters estimated using (5) in this paper. Our dataset is available for
future research questions or models that require panel data.

3.6 Game Construction
In our setting, 𝑛 subjects play a set of bimatrix payoff games G.
To simulate our subjects playing a set of allocation games A, we
map each payoff game the participant plays to a corresponding
allocation game based on an endowed valuation 𝑣∗ of our choosing.
To transform from the payoff games presented to our subjects to
the desired allocation games, we construct an allocation game in
the following way:

We first select an endowed value 𝑣∗ that is hidden from the
models we evaluate. Then, for every cell in every payoff game
𝐺 ∈ G:

(1) We sample an allocation from a uniform distribution bounded
between 0 and max(𝑢 (𝐺))/𝑣∗.

(2) We add a payment 𝑝 ∈ R such that the payoffs for each
player and action match that in the original payoff game.
Note that in our setup, payments can be negative.

This setup resolves the aforementioned issues with presenting
allocation games to participants directly. Since only the utilities
are presented to participants, we are able to abstract away from
other effects such as arithmetic errors that might arise from having
participants play the actual allocation game. This setup also allows
us to specify an infinite number of games for any known 𝑣∗, which
is useful because it allows reuse of the same dataset for multiple sets
of allocation games, as well as providing a ground truth value with
which to evaluate model performance. A more detailed pseudocode
explanation can be found in Section A.4 of the appendix.

3.7 Experimental Details
We tested our approach on experimental data collected from par-
ticipants on Amazon Mechanical Turk (MTurk). We presented par-
ticipants with a set of 24 3 × 3 symmetric normal form games (the
payoff games) in which each participant played against the actions
of the previous participant. All participants had at least 95% HIT
approval and had completed at least 100 HITs. We removed all
data from participants who completed the HIT in fewer than 120
seconds, or 5 seconds per game, as there was a high correlation
between participants who did this and responses at the end of the
survey that were either left empty or spurious.9

9For example, two participants had the exact same input in the feedback field, seemingly
referring to a task in an entirely different HIT.

The payoff games were generated by randomly sampling payoffs
from a uniform distribution on [0, 100], and were played by partici-
pants in a randomized order. We collected additional treatments, an-
alyzed in Section A.1.1 of the appendix, in which the order and type
of games were varied. Our qualitative results in these additional
treatments were unchanged from those of the main treatment.

Participants were paid $1.50 for completing the HIT, as well as
a performance bonus based on their total payoffs in the games.
The performance bonus was calculated by multiplying the payoffs
achieved by the participant by $0.02 (USD), with the goal being to
have all participants achieve an equivalent wage of at least $10 per
hour between the bonus and base payment if they had uniformly
randomized and taken the maximum allowed time of 30 minutes.

4 RESULTS
Our evaluation finds that models with a rich non-strategic compo-
nent perform better in value estimation from behavior in initial play
than those without a non-strategic component (e.g., Nash, QRE) or
those that assume that non-strategic agents uniformly randomize.
Additionally, we find that models that include a strategic compo-
nent perform better at value estimation than those that assume that
all agents are non-strategic, but the choice of strategic model is not
as important as the rich non-strategic component in a given model.

Figure 1: Summary plot showing values of 𝑣∗ vs. the relative
error for models with quantal-linear4 as the non-strategic
componen The two left-most points for all values of 𝑣∗ are
models containing both a strategic component and quantal-
linear4 as the non-strategic component; the green point in-
dicates a model that assumes all agents are non-strategic in
a quantal-linear4 manner with no strategic behavior.

4.1 Evaluation
Our evaluation considered traditional equilibrium models with no
non-strategic agents (Nash, QRE), and QCH and QRE+L0 where
level-0 agents were either uniform randomizers or quantal-linear4
agents. We evaluated each model across multiple scenarios given 𝑣∗
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inV = [5, 10, 20, 40, 80]. For each 𝑣∗, we generated 𝑘 = 25 scenarios
where we mapped our payoff games to a set of allocation games
AG given 𝑣∗. We measured each model’s value estimation for each
scenario using relative error, |𝑣−𝑣∗ |

𝑣∗ . We chose to normalize the
error to account for the differing scale of values in V . The value
estimate for each scenario was evaluated using using the mean
value estimate of 10 rounds of 10-fold cross-validation, with the test
set being used to evaluate behavioral prediction. The mean value
estimate for each scenario are distributed according to a Student’s
𝑡-distribution [e.g. 26]. We say that a model outperforms another in
value estimation when the 95% confidence intervals do not overlap.

Figure 1 and Table 2 show the performance in value estimation
across models, with Figure 1 being a visualization of the data in Ta-
ble 2. Behavioral models with quantal-linear4 as the non-strategic
component outperform classical equilibrium models in terms of
value estimation across every endowed value 𝑣∗ that we evalu-
ated. We find that using quantal-linear4 as the non-strategic com-
ponent outperforms corresponding strategic models which use a
uniform non-strategic component, regardless of the choice of strate-
gic model. This leads us to conclude that modelling non-strategic
behavior is more important than the choice of strategic model. Note,
however, that None-QL4 does not perform as well as PQCH-QL4 or
QRE-QL4, which suggests that a strategic component in the model
is still necessary. Another observation is that models containing
QL4 remain stable across values of 𝑣∗; the mean relative error for
QL4 models varies at most by 2%, in contrast to classic equilibrium
models or uniform non-strategic augmented models in which the
relative errors differ by an order of magnitude from each other
depending on 𝑣∗. This leads us to conclude that QL4 leads to a more
reliable estimate of values.

We demonstrate the importance of obtaining accurate value
estimates in Table 3. We first obtain an estimate of 𝜃 and 𝑣 on
half of the games in our dataset (𝑚 = 12). Using the estimated
value 𝑣 and behavioral parameters 𝜃 , we then predict the average
subject welfare for the remaining half of games that were held
out. We then compute the relative error of the predicted welfare
against the empirically observed average welfare of subjects. This
evaluation requires a model to be accurate in both its estimation of
behavioral parameters as well as that of values; a model with an
accurate value estimate but a poor prediction of behavior would
perform poorly, and vice versa. PQCH-QL4 and QRE-QL4 once
again perform the best at this task, with Nash being noticeably
poor at welfare prediction, especially at lower values of 𝑣 . This
pattern persists across models; welfare estimates are worse for
lower values of 𝑣∗ compared to higher values, albeit at a much
larger scale for Nash and for models with a uniform non-strategic
component. The final note here is that QRE-None outperforms QRE-
uniform across the board, which shows that an arbitrary level-0
model is not sufficient to improve performance, but a rich level-0
model is required.

4.2 Contribution of Strategic vs. Non-strategic
Components of the Model

We attempt to quantify the contribution of quantal-linear4 to the
observed improvement in value estimation. We compare the cross-
product of our strategic and non-strategic components as discussed

in Section 3.1 and find that QL4 outperforms any of the other
non-strategic models considered. In addition to comparing quantal-
linear4 and uniformly randomization, in this section we include
linear4 from [27] as well as a differentiable version of linear4 we
refer to as differentiable-linear4 (DL4) where 𝜆0 = 1, which gives
us a differentiable function with respect to 𝑣 without adding an
additional degree of freedom.

For each resulting model resulting from the cross-product of
strategic and non-strategic components, we take each of our sce-
narios for each value 𝑣∗ (n = 125) and report the percentage of the
time that the relative error of 𝑣 falls below a threshold 𝛼 (i.e., the
error falls within 10% accuracy). We sampled 1000 bootstrapped
samples from our empirically observed data D and did this for
each bootstrapped sample, reporting the median percentage each
model falls within our threshold with the lower and upper bounds
being the middle 95% of the bootstrapped estimates as outlined in
[10]. Doing this allows us to see how well a given non-strategic
component performs at recovering 𝑣∗, regardless of the strategic
component being used in the model. The results demonstrate the
advantages of quantal-linear4, as it performs strictly better than uni-
form and linear4, and outperforms differentiable-linear4, although
not significantly. The results of this test are reported in Table 4.

There are two reasons why linear4 performs poorly as a non-
strategic model: the first is that as a non-continuous function of
𝑣 , it is not differentiable with respect to 𝑣 and so our optimization
procedure fails to reliably find the value that maximizes likelihood;
checks on synthetic data show that the likelihood returned by the
estimator is often worse than the likelihood at the known ground
truth value. A second possible reason is due to the lack of quantal
response in non-strategic agents; if we believe that strategic agents
quantally respond to their payoffs, it stands to reason that non-
strategic agents do so as well. This provides a possible explanation
for why quantal-linear4 outperforms differentiable-linear4.

5 CONCLUSION
This paper examines the benefit of using behavioral models for
value estimation. Behavioral models typically include parameters
that must be estimated from the data. Using a novel experimental
design, we demonstrate that estimating these behavioral parameters
simultaneously with value parameters is feasible, and leads to more
reliably accurate value estimations from initial play than value
estimates based on the standard strong equilibrium assumption.

We introduce a new specification of level-0 behavior called
quantal-linear4, and a new behavioral model called QRE+L0 that
extends quantal response equilibrium to settings that contain non-
strategic agents, who are responsive to their own preferences but
do not reason about other agents. Our results show that models
that include a rich level-0 specification perform better at estimat-
ing values from initial play. These results strongly argue for the
importance of explicitly modeling non-strategic behavior rather
than treating it as noise, especially in contexts such as initial play
in which equilibrium is unlikely to have been reached.

5.1 Future Work
There are a number of directions in which this work could be
extended. We made a simplifying assumption that all agents shared
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Table 2: Relative error by 𝑣∗, with confidence interval in parentheses. Bold cells indicate best performing model for each 𝑣∗.
Italicized cells indicate models which are not significantly different from the best performing one. QRE-QL4 indicates a model
in which a fraction of agents are behaving non-strategically in a QL4 manner while the remaining agents are in QRE with
themselves and non-strategic agents. None-QL4 indicates a model in which all agents are behaving non-strategically.

Component 𝑣∗

Strategic Non-strategic 5 10 20 40 80

Nash none 10.41, (8.01, 12.8) 2.88, (2.06, 3.71) 0.64, (0.44, 0.83) 0.29, (0.18, 0.4) 0.2, (0.15, 0.25)
QRE none 0.14, (0.1, 0.18) 0.11, (0.08, 0.14) 0.11, (0.07, 0.14) 0.13, (0.09, 0.17) 0.1, (0.07, 0.12)
QRE uniform 8.27, (5.14, 11.4) 2.04, (1.21, 2.87) 0.37, (0.18, 0.56) 0.13, (0.09, 0.17) 0.1, (0.07, 0.13)
PQCH uniform 1.93, (0.68, 3.19) 0.32, (0.16, 0.48) 0.12, (0.08, 0.16) 0.09, (0.07, 0.12) 0.08, (0.05, 0.11)
PQCH QL4 0.06, (0.05, 0.07) 0.06, (0.04, 0.08) 0.05, (0.03, 0.06) 0.05, (0.03, 0.06) 0.05, (0.04, 0.06)
QRE QL4 0.08, (0.07, 0.09) 0.06, (0.04, 0.08) 0.06, (0.04, 0.07) 0.06, (0.04, 0.08) 0.07, (0.06, 0.08)
none QL4 0.13, (0.09, 0.17) 0.14, (0.1, 0.17) 0.12, (0.09, 0.15) 0.11, (0.08, 0.14) 0.12, (0.09, 0.16)

Table 3: Relative error of predicted average per game welfare by 𝑣∗. In each scenario, the estimated valuation and model
parameters 𝜃 from half the games are used to predict the average game welfare per subject on the other half and is compared
against the empirically observed average welfare. Bold cells indicate models with the lowest MSE.

Component 𝑣∗

Strategic Non-strategic 5 10 20 40 80

Nash none 16.81 5.42 1.75 0.41 0.30
QRE none 0.24 0.20 0.20 0.18 0.12
QRE uniform 12.96 4.26 0.55 0.16 0.15

PQCH-uniform uniform 5.86 0.52 0.22 0.13 0.11
PQCH-QL4 QL4 0.12 0.12 0.09 0.09 0.07
QRE-QL4 QL4 0.12 0.11 0.09 0.10 0.08
none QL4 0.56 0.27 0.39 0.18 0.18

Table 4: Percentage of the time that a model’s relative error falls within 10% of 𝑣∗, across all values in V. Each cell corresponds
to a model STRAT-NONSTRAT with the row indicating the strategic model and column indicating the non-strategic one. QL4
(rightmost column) outperforms all other non-strategic components regardless of the strategic model. Here, the confidence
intervals are derived from a 𝑘 bootstrapped samples of the observed data, with 𝑘 = 1000. Cells marked "n/a" do not have a
conceivable model that elicits an estimate of values. Cells containing 0 mean that none of the bootstrapped samples had a
value estimate that fell within 10% of 𝑣∗.

Strategic Component Non-strategic Component

None Uniform L4 DL4 QL4

Nash 0.1200 (0.0640 0.1760) 0.0960 (0.0480 0.1520) 0.00 0.0480 (0.0160 0.0880) 0.6880 (0.5040 0.8400)
QRE 0.4960 (0.4080 0.5680) 0.3280 (0.2560 0.4080) 0.00 0.7120 (0.6160 0.8160) 0.7040 (0.6000 0.8160)
PQCH n/a 0.5200 (0.4160 0.6400) 0.00 0.6240 (0.4960 0.7440) 0.8440 (0.7200 0.9360)
None n/a n/a 0.00 0.00 0.4480 (0.3040 0.5840)

a homogeneous value, but an important future direction would be
estimating heterogeneous values. Further to this direction, we could
extend this work to estimating individual behavioral parameters
of agents. This would allow us to model differences in behavior
based on heterogeneous beliefs about the values of others, which
could lead to better individual welfare. As mentioned in Section
3.5, we could also extend the approach of responding to empirically
observed distributions in models of iterated reasoning, which would
allow us to move beyond specifying a distribution over levels.

Using our framework of separating models into a strategic and
non-strategic component, we could examine other models of non-
strategic behavior (for example, using the model from Fudenberg
and Liang [14] as a non-strategic model) beyond those discussed
in this paper. Finally, further extending non-strategic behavioral
models is an important direction for future work. This could take
the form of extending QL4 to be more predictive, or evaluating
domain-specific models of nonstrategic behavior.
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