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ABSTRACT
This paper proposes new contributions from the field of formal mul-

tiagent systems in the pursued efforts of engineering solutions for

the sustainable management of common-pool resources in presence

of rational agents.

Non-cooperative rational synthesis is the task of automatically

constructing a controller for a reactive system that ensures a given

specification against any individually rational behavior of the sys-

tem’s components.

In this paper we consider the case where the controller has to

ensure that the system’s resources are never depleted. We report

complexity results for classical specification such as the one given

in linear temporal logic.
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1 INTRODUCTION
There is a renewed public and institutional interest for a sustainable

human development. In particular, the investigation of engineering

methods for the governance of common-pool resource systems, or

commons [16], has become a pressing need. It is part of Goal 12 of

the United Nations, “Ensure sustainable consumption and produc-

tion patterns”. Moreover, the demand for an efficient management

of resources has always existed in computing, and also becomes an

important aspect for the deployment of autonomous robots way

beyond their confined industrial environment.

This paper is a proposal for new generic methods from the field

of formal multiagent systems in the pursued efforts of engineer-

ing solutions for the sustainable management of the commons in

presence of rational agents.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Rational synthesis [9, 13, 14] marks a departure from the classical

synthesis problem [17] which consists in constructing a reactive

system so that the objective of a controller is satisfied in all resulting

runs. When the environment is made of rational agents, classical

synthesis is considered too pessimistic, because some behaviors of

the environment become unreasonable. Instead, rational synthesis
is the task of constructing automatically a reactive system that

satisfies the objective of a controller in all rational behaviors of the
system’s components.

Games and Nash equilibria. The system is composed of several

individual acting entities, the players, each with their own objective.
They interact in a turn-based fashion in a game arenawhich consists
in a graph, where every node is controlled by one and only one

player. In a node that he controls, a player decides the next state

of the system. One of the players is distinguished, and is called

the controller. The objective of the controller corresponds to the

specification of the system to be constructed.

A (individually) rational behavior of all the players is an infinite

run in the game arena where any player who does not achieve

his objective cannot satisfy it by unilaterally changing his own

behavior. This corresponds to a Nash equilibrium [15].

Rational synthesis. There are two forms of rational synthesis: co-

operative and non-cooperative [14]. Cooperative rational synthesis
can be seen as the synthesis of a Nash equilibrium that satisfies the

objective of the controller, and this is akin to the problem of equi-
librium checking [1]. One must practically convince every player

that everyone else is playing their part of the Nash equilibrium.

Since no one has an incentive to change their strategy, the Nash

equilibrium should be played, and the specification of the system

should be satisfied. Non-cooperative rational synthesis is different

in that, one does not suggest a strategy to the non-controller players.

The problem of non-cooperative rational synthesis is the problem
of automatically constructing a strategy for the controller such

that against any Nash equilibrium which contains the controller’s

strategy, the specification of the system holds.

Until recently, the rational synthesis focused on qualitative spec-

ifications, that is, specifications that either hold or not. But in an

effort of designing formal tools that could handle real-life scenar-

ios, the focus started shifting towards the rational synthesis where

specifications are also quantitative. One could think of it as an ideal-

ization of the notion of resource (energy, money, raw material, . . . ).

Among those efforts we refer to [11, 18] where a payoff is assigned

to every run of the system, and the goal of synthesis in this case is
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to design the best possible equilibrium with respect to this payoff.

In [6] a different view was considered. A global resource has its

amount governed by the transitions taken by the system (and thus

by the choices of agents) and the synthesis problem in this context

aims at building equilibria that do not deplete the resource in the

system. An important distinction in that work that focuses on coop-

erative rational synthesis is the one of careless and careful players.

The notion of resource is specifically the one of a common-pool
resource.

Common-pool resources. A common-pool resource is a resource

that is non-excludable (every agent of the system can consume it)

and rivalrous (one agent’s consumption of it, limits the opportunity

of another another to consume it).

In [6], the problem of cooperative rational synthesis is considered

in systems with one common-pool resource. By choosing an edge to

follow to reach a state, the action of a playermay change the amount

of the common resource available in the system. The players may be

careless or careful. Careful players want to achieve their qualitative
objective in a run that never depletes the resource. Careless players
are only interested in their qualitative objective, regardless of the

level of the resource.

In this work, we investigate the problem of non-cooperative ra-
tional synthesis in systems with one common-pool resource, where

the specification of the system is a qualitative objective to be re-

alised in a run that never depletes the common-pool resource (the

controller is careful in the sense of [6]), and the system’s compo-

nents (apart from the controller) are careless. We do not investigate

the case of careful players in our case. Importantly, being careless

does not prevent the players to be occasionally acting as if they

were careful; the opposite is not true.

For convenience, we sometimes call the common-pool resource

the energy of the system.

𝑎 𝑏 (◦,□)0 0

−1

0

Figure 1: A two-player game without a solution.

Two very simple examples. A very simple game is illustrated in

Figure 1. The controller, player 1 controls the circle-states, and

player 2 controls the square-state. Both want to reach the state on

the right. It is easy to verify that if player 2 is careless, then player 1

does not have a strategy to ensure that for all rational behaviors of

player 2, the state on the right is reached with the energy remaining

always non-negative. Indeed, if player 2 is careless, then any of his

strategies is a rational behavior, including taking the self-loop any

finite number of times. Thus, there is no solution to the problem

of non-cooperative feasible rational synthesis, because player 1 has
only one strategy and there are rational behaviors of player 2 that

deplete the resource. This is in contrast with the existence of a

solution to the careless cooperative rational synthesis in the sense

of [6]. Namely, player 1 going right, then player 2 going directly

to the right, and player 1 looping over the right-most state is a

Nash equilibrium, because both players satisfy their objective, and

it never depletes the resource.

𝑎 𝑏 𝑐 (◦,□)0 0 −1

+1
0 0

Figure 2: A two-player game with a solution.

Another simple game is illustrated in Figure 2, where a solution

to the problem of non-cooperative feasible rational synthesis (with

objective to reach the right-most state) exists. Player 1 does not

have a winning strategy. Indeed, player 1 wants to reach the right-

most state with an energy level staying positive, but this can only

happen if player 2 loops over 𝑏 a few times and eventually goes

to 𝑐 . However, against a rational player 2, one can synthesise a

resource-aware controller to satisfy the objective of the system.

One solution to the non-cooperative rational synthesis consists in

player 1 going right from 𝑎 to 𝑏, and in 𝑐:

• going right if the level of the resource is at least 1;

• staying in 𝑐 otherwise.

In the context of this strategy for player 1, all rational answers by

player 2 consist in looping any positive finite number of times over

𝑏, and then going to 𝑐 . All result in a Nash equilibrium, and satisfy

the objective of player 1 without depleting the resource. There are

no other Nash equilibrium containing this strategy of player 1.

Contribution. We introduce the problem of non-cooperative fea-
sible rational synthesis in multi-player turn-based arenas that is

the problem of computing a controller that enforces any rational

behavior to remain feasible (does not deplete the resource). We

show that this problem is 2EXPTIME-complete when the specifi-

cation of the players are given in LTL, c.f. Theorem 7. In order to

establish this result, we adapt the construction from [8] to our case.

While this adaptation is rather straightforward, it requires solving

a two-player turn-based game with a complex and novel objective;

we call FPP games the generic class of two-player games with these

objectives, c.f. Section 3.3. We study these games in Section 4. The

key steps are represented on Figure 3. We show that the problem

of deciding the winner in a FPP game lies in NP ∩ co-NP. This
result is obtained through an encoding into the so-called energy
parity games [4]. Finally, we enrich the specification of controller

by adding an LTL specification. In this case, a solution must ensure

that any rational behavior of the players is not only feasible but that

satisfies an LTL specification, we show that this problem reduces to

the non-cooperative feasible rational synthesis and that it remains

2EXPTIME-complete c.f. Section 5.2.

Outline. We present the settings in Section 2. We define the

class of multi-player games and the notion of fixed-Nash equilibria

within them. We introduce the various kinds of objectives that we

are considering in this paper. We also define the problem of non-

cooperative feasible rational synthesis. In Section 3, we present

the reduction to the problem of finding a winning strategy in a
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Non-cooperative feasible rational

synthesis in a multi-player game

Winning strategy in an FPP game

Winning strategy in an

energy parity game [4]

Figure 3: Chain of reductions used in solving the non-
cooperative feasible rational synthesis problem.

two-player turn-based zero-sum game that we call the negotia-

tion game. In Section 4 we relate solving such a game to a new

class of turn-based games called FPP game. A solution is presented

in Proposition 5. Finally in Section 5 we wrap up our results by

establishing complexity bounds for the non-cooperative feasible

rational synthesis problem. We also show that the complexity of the

problem is unchanged whether the controller has a qualitative spec-

ification together with a feasibility goal or not. We finally conclude

in Section 6.

2 GAMES ON FINITE GRAPHS
For any set𝑄 we denote by𝑄∗

the set of finite sequences of elements

in 𝑄 and 𝑄𝜔
the set of infinite sequences of elements of 𝑄 . Let

𝑤 ∈ 𝑄∗ ∪𝑄𝜔
, and 𝑖 ≥ 1, we denote by𝑤 [𝑖] the 𝑖-th element in𝑤 ;

we denote by 𝑤 [..𝑖] the prefix of 𝑤 of size 𝑖 and 𝑤 [𝑖 ..] the suffix

that starts at the 𝑖-th letter. For an element 𝑞 ∈ 𝑄∗
, last(𝑞) is the

last element in the sequence 𝑞.

2.1 Arenas, Strategies, and Profiles
Multi-player arenas. Amulti-player arena is a tuple G = ⟨S, (S1⊎

. . . ⊎ S𝑛), 𝑠ini, P, E⟩, where S is a finite set of states, (S1 ⊎ . . . ⊎ S𝑛)
is a partition of S, 𝑠ini is an initial state, P = {1, . . . , 𝑛} is the set
of players, and E is in an edge relation in S × S. For every edge

𝑒 = (𝑠, 𝑡), Src(𝑒) is 𝑠 and Trgt(𝑒) is 𝑡 .

Plays and strategies. For an arena G, we denote by Play(G) the
set of elements 𝑠ini𝑠1𝑠2 . . . in S𝜔 such that for all 𝑖 ≥ 0, (𝑠𝑖 , 𝑠𝑖+1)
is in E. The set Hist(G) is the set of finite and proper prefixes of

elements in Play(G). Moreover, the set of histories for player 𝑖 de-

notedHist𝑖 (G) is the set of elements inHist(G) whose last element

is in S𝑖 i.e., Hist𝑖 (G) = {ℎ ∈ Hist(G) | last(ℎ) ∈ S𝑖 }. A strategy for

player 𝑖 is a function 𝜎𝑖 : Hist𝑖 (G) → Smapping a history ℎ, whose

last element 𝑠 , to a state 𝑠 ′ such that (𝑠, 𝑠 ′) ∈ E. For a strategy 𝜎𝑖
for player 𝑖 , we define the set out(𝜎𝑖 , 𝑠) as the set of plays that are
compatible with 𝜎𝑖 from state 𝑠 i.e.,

{𝜋 ∈ S𝜔 | 𝜋 [0] = 𝑠, and ∀𝑗 ≥ 0, 𝑠 .𝑡 . 𝜋 [ 𝑗] ∈ S𝑖 =⇒
𝜎𝑖 (𝜋 [.. 𝑗]) = 𝜋 [ 𝑗 + 1]} .

For any play 𝜋 in out(𝜎𝑖 , 𝑠) we say that 𝜋 is compatible with the

strategy 𝜎𝑖 . Often for the sake of convenience, we will write out(𝜎𝑖 )
to intend out(𝜎𝑖 , 𝑠ini). We also say that a history ℎ is compatible

with a strategy 𝜎 if ℎ is a prefix of some play 𝜋 in out(𝜎).

Profile of strategies. Once a strategy 𝜎𝑖 for each player 𝑖 is chosen,
we obtain a strategy profile 𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩. 𝜎-𝑖 is the correspond-
ing partial profile without the strategy for player 𝑖 . For a strategy

𝜎 ′
𝑖
for a player 𝑖 , we write ⟨𝜎-𝑖 , 𝜎 ′

𝑖
⟩ the profile ⟨𝜎1, . . . , 𝜎 ′

𝑖
, . . . , 𝜎𝑛⟩.

We denote by out(𝜎) the unique outcome of the strategy profile 𝜎 .

That is the play 𝜋 which is compatible with all the strategies in 𝜎 .

2.2 Objectives and Payoffs
We describe the specifications by means of objectives. Regarding

the controller, the specification is described by a feasibility objective.
The other players will be assigned a temporal specification induced

by a linear logic formula.

Broadly speaking, an objective Obj is a subset of Play(G). We

write Obj𝑖 to specify that it is the objective of player 𝑖 . We define

the payoff Payoff𝑖 (𝜎) of player 𝑖 w.r.t. the profile 𝜎 as follows:

Payoff𝑖 (𝜎) = 1 if out(𝜎) is in Obj𝑖 and 0 otherwise. In the case

where the arena consists of only two players, we can define a zero-

sum game, in this case, the objectives of the players are opposed

one to another, i.e.:

∀𝑖 ∈ {1, 2}, Obj
3−𝑖 = Play(G) \ Obj𝑖 .

Once an arena G is equipped with an objective Obj𝑖 for each
player 𝑖 , we will often call game the tuple ⟨G,Obj

1
, . . . ,Obj𝑛⟩.

When the objective is clear from the context we will simply write

G.

In the context of a zero-sum game, we can define the notion of

a winning strategy for player 𝑖 from a state 𝑠 , i.e., a strategy 𝜎𝑖 s.t.

out(𝜎𝑖 ) is a subset of Obj𝑖 . We also define the set of winning states

w.r.t. to Obj
1
as follows:

Win(Obj𝑖 ) = {𝑠 ∈ S | ∃𝜎1 s.t. out(𝜎1, 𝑠) ⊆ Obj𝑖 } .

Given a a multi-player arena G = ⟨S, (S1⊎ . . .⊎S𝑛), 𝑠ini, P, E⟩, we
write G-𝑖

for the zero-sum game where player 1 is 𝑖 , and player 2 is

the coalition of the rest of the players seen as one entity. Formally

S1 = S𝑖 , S2 =
⋃

𝑗≠𝑖 S𝑗 , Obj1 = Obj𝑖 , and Obj
2
= Play(G) \ Obj

1
.

In order to describe a feasibility objective we equip the arena

with a cost function.

Feasibility objectives. Let cost : E → Z be a function. To lighten the

notation, we write cost(𝑠, 𝑡) instead of cost((𝑠, 𝑡)). Letℎ = 𝑠ini . . . 𝑠𝑛
be a history in Hist(G); we abusively write cost(ℎ) to mean the

extension of cost to histories that is: cost(ℎ) = cost(𝑠ini, 𝑠1) +∑𝑛−1
𝑖=1 cost(𝑠𝑖 , 𝑠𝑖+1).
The set of feasible plays in a game G equipped with a cost func-

tion cost is given by the set Feas described as follows:

Feas = {𝜋 ∈ Play(G) | ∀𝑖 ≥ 1, cost(𝜋 [..𝑖]) ≥ 0} .

We denote by W the largest absolute value that appears in cost,
i.e.W = max{|𝑐 | ∈ Z | ∃𝑒 ∈ E, cost(𝑒) = 𝑐}. Throughout the paper,
values of cost are encoded in binary, thusW is exponential in its

encoding which is log(W).

Linear Temporal Logic Objectives. Linear Temporal Logic (LTL) for
short is the set of formulas 𝜙 defined using the following grammar

over a set of atomic proposition AP:

𝜙 ::= 𝛼 | ¬𝜙 | 𝜙 ∨ 𝜙 | X 𝜙 | 𝜙 U 𝜙 ,

where 𝛼 is in AP. In our case we simply assume that AP is formed

by the of states of the arena that is S.
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Let G be an arena and lbl be labelling function that maps states

with subset of AP. LTL formulas are evaluated over plays of G, as
follows:

𝜋 |= 𝛼 iff 𝛼 ∈ lbl(𝜋 [0]) , 𝜋 |= ¬𝜙 iff 𝜋 ̸ |= 𝜙 ,

𝜋 |= X 𝜙 iff 𝜋 [1..] |= 𝜙 , 𝜋 |= 𝜙 ∨𝜓 iff 𝜌 |= 𝜙 or 𝜋 |= 𝜓 ,

𝜋 |= 𝜙 U𝜓 iff ∃𝑖 ≥ 0, 𝜋 [𝑖 ..] |= 𝜓 and ∀𝑗 < 𝑖, 𝜋 [ 𝑗 ..] |= 𝜙 ,

where 𝜌 ∈ Play(G), 𝛼 ∈ AP, 𝜙 ∈ LTL, and𝜓 ∈ LTL.

In the sequel, we will use the following macros:

F𝜙 = ⊤ U 𝜙 , G𝜙 = ¬F¬𝜙 .

The notion F𝜙 denotes the set of plays where the formula 𝜙 holds

in some position while the notation G𝜙 denotes the set of plays

where the formula 𝜙 holds in every position. Using these notation

we define the macro FG𝜙 , i.e., the set of plays along which 𝜙 holds

at infinitely many positions.

Let Obj be an LTL objective given by a formula 𝜙 in an arena G
equipped with a labelling function lbl. The objective 𝜙 induces the

following set

Obj = {𝜋 ∈ Play(G) | 𝜋 |= 𝜙} .

Parity Objectives. In order to study the synthesis for LTL a useful

formalism is the one of parity games, therefore, we define a parity
objective as follows. Let 𝜋 in Play(G), we denote by Inf (𝜋) the
set of states occurring infinitely often along 𝜋 . Let 𝐶 be a finite

subset of N, and let prty : S → 𝐶 be a priority function. The parity

objective for a game G equipped with the priority function prty is

given by the set Parity defined as follows

Parity =
{
𝜋 ∈ Play(G) | min{prty(𝑠) | 𝑠 ∈ Inf (𝜋)} is even

}
.

2.3 Non-Cooperative Rational Synthesis
Before stating the problem we are interested in, we formalise the

notion of rational behavior. We will use the notion of fixed Nash
equilibrium. A strategy profile 𝜎 is a fixed Nash equilibrium (f-NE) if
for any strategy 𝜎 ′

𝑖
for any player 𝑖 in P\ {1} we have: Payoff𝑖 (𝜎) ≥

Payoff𝑖 (⟨𝜎-𝑖 , 𝜎 ′
𝑖
⟩). We write f-NE(G) for the set of all the profiles

that are fixed Nash equilibria in G.

Non-Cooperative Feasible Rational Synthesis. Given an arena G =

⟨S, (S1 ⊎ . . . ⊎ S𝑛), 𝑠ini, P, E⟩ and objectives Obj
1
, . . . ,Obj𝑛 the co-

operative rational synthesis problem is to decide whether there

exists a strategy 𝜎1 such that for all strategies 𝜎2, . . . , 𝜎𝑛 the profile

𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩ satisfies the following:

out(𝜎) ∈ f-NE(G) =⇒ out(𝜎) ∈ Obj
1
. (1)

In this paper we are interested in the setting where the controller

is resource-aware, therefore we equip the arena G with a cost

function cost. In this case the problem is to decide whether there

exists a strategy 𝜎1 such that for all strategies 𝜎2, . . . , 𝜎𝑛 the profile

𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩ satisfies the following:

out(𝜎) ∈ f-NE(G) =⇒ out(𝜎) ∈ Feas . (2)

Indeed since player 1 a.k.a. the controller is concerned with the

resource, he wants to guarantee the feasibility of any rational be-

havior of the players. The objectives Obj
2
, . . . ,Obj𝑛 are induced by

LTL formulas. We shall call the problem consisting in designing a

controller satisfying (2) the non-cooperative feasible rational synthe-
sis. We shall also call a controller that is a solution a resource-aware
controller.

Definition 1. Given a multi-player arena G = ⟨S, (S1 ⊎ . . . ⊎
S𝑛), 𝑠ini, P, E⟩ and objectives Obj

2
, . . . ,Obj𝑛 , the problem of non-

cooperative feasible rational synthesis asks whether the controller
has a strategy 𝜎1 such that for all strategies 𝜎2, . . . , 𝜎𝑛 of the other
players the profile 𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩ satisfies Equation 2.

𝑎

𝑏 𝑐 𝑑 (□)

(^)

0

0

0 −1 −1

−1

+1 +1
−1

0

0

Figure 4: A three-player game. Player 1 has a vacuous quali-
tative objective and thus only cares about not depleting the
resource.

Example 1. In the game illustrated on Figure 4, there is a solu-
tion to the problem of non-cooperative feasible rational synthesis.
Suppose that player 1 (controls circle states) is only interested in main-
taining the energy of the system non-negative. Player 2 and player 3
control the square and diamond states, respectively, and want to reach
the state labeled □ and ^, respectively, regardless of the energy level
(i.e., their objective are induced by the LTL formulas F□ and F^).

Player 1 does not have a winning strategy to ensure that the energy
remains above zero. Indeed, from 𝑎, he must go to 𝑏 where player 2
could go straight to 𝑐 and player 3 could go straight to 𝑑 , bringing
the level of energy below zero. The alternative move from 𝑎 to go to
𝑑 necessarily brings the energy below zero at the following step. A
strategy 𝜎1 for player 1 which is a solution to the problem of non-
cooperative feasible rational synthesis can be informally described as
follows:

• in 𝑎 go to 𝑏;
• in 𝑑 go to the state labeled □ if the energy is at least 1, and
loop otherwise;

• in the state labeled □ go to the state labeled ^ if the energy is
at least 1, and loop otherwise;

• in the state labeled ^, loop.

When player 1 plays 𝜎1, one possible Nash Equilibrium is when both
player 1 and player 2 loop over 𝑐 and 𝑑 , respectively, for ever. This is
a Nash equilibrium, because even though both player 2 and player 3
lose (they do not reach either □ and ^), they do not have a unilateral
deviation to do so. Still, the energy remains above zero, and player 1
satisfies his objective. Another Nash Equilibrium is when player 2 and
player 3 loop over 𝑐 and 𝑑 a finite number of times and for a total
of at least 3 times. In these cases, the game reaches the state labelled
^, where all player satisfy their objectives, including player 1 who
satisfy his energy objective.
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Before we move on to the resolution of our new synthesis prob-

lem, we emphasize that player 1 does not have a qualitative ob-

jective. We will later introduce the problem of non-cooperative

feasible rational synthesis with rich specifications where the sys-
tem’s specification also includes a qualitative objective, and we will

show that we can solve it in a uniform manner.

3 COMPUTING A RESOURCE-AWARE
CONTROLLER

In this section, we adapt a proof technique initially proposed in [3]

to synthesize Nash equilibria in concurrent games with 𝜔-regular

objectives. It was later successively adapted to solve the problem of

non-cooperative rational synthesis in turn-based games [7] and in

concurrent games [8]. We will follow more closely the presentation

of the latter.

The technique consists in constructing a turn-based two-player

game (we call it the “negotiation game”) which is an abstraction

of the original multi-player game, in such a way that there is a

winning strategy in the abstraction if and only if there a solution to

the non-cooperative rational synthesis in the original game. This is

done in Section 3.1.

The construction results in a turn-based two-player game with

objectives (a Boolean combination of two parity objectives and

an energy objective) for which no solution exists. We work out a

solution of this class of games in Section 3.3.

3.1 The Negotiation Arena
Given a game arena G = ⟨S, (S1⊎ . . .⊎S𝑛), 𝑠ini, P, E⟩ we construct a
turn-based 2-player zero-sum game arenaH = ⟨̂S, (ŜC ⊎ ŜS), 𝑠̂ini, Ê⟩
in which Constructor and Spoiler play, and where:

• ŜC is the set of states controlled by Constructor,
• ŜS is the set of states controlled by Spoiler,
• 𝑠̂ini is the initial state,

• Ê is the transition table defined over Ŝ × Ŝ.

Let𝑊 and 𝐷 be two subsets of P. The set Ŝ is:

Ŝ =

(
S × (2P)2

)
∪

(
S × (2P)2 × (S ∪ {−})

)
∪

(
S × (2P)2 × (S ∪ {−})

)
× S .

The set ŜC is:

ŜC ={(𝑠,𝑊 , 𝐷) | (𝑠 ∈ S1)}
∪ {(𝑠,𝑊 , 𝐷) | (𝑠 ∈ S𝑖≠1 ∧ 𝑖 ∈𝑊 )}
∪ {(𝑠,𝑊 , 𝐷, 𝑡) | (𝑠 ∈ S𝑖≠1) ∧ (𝑖 ∉𝑊 ∪ 𝐷)} .

The set ŜS is Ŝ \ ŜC.
Ê contains the following set of transitions:

(𝑠,𝑊 , 𝐷) ↦→ (𝑡,𝑊 , 𝐷) if (𝑠 ∈ S1) ∧ ((𝑠, 𝑡) ∈ E) ,

(𝑠,𝑊 , 𝐷) ↦→ (𝑡,𝑊 , 𝐷) if (𝑠 ∈ S𝑖 ) ∧ (𝑖 ∈ 𝐷) ∧ ((𝑠, 𝑡) ∈ E) ,

(𝑠,𝑊 , 𝐷) ↦→ (𝑠,𝑊 , 𝐷, 𝑡) if (𝑠 ∈ S𝑖≠1) ∧ (𝑖 ∈𝑊 ) ∧ ((𝑠, 𝑡) ∈ E) ,

(𝑠,𝑊 , 𝐷) ↦→ (𝑠,𝑊 , 𝐷, 𝑡) if
(𝑠 ∈ S𝑖 ) ∧

(
(𝑖 ∉𝑊 ∪ 𝐷) ∧ ((𝑠, 𝑡) ∈ E)

)
,

(𝑠,𝑊 , 𝐷, 𝑡) ↦→ (𝑠,𝑊 , 𝐷, 𝑡, 𝑟 ) if (𝑠, 𝑟 ) ∈ E ,

(𝑠,𝑊 , 𝐷, 𝑡) ↦→ (𝑠,𝑊 , 𝐷, 𝑡,−) ,

(𝑠,𝑊 , 𝐷, 𝑡,−) ↦→ (𝑡,𝑊 , 𝐷) ,

(𝑠,𝑊 , 𝐷, 𝑡, 𝑟 ) ↦→ (𝑞,𝑊 ′, 𝐷 ′) ,

where

𝑊 ′ =𝑊 ∪ {𝑖} if (𝑞 = 𝑟 ) ∧ (𝑠 ∈ S𝑖 ) ,

𝐷 ′ = 𝐷 ∪ {𝑖} if (𝑞 = 𝑡) ∧ (𝑠 ∈ S𝑖 ) .

ĉost is defined as follows:(
(𝑠,𝑊 , 𝐷), (𝑡,𝑊 , 𝐷)

)
↦→ cost(𝑠, 𝑡) ,(

(𝑠,𝑊 , 𝐷, 𝑡, 𝑟 ), (𝑟,𝑊 ′, 𝐷 ′)
)
↦→ cost(𝑠, 𝑟 ) ,(

(𝑠,𝑊 , 𝐷, 𝑡,−), (𝑡,𝑊 , 𝐷)
)
↦→ cost(𝑠, 𝑡) ,

0 in all the other cases.

3.2 Building a Solution
We equip the game arena G = ⟨S, (S1 ⊎ . . . ⊎ S𝑛), 𝑠ini, P, E⟩ with
objectives to obtain the multi-player game ⟨G,Obj

1
, . . . ,Obj𝑛⟩.

In the negotiation arena, we call the set of states in S ×
(
2
P
)
2

×

(S ∪ {−}) negotiation states. The states in S ×
(
2
P
)
2

are decision
states. A play in the negotiation arena is a sequence of states. For

the ease of notation we will consider the projection of this se-

quence over the decision states. We denote this set of sequences

by Ŝ𝜔 ↾𝑑𝑒𝑐 . We equip Ŝ with the canonical projection proj𝑖 that
is the projection over the 𝑖-th component. In particular, for every

(𝑠,𝑊 , 𝐷) ∈ Ŝ, we have proj
1
((𝑠,𝑊 , 𝐷)) = 𝑠 , proj

2
((𝑠,𝑊 , 𝐷)) =𝑊 ,

and proj
3
((𝑠,𝑊 , 𝐷)) =𝑊 . We also extend proj𝑖 over Ŝ

+
and Ŝ𝜔 as

expected. The set

−−→
proj2 (𝜋 ↾Ŝ1C

) (resp. −−→proj3 (𝜋 ↾Ŝ1C
)) is the set of

agents in the limit of𝑊 ’s (resp. 𝐷’s).

We define the following sets:

ÔbjD = {𝜋 ∈ Ŝ𝜔 | ∃𝑝 ∈ −−→
proj2 (𝜋 ↾𝑑𝑒𝑐 ),
proj

1
(𝜋 ↾𝑑𝑒𝑐 ) ∉ Obj𝑝 } , (3)

ÔbjW = {𝜋 ∈ Ŝ𝜔 | ∀𝑝 ∈ −−→
proj3 (𝜋 ↾𝑑𝑒𝑐 ),
proj

1
(𝜋 ↾𝑑𝑒𝑐 ) ∈ Obj𝑝 } , (4)

F̂eas = {𝜋 ∈ Ŝ𝜔 | ĉost(𝜋) ≥ 0} . (5)

Finally, we obtain the negotiation game by equipping the nego-

tiation arena with the following winning condition:(
(F̂eas ∪ ÔbjD) ∩ ÔbjW

)
. (6)

We briefly explain how it relates to analogous approaches in the

literature. In [8], a very similar construction is presented in the

case of concurrent arenas but with temporal objectives. Here we

have adapted this construction to the simpler setting of turn-based

games. It may appear that the case of turn-based games was already

handled in [7]. However, in the latter work, the approach consists

in building a tree automaton. In our case, where the objective of

player 1 is quantitative, this would lead to a new class of weighted

tree automata for which we would need to solve the emptyness

problem. In turn, solving the emptiness of this class of automata

would require to solve a new class of turn-based games where the
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objective is (F̂eas ∪ ÔbjD) ∩ ÔbjW. Instead, we directly build this

turn-based game and extract a solution, by adapting the construc-

tion from [8]. We solve this new class of zero-sum two-player games

in Section 4.

The intuition behind the winning condition is the following:

Constructor aims at building a solution therefore, if he designs

a strategy that ensures Feas then clearly this strategy describes

a solution. In the case where Feas is not achieved, Constructor
has to prove that the players are not behaving rationally. This

is where ÔbjD and ÔbjW come into play. Indeed ÔbjD ensures

that Constructor has detected the possible deviators, while ÔbjW
prevents him from detecting spurious deviations, i.e., prevents

Constructor from falsely suspecting a deviation from a player.

Since the players from 2 to 𝑛 have qualitative objectives, the sets

ÔbjD and ÔbjW are exactly those described in [8], and thus fill the

same role in the construction and the proof. From the results of [8],

it follows that they witness plays in G that are not outcomes of a

rational behavior of players 2 . . . 𝑛.

Finally, the proof from [8] involves twomappings. One that maps

the plays in G into plays inH and another one mapping plays from

H into plays in G. A crucial property of these two mappings is that

applied to our setting, the costs along the plays are preserved, and

thus the feasibility of a play in G witnesses the feasibility of a play

in H and vice versa.

These elements put together entail the following proposition.

Proposition 2. There exists a solution to the problem of non-
cooperative rational synthesis in the multi-player game G if and only
if there exists a winning strategy for Constructor inH .

3.3 Solving the Negotiation Game
In order to solve the negotiation game we need to design an al-

gorithm for a two-player game where the winning condition is

given by Equation (6). We proceed as follows; we use results from

[4] on solving energy parity games, by first encoding the winning

condition with an LTL formula. Then we transform this formula

into a parity condition. At this stage one has to make sure that the

formula does not blow up, actually the crux is to encode the win-

ning condition of Equation (6) by a formula of size polynomial in G.

We recall that G is equipped with a labelling function lbl : S → 2
AP

where AP is a set of atomic propositions. We equip the Negotiation

Game with a labeling function l̂bl which maps elements from Ŝ to

subsets of ÂP a fresh set of atomic propositions. This new set of

atomic propositions is :

ÂP = AP ∪ {𝑝𝐷 , 𝑝𝑊 | 𝑝 ∈ P} ,

and the mapping l̂bl is defined for each state 𝑠 ∈ Ŝ as follows:

l̂bl(𝑠) = {𝑝𝐷 | 𝑝 ∈ proj
2
(𝑠)} ∪ {𝑝𝑊 | 𝑝 ∈ proj

2
(𝑠)} ∪ lbl(proj

1
(𝑠)) .

Then the set of plays defined in Equations (3), resp. (4), can be

characterized by the following LTL formulas:

ÔbjD ≡
∨
𝑝∈P

(
FG𝑝𝐷 → ¬Obj𝑝𝐷

)
, (7)

ÔbjW ≡
∨
𝑝∈P

(
FG𝑝𝑊 ↔ ¬Obj𝑝𝑊

)
. (8)

Note that the size of both these formulas is polynomial in the size

of the original arena G.

Then we apply classical results from [10] to obtain two deter-

ministic parity automata A1 and A2, recognizing the sets induced

by ÔbjD, resp ÔbjW. The size of both these automata is doubly

exponential in the size of the formulas for ÔbjD resp. ÔbjW that is,

𝑂

(
2
2
|G|
)
, where |G| is the size of the description of G. Finally, by a

synchronous composition of both automata with the arena G (syn-

chronized on the atomic propositions ÂP), we get a new two-player

game whose size is 𝑂

(
2
2
|G|
)
in which the winning condition for

the Constructor can be expressed as:

(Feas ∪ Parity
1
) ∩ Parity

2
. (9)

Remark 3. We highlight that in the above game, the sets Parity
1

and Parity
2
are induced by priority functions prty

1
and prty

2
from

the automata A1 and A2. A crucial property of prty
1
and prty

2
is

that their size is polynomial in the size of formulas of Equations (7)
and (8).

We shall call a two-player arena where the winning condition

is given by Equation 9 an FPP game. We present how to compute

winning strategies in such games in Section 4.

4 FPP GAMES
In this part of the paper we design an algorithm for computing a

winning strategy for player 1 in an FPP game when it exists. For-

mally we are given a two-player arena G = ⟨S, (S1 ⊎ S2), 𝑠ini, E⟩
equipped with two priority functions prty

1
and prty

2
and a cost

function cost. These functions induce three objectives respectively
Parity

1
, Parity

2
, and Feas. As explained earlier, we aim at solving

games where the objective is given by the set described in Equa-

tion (9).

Before designing a solution to these games, we establish a tech-

nical lemma. This lemma is instrumental. It describes a special

property of winning strategies in FPP games. Later, we use this

property to reduce any FPP game to a game where the winning

condition is given by the set Feas ∪ Parity for some cost function

and some priority function. The solution follows from the fact that

winning strategy from the initial state in the new game for the

objective Feas ∩ Parity witnesses the existence of a winning strat-

egy in the original game. Feas ∩ Parity were originally introduced

in [4], under the name energy parity games, here they are called

differently in order to remain consistent with our notation. We also

highlight the fact that problem solved in [4] is the initial credit

problem that it, computing the least possible energy level in the

initial state such that a winning strategy exists for player 1. Note

that in this paper the initial credit is always 0, but this does not

change the complexity results obtained in [4].

Lemma 4. LetG be a two-player arena,𝜎1 be a strategy for player 1,
and let 𝑋 = Win(Parity

1
∩ Parity

2
). Assume that 𝜎1 is winning

for the objective (Feas(G) ∪ Parity
1
) ∩ Parity

2
. Then for each path

𝜋 ∈ out(𝜎1), the following holds:
𝜋 ∈ out(𝜎1) \ 𝑆∗𝑋𝑆𝜔 =⇒ 𝜋 ∈ Feas ∩ Parity

2
.

Proof. Let 𝜋 = ℎ · 𝑠 · 𝜋 ′
be a play in out(𝜎1) \ 𝑆∗𝑋𝑆𝜔 . Note that

𝑠 cannot be in 𝑋 , otherwise 𝜋 reaches 𝑋 .
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We first show that 𝜋 is in Feas. Assume toward a contradiction

that cost(ℎ · 𝑠) < 0, since 𝑠 ∉ 𝑋 , for any strategy 𝜎 ′
1
from 𝑠 we

have out(𝜎 ′
1
) ∉ Parity

1
∩ Parity

2
. Since Parity

1
∩ Parity

2
is prefix-

independent, it follows that 𝜋 ∉ Parity
1
∩Parity

2
, thus 𝜋 ∉ (Feas∪

Parity
1
) ∩Parity

2
a contradiction. Hence necessarily cost(ℎ ·𝑠) ≥ 0.

Since this holds for any prefix ℎ · 𝑠 of 𝜋 it follows that 𝜋 is in Feas.
The fact that 𝜋 ∈ Parity

2
follows from the assumption that 𝜎1 is

winning for Parity
2
also. □

We now present a construction that reduces FPP games to Feas∩
Parity games. Before establishing the formal details of our construc-

tion, consider Figure 5 to build some intuition.

𝑠 𝑡

𝑋S \ 𝑋

cost(𝑠, 𝑡)

0

𝑠3

𝑠2

𝑠1

cost(𝑠1, 𝑠2)

cost(𝑠2, 𝑠3)

Figure 5: Illustration of the game ˆG arena construction. 𝑋 is
as in Lemma 4.

Let G = ⟨S, (S1 ⊎ S2), 𝑠ini, E⟩ be a two-player zero-sum game

where the objective is given by Equation (9) above. We then build

a fresh two-player game
ˆG = (S, S1 ⊎ S2, 𝑠ini, Ê). The construction

builds the arena schematically depicted in Figure 5. Basically, the

set of state is preserved, the edges in S \ 𝑋 are also preserved but

edges in 𝑋 2
are erased and all replaced by self loop with cost 0.

The game
ˆG is formally designed as follows:

• The sets of states is S, S1 and S2 are unchanged and the initial
state are the same.

• The set of edges Ê is given by Ê1 ∪ Ê2 where:

Ê1 = {(𝑠1, 𝑠2) ∈ E | 𝑠1 ∉ Win(Parity
1
∩ Parity

2
)} ,

Ê2 = {(𝑠, 𝑠) | 𝑠 ∈ Win(Parity
1
∩ Parity

2
)} .

• The new priority function over Ŝ is obtained as follows:

p̂rty(𝑠) =
{
0 if 𝑠 ∈ Win(Parity

1
∩ Parity

2
) ,

prty(𝑠) otherwise.

• The new cost function over
ˆE is defined as follows:

ĉost(𝑠1, 𝑠2) =
{
0 when (𝑠1, 𝑠2) ∈ Ê2
cost(𝑠1, 𝑠2) otherwise.

We will use the above construction to solve FPP games. We first

state a couple of facts (𝑋 as in Lemma 4):

𝐹𝑎𝑐𝑡 1 For any pair of states (𝑠, 𝑡) in (S \ 𝑋 )2 the priority of 𝑠 and

the cost of (𝑠, 𝑡) are similar in G and
ˆG.

𝐹𝑎𝑐𝑡 2 Histories and plays in G that never visit 𝑋 are preserved in

ˆG. Moreover, if such a play in G is in Feas ∩ Parity
2
then it

is in Feas ∩ Parity induced by ĉost and p̂rty.
We want to show that the above construction preserves winning

strategies in the original game G. The preservation of strategies is

formalized in the following sense:

Proposition 5. Let G be an FPP game, then the following asser-
tions are equivalent:

𝑎. Player 1 wins G (from the initial state),
𝑏. Player 1 wins ˆG (from the initial state) for the objective Feas∩

Parity induced by ĉost and p̂rty.

Proof. In the following,𝑋 is as in Lemma 4.We start by showing

the following implication 𝑎. → 𝑏.. Let 𝜎1 be a winning strategy for

player 1 in G from 𝑠ini. We build a new strategy 𝜎̂1 in ˆG using the

following mapping.

Let ℎ be a history for player 1 in
ˆG, then:

𝜎̂1 (ℎ) =
{
𝜎1 (ℎ) if ℎ ∉ 𝑆∗𝑋𝑆∗ ,

last(ℎ) otherwise.

Notice that 𝜎̂1 is well defined, since the edge relation is preserved

in
ˆG for any pair of states not in 𝑋 , and any state in 𝑋 contains a

self-loop in
ˆG.

Let us show that 𝜎̂1 is winning in ˆG for player 1, i.e, we show that

out(𝜎̂1) ⊆ Feas∩ Parity induced by ĉost and p̂rty. Let 𝜋 ∈ out(𝜎̂1)
be a play in

ˆG compatible with 𝜎̂1. Then we distinguish between

two cases:

𝑖 . 𝜋 never visits 𝑋 ,

𝑖𝑖 . 𝜋 reaches 𝑋 .

Assume that 𝑖 . holds, then 𝜋 is not in 𝑆∗𝑋𝑆𝜔 then, 𝜋 ∈ out(𝜎1)
and since 𝜎1 is winning for player 1, Lemma 4 applies, thus 𝜋 ∈
Feas ∩ Parity

2
.

Otherwise, 𝑖𝑖 . holds and 𝜋 = ℎ · 𝑠𝜔 where ℎ is the longest prefix

of 𝜋 that never visits 𝑋 and 𝑠 ∈ 𝑋 is the first state along 𝜋 in 𝑋 .

Thanks to 𝐹𝑎𝑐𝑡 2 about the construction of
ˆG, the history ℎ is well

defined in G, and even more, it is compatible with 𝜎1. Assume now

for the sake of a contradiction, that 𝜋 ∉ Feas. This implies that

there exists a prefix ℎ′ of ℎ such that cost(ℎ′) < 0. So, we have

ℎ′𝜋 ′ ∉ Feas for every 𝜋 ′
such that ℎ′𝜋 ′ ∈ Play(G).

Now since𝜎1 is winning for player 1, necessarilyℎ
′𝜋 ′ ∈ Parity

1
∩

Parity
2
for all 𝜋 ′

such that ℎ′𝜋 ′ ∈ out(𝜎1). Hence, 𝜎1 is winning for
player 1 from last(ℎ′) for the objective Parity

1
∩ Parity

2
, and thus

last(ℎ′) ∈ 𝑋 , which contradicts the assumption that ℎ ∉ 𝑆∗𝑋𝑆∗.
Therefore 𝜋 ∈ Feas, and since 𝜋 = ℎ · 𝑠𝜔 , 𝜋 ∈ Parity

2
in

ˆG.

Let us prove the other direction, i.e, (𝑏. → 𝑎.). Let 𝜎̂1 be a

winning strategy for player 1 in
ˆG from 𝑠ini for the objective Feas∩

Parity, we build a strategy 𝜎1 as follows, such that for any history

ℎ in G,

𝜎1 (ℎ) =
{
𝜎̂1 (ℎ) if ℎ ∈ 𝑆∗𝑋 𝑆∗ ,

𝜎Parity (last(ℎ)) if last(ℎ) is in 𝑋 ,

where𝜎Parity is a winning strategy from last(ℎ) for Parity
1
∩Parity

2
,

which exists since last(ℎ) ∈ 𝑋 .

Let us show that 𝜎1 is a winning strategy for player 1 for the

objective (Feas∪Parity
1
)∩Parity

2
. Let 𝜋 be a play in out(𝜎1), such a

play either visits𝑋 or it stays outside𝑋 , in case it reaches𝑋 let 𝑘 be

the first moment it reaches 𝑋 , then from 𝜋 [𝑘] the strategy 𝜎1 plays
accordingly to 𝜎Parity, thus 𝜋 is winning from Parity

1
∩ Parity

2
. In

the case 𝜋 never visits 𝑋 it follows that 𝜎1 plays according to 𝜎̂1.

Notice that thanks to 𝐹𝑎𝑐𝑡 1, cost and ĉost coincide in this part of

the arena. The same is true about prty
2
and p̂rty. Therefore, since
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𝜎̂1 is winning for Feas ∩ Parity, it follows that 𝜎1 is winning for

Feas ∩ Parity
2
. □

From the previous proposition and classical results, we also

obtain a complexity upper-bound for solving FPP games.

Corollary 6. The problem of deciding the existence of a winning
strategy in an FPP game is in NP ∩ co-NP.

Proof. Let G be an FPP game, and let Ĝ the game obtained by

the above construction. Ĝ is linear in the size of G. To conclude,

we notice that according to [4], deciding the existence of a winning

strategy in games where the objective is Feas ∩ Parity is in NP ∩
co-NP. □

5 THE COMPLEXITY OF COMPUTING A
RESOURCE-AWARE CONTROLLER

With the previous results, we can finally establish the complexity

of the problem of non-cooperative rational synthesis when the ob-

jectives of the players are induced by an LTL specification. Then,

we extend it to the case where the system has a “rich specification”,

that is, in addition to having the objective of maintaining the re-

source non-negative, the controller must also ensure a qualitative

objective.

5.1 The Complexity of the Non-Cooperative
Feasible Rational Synthesis

Theorem 7. The non-cooperative feasible rational synthesis prob-
lem is 2EXPTIME-complete.

Proof. The hardness easily follows from classical LTL synthesis

problem [10]. The membership is as follows. From Proposition 2

computing a solution for the non-cooperative feasible rational syn-

thesis amounts to solving a negotiation game where the winning

condition is given by Equation 6. But solving a game with this ob-

jective according to Section 3.3, we need to solve a game where the

objective is given by Equation 9 (which is an FPP game). However

the arena built in Section 3.3 is double exponential in the size of the

original game but has priority functions of polynomial size. Thanks

to Proposition 5 we can invoke, the algorithm from [4] where they

solve games where the objective is Feas ∩ Parity. Finally, notice
that the algorithm in [4] runs in time polynomial in the size of the

input arena and exponential in the size of the priority function,

thus using Remark 3 commenting the bounds of the negotiation

game entails the upper bound.

□

5.2 The Non-Cooperative Feasible Rational
Synthesis with Rich Specifications

In this part we consider a multi-player arena G = ⟨S, (S1 ⊎ . . . ⊎
S𝑛), 𝑠ini, P, E⟩ with objectives Obj

1
, . . . ,Obj𝑛 induced by LTL for-

mulas and a cost function cost. We aim at designing a strategy 𝜎1
for player 1 such that against any strategies for players 2, . . . , 𝑛, the

profile 𝜎 = ⟨𝜎1, . . . , 𝜎𝑛⟩ satisfies
out(𝜎) ∈ f-NE(G) =⇒ out(𝜎) ∈ Feas ∩ Obj

1
. (10)

We shall call this problem the non-cooperative feasible rational syn-
thesis with rich objectives.

Theorem 8. The non-cooperative feasible rational synthesis with
rich specifications is 2EXPTIME-complete.

Proof. Again the hardness follows from the classical LTL syn-

thesis problem. To obtain the upper bound, one can build a ne-

gotiation arena for the input, and solve the negotiation with the

following objective(
(F̂eas ∩ Ôbj

1
) ∪ ÔbjD

)
∩ ÔbjW , (11)

where

Ôbj
1
= {𝜋 ∈ Ŝ𝜔 | proj

1
(𝜋) |= Obj

1
} .

We argue that his new objective can be encoded as a FPP game.

Indeed, notice that Equation (11) is equivalent to(
F̂eas ∩ Ôbj

1
∩ ÔbjW︸          ︷︷          ︸
𝐴

)
∪
(
ÔbjD ∩ ÔbjW︸           ︷︷           ︸

𝐵

)
finally we obtain the following set:(

F̂eas ∪𝐴
)
∩𝐶 ,

where

𝐴 = Ôbj
1
∩ ÔbjW , 𝐵 = ÔbjD ∩ ÔbjW , 𝐶 = 𝐴 ∪ 𝐵 .

We conclude by applying the result from Proposition 6 and notic-

ing that 𝐴, 𝐵, and 𝐶 can be written as LTL formulas whose size is

polynomial in the size of the input game using the same encoding

from Section 3.3. □

6 CONCLUSION
We introduce the problem of non-cooperative rational synthesis

where the controller has to ensure a quantitative objective. We es-

tablish the 2EXPTIME-completeness in the case where the objective

of player 1 is given by a feasibility objective, c.f. Theorem 7. We

also show that the same complexity result holds in the case where

the objective of player 1 is a combination of both a feasibility speci-

fication and an LTL specification. In order to show these bounds,

we introduce and solve a new class of two-player games that we

call FPP games in Section 4 for which we show a membership in

NP ∩ co-NP.
As future lines of work we first plan to study the more general

case of having multiple resources in the system, as in [5]. Another

research direction is investigating the interesting andmore tractable

fragments of LTL such as the𝐺𝑅(1) fragment [2, 12]. Finer complex-

ity results are also at reach, and a natural line for future research is

to study the case where the qualitative specifications are given by

𝜔-regular objectives.
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