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ABSTRACT
Consider a platform where independent agents arrive at random

times and need to be matched into pairs, eventually after waiting

for some time. This, for example, models job markets, gaming plat-

forms, kidney exchange programs, etc. The role of the platform is

to decide how to match agents together while optimizing two con-

flicting objectives: the quality of the matching produced, and the

total waiting time of the agents. This can be modeled as an online

problem called Min-cost Perfect Matching with Delays (MPMD),

which has recently drawn a lot of attention. It is known that in

the case when agents arrive in an adversarial order, no online algo-

rithm can achieve a constant-competitive ratio. In this paper, we

study the more realistic case where agents’ arrival times follow

some stochastic assumptions, and we present two matching mech-

anisms, which give constant-competitive solutions. The first one

is a simple greedy algorithm in which agents act in a distributed

manner requiring only local communication. The second one builds

global analysis tools in order to obtain even better performance

guarantees. This result is rather surprising as the greedy approach

cannot achieve a competitive ratio better than 𝑂 (𝑚log 1.5+𝜀 ) in the

adversarial model, where𝑚 denotes the number of agents. Finally,

we extend our results to the case where the delay cost corresponds

to an arbitrary positive and non-decreasing function of the waiting

time, as well as the case where the platform is allowed to pay a

penalty cost to clear some agents’ requests.
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1 INTRODUCTION
Imagine players logging into an online platform to compete against

each other in a two-player game. The platform needs to pair them up

in a way that maximizes the overall satisfaction from the gameplay.

Since each player prefers to be matched with someone with similar

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

gaming skills, the platform has to consider the experience gap

when pairing players. This skill level difference is referred to as the

connection cost. Additionally, once logged in, a player can tolerate

some waiting time to be matched — this is why the platform can

postpone the pairing decision in the hope of a better matching

to be found (i.e., the login of another player with similar skills).

Nonetheless, the waiting time for each player has its limits. A player

may become impatient if its request has been ignored for too long

time. This time gap between logging into the platform and joining

a gaming session is referred to as the delay cost. The platform’s goal

is to pair all the online players into sessions, such that the total

connection cost plus the total delay cost produced is minimized.

This problem can be modeled as a special case of an online prob-

lem called Min-cost Perfect Matching with Delays (MPMD) defined

by Emek et al. [30]. MPMD has drawn researchers’ attention re-

cently [2, 3, 7, 8, 16, 17, 30, 43] due to many real-life applications

ranging from Uber rides, dating platforms, kidney exchange pro-

grams etc. Formally, MPMD is defined as follows. The input is a set

of𝑚 requests (each representing an independent agent) arriving

at arbitrary times in a metric spaceM = (X, 𝑑) equipped with a

distance function 𝑑 . Here,𝑚 is an even integer, and X denotes the

set of points inM. Each request 𝑟 is characterized by its location
ℓ (𝑟 ) ∈ X and arrival time 𝑡 (𝑟 ) ∈ R+. When two requests 𝑟 and 𝑟 ′

are matched into a pair at time 𝑡 ≥ max{𝑡 (𝑟 ), 𝑡 (𝑟 ′)}, a connection
cost 𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)) plus a delay cost (𝑡 −𝑡 (𝑟 )) + (𝑡 −𝑡 (𝑟 ′)) is incurred.
The target is to minimize the total cost produced by the online

algorithm for matching all the requests into pairs.

Previously, theMPMD problemwas studied in the case where the

requests are generated by an adversary. Unfortunately, no online

algorithm can achieve a constant competitive ratio in this adver-

sarial model [2]. It is often too pessimistic to assume no stochastic

information on the input is available — again, consider the example

of matching players on gaming platforms. The online platform has

all the historical data and can estimate the arrival frequency of the

players with each particular skill level. Therefore, it is reasonable

to assume that the gaming requests follow some stochastic distri-

bution. Depending on the time of day, though, there may be more

or fewer players logging in. However, if we divide the timeline

into small intervals, it is reasonable to assume that within each

of them, the distribution is regular and the requests are mutually

independent (since the players don’t know each other). Based on

these observations, the following question can be naturally stated:

in the case when stochastic information on the input is available, can
we devise online algorithms with constant performance guarantees?
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Here, we provide an affirmative answer to this question. We

achieve this by providing a natural greedy algorithm that matches

players based on local information. We present a novel analysis of

this algorithm for a stochastic online version of MPMD, by assum-

ing that the requests arrive following a Poisson arrival process. To

be more precise, the waiting time between any two consecutive

requests arriving at any metrical point 𝑥 , follows an exponential

distribution Exp(𝜆𝑥 ) with parameter 𝜆𝑥 ≥ 0. Under such a model,

the goal of the platform is to minimize the expected cost produced

by an algorithm ALG to deal with a random input sequence consist-

ing of𝑚 requests. To evaluate the performance of our algorithms

on stochastic inputs, we use the ratio-of-expectations, which cor-

responds to the ratio of the expected cost of the algorithm to the

expected cost of the optimal offline solution (see Definition 4).

Our Contribution. We prove that in the Poisson arrival model, we

can obtain a significantly better performance guarantee compared

with the current best competitiveness obtained in the adversarial

model. More specifically, we show that the Greedy algorithm, which

matches any two requests immediately when their total delay cost

reaches their distance, achieves a constant ratio-of-expectations.

Theorem 1. For MPMD in the Poisson arrival model, the Greedy
algorithm achieves a ratio-of-expectations of 16/(1 − 𝑒−2).

A notable advantage of this algorithm is that it can be imple-

mented in a distributed manner. Indeed, the decision taken by two

agents depends only on their local information, i.e., their wait-

ing time and the distance between them. Moreover, it is worth

emphasizing that in the adversarial model, the greedy algorithm

has a competitive ratio of Ω(𝑚log 1.5+𝜀 )) (see the example in [7],

Appendix A).

To prove Theorem 1, we apply the following strategy. We first

notice that the connection cost of a Greedy solution is at most its

delay cost. Thus, it becomes the core of the proof to upper bound the

delay cost. For this purpose, in Section 3, we define the radius 𝜌𝑥 ≥ 0

for each metric point 𝑥 . Such a radius depends on the parameters

of the problem and roughly corresponds to the expected delay time

for matching the requests located on 𝑥 . Then, we show how to use

the radius to lower bound the cost of the optimal offline solution.

Intuitively, we prove that a request located on 𝑥 is in expectation

responsible for a total cost of Ω(𝜌𝑥 ).
The notion of radius suggests another algorithm for MPMD with

stochastic inputs. Indeed, when a new request 𝑟 arrives on a point

𝑥 , we know that this request will wait for a time 𝑂 (𝜌𝑥 ) in average

before being matched by the Greedy algorithm. In particular, 𝑟

will be matched with another request that is at distance 𝑂 (𝜌𝑥 ).
Therefore, if at the time of the 𝑟 ’s arrival, there is another pending1

request 𝑟 ′ that is at distance less than 𝜌𝑥 , why not matching these

two requests directly? In Section 3, we formalize this intuition

and design an algorithm called Radius. Thanks to these anticipated

pairings, the performance ratio is improved by a factor of 2.

Theorem 2. For MPMD in the Poisson arrival model, the Radius
algorithm achieves a ratio-of-expectations of 8/(1 − 𝑒−2).

Finally, we show how to adjust the Greedy and the Radius al-

gorithms to deal with other variants of the MPMD problem, while

1
By pending we mean that at that time, the request is still unmatched by the algorithm.

preserving a constant performance ratio. In Section 7, we look at

the generalization of the problem where a request can be delayed

for a time 𝑡 at a cost 𝑓 (𝑡), where 𝑓 is a positive and non-decreasing
function. We show that, unless 𝑓 is such that the expected cost

of the optimal offline solution is infinite, our algorithms achieve

constant performance ratios, where the constants only depend on

function 𝑓 . In Section 8, we consider the variant of MPMD that

allows clearing pending requests for a fixed penalty cost.

RelatedWork. TheMPMD problemwas introduced by Emek et al.

[30]. In their paper, they proposed a randomized online algorithm

that achieves a competitive ratio of𝑂 (log
2 𝑛+ logΔ), where 𝑛 is the

number of points of the metric space and Δ is the aspect ratio. Later,

Azar et al. [3] improved the competitive ratio to 𝑂 (log𝑛), thereby
removing the dependence of Δ in the competitive ratio. Both of

these papers randomly embed the metric space into a tree of distor-

tion 𝑂 (log𝑛), and then propose online algorithms on tree metrics.

In the adversarial model, this bound is essentially tight, since Ash-

lagi et al. [2] showed that any randomized algorithm achieves a

competitive ratio of Ω(log𝑛/log log𝑛). Note that the above results
assume that the𝑛-point metric is given in advance.When the metric

is not known in advance, Bienkowski et al. proposed a 𝑂 (𝑚2.46)-
competitive online greedy algorithm [17] and a 𝑂 (𝑚)-competitive

online algorithm based on the primal-dual method [16], where𝑚

denotes the number of requests released. Azar and Jacob-Fanani

[7] later proposed a 𝑂 (𝑚log 1.5+𝜀 )-competitive greedy algorithm,

which is currently the best deterministic online algorithm. Emek et

al. [31] proposed a 3-competitive greedy algorithm for a two-point

metric case. Deryckere and Umboh [27] studied the set delay case

where the delay cost at any time is an arbitrary function of the set

of pending requests. Another line of work considered a bipartite

variant of MPMD, i.e., the Min-cost Bipartite Perfect Matching with

(linear) Delays (MBPMD), where each request can be either red

or blue, and only two requests of different colors can be matched

into a pair. For MBPMD, the current best online algorithm achieves

a competitive ratio of 𝑂 (log𝑛) and the lower bound on the com-

petitiveness is Ω(
√︁

log𝑛/log log𝑛) [2]. Further, both MPMD and

MBPMD problems have been investigated in the more general case

when any request can be delayed for a duration 𝑡 at a cost 𝑓 (𝑡),
with 𝑓 (·) being convex [43] or concave [8].

Besides MPMD, many other online problems have been also

considered with the additional delay constraints, such as online

service with delay [6, 9, 18], multi-level aggregation [9, 13, 14, 22,

23, 42], facility location [9, 10, 15], bin packing [5, 32], set cover

[4, 42, 48] and many others [10, 24, 35, 46, 48].

We remark that matching is a huge topic, drawing attentions

from both theory and real applications perspectives since Edmonds

[28, 29] and Karp et al. [38]. In recent years, motivated by jobmarket,

kidney exchanges etc, many other online matching results have

also been conducted, e.g., [11, 19–21, 25, 33, 34, 37, 39, 40, 44, 47,

49]. Different from MPMD, these works assume that the matching

decision must be made immediately at request arrival. One another

similar stochastic online matching problem assumes that requests

are released with Poisson arrival and Poisson departures [1, 12, 26,

36, 41]. However, the target is to maximize the total value of the

matching pairs produced. To the best of our knowledge, we are the

first to consider MPMD in the stochastic arrival model.
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2 PRELIMINARIES
Problem Statement. A metric spaceM = (X, 𝑑) is a set of points

X equipped with a distance function 𝑑 : X ×X → R+ that satisfies
the triangle inequality. The input consists of a sequence 𝜎 of 𝑚

requests (𝑚 being an even integer), where each request 𝑟 ∈ 𝜎 is

characterised by its location ℓ (𝑟 ) ∈ X and arrival time 𝑡 (𝑟 ) ∈ R+
(w.l.o.g., suppose that no two requests arrive at the same time). Now,

given any solution for an input sequence 𝜎 , let 𝑀 denote the set

of paired requests (i.e., the perfect matching generated for 𝜎), and

let 𝑠 (𝑟 ) ≥ 𝑡 (𝑟 ) denote the moment when a request 𝑟 is matched.

Note that if 𝑟 and 𝑟 ′ are matched into a pair, i.e., (𝑟, 𝑟 ′) ∈ 𝑀 , we

have 𝑠 (𝑟 ) = 𝑠 (𝑟 ′). Using this notation, the total cost of a solution

(𝑀, 𝑠) is the sum of its delay cost and its connection cost defined
as follows. The delay cost produced by the solution is the sum of

the delay costs 𝑠 (𝑟 ) − 𝑡 (𝑟 ) incurred for each request 𝑟 . Similarly,

the connection cost is the sum of distances between all the paired

requests, i.e.,

∑
(𝑟,𝑟 ′ ) ∈𝑀 𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)).

Let OPT(𝜎) denote the minimum cost of a feasible solution for 𝜎 .

Notice that it corresponds to a minimum weight perfect matching

for 𝜎 , where the weight of an edge (𝑟, 𝑟 ′) ∈ 𝜎 × 𝜎 is given by

𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)) + |𝑡 (𝑟 ) − 𝑡 (𝑟 ′) |. For any pair (𝑟, 𝑟 ′) produced by the

optimal solution it holds that 𝑠 (𝑟 ) = 𝑠 (𝑟 ′) = max{𝑡 (𝑟 ), 𝑡 (𝑟 ′)}, which
implies that OPT(𝜎) can be computed in poly(𝑚) time. In this paper,

we are interested in the design of online algorithms for the problem:

the decision of matching a pair (𝑟, 𝑟 ′) at time 𝑡 only depends on

{𝑟 ∈ 𝜎 : 𝑡 (𝑟 ) ≤ 𝑡}, and this decision is irrevocable.

Stochastic Model. In the stochastic version of MPMD, the goal is

to design an online algorithm that processes a sequence of requests

arriving at “randommoments”, instead of being generated by an on-

line adversary. To formalize the notion of random arrival times, we

use the Poisson arrival process: given any point 𝑥 ∈ X, we assume

that the requests arrive at 𝑥 with a Poisson arrival rate equal to

some 𝜆𝑥 > 0. Recall that an exponential variable 𝑋 ∼ Exp(𝜆) with
parameter 𝜆 > 0 has a probability density function 𝑓𝜆 (𝑡) = 𝜆𝑒−𝜆𝑡
for 𝑡 ≥ 0 and expectation E[𝑋 ] = 1/𝜆 . The exponential distribution
may be viewed as a continuous counterpart of the geometric distri-

bution, which describes the number of Bernoulli trials necessary

for a discrete process to change state (here, observing a new request

on a given point).

Definition 3 (distributed Poisson arrival model). A (ran-
dom) requests sequence 𝜎 follows distributed Poisson arrival model
if the waiting time between any two consecutive requests arriving
at the same point 𝑥 ∈ X follows an exponential distribution with
parameter 𝜆𝑥 > 0 and the variables representing waiting times are
mutually independent.

From now on, when we say that 𝜎 is a random request sequence
of length 𝑚, for some integer 𝑚, we mean that 𝜎 consists of 𝑚

requests, and that their arrival times follow the distributed Poisson

arrival model. In this context we measure the performance of our

algorithms using the ratio-of-expectations:

Definition 4. We say that an algorithm ALG for MPMD has a
ratio-of-expectations 𝐶 ≥ 1, if

lim

𝑚→∞
E𝑚𝜎 [ALG(𝜎)]
E𝑚𝜎 [OPT(𝜎)] ≤ 𝐶,

where ALG(𝜎) (resp. OPT(𝜎)) denotes the cost produced by ALG

(resp. an optimal offline solution) on the request sequence 𝜎 , and
E𝑚𝜎 [ALG(𝜎)] (resp. E𝑚𝜎 [OPT(𝜎)]) denotes the expected cost of ALG

(resp. OPT) on a random input sequence 𝜎 consisting of𝑚 requests
generated by the Poisson arrival process.

The rest of this section is devoted to presenting the standard

Poisson arrival model and showing that it is equivalent to the one

we defined earlier. This will allow us to use them interchangeably

since, depending on the context, it might be easier to consider one

or the other. However, in order to distinguish between them, we

call the second model centralized.

Definition 5 (centralized Poisson arrival model). A (ran-
dom) requests sequence 𝜎 follows the centralized Poisson arrival
model if the waiting time between any two consecutive requests in the
given metric space follows an exponential distribution with parame-
ter 𝜆 (X) :=

∑
𝑥∈X 𝜆𝑥 and each time a request arrives, the probability

of it appearing at point 𝑥 equals 𝜆𝑥/𝜆 (X). We assume that the waiting
times and requests location choices are all mutually independent.

To show the equivalence between the two processes, we exploit

the two well-known properties of the exponential distribution.

Proposition 6 (memoryless property). If 𝑋 is an exponential vari-
able with parameter 𝜆 , then for all 𝑠, 𝑡 ≥ 0, we have

P (𝑋 > 𝑠 + 𝑡 | 𝑋 > 𝑠) = P(𝑋 > 𝑡) = 𝑒−𝜆𝑡 .

Proposition 7. Given 𝑛 independent exponential variables 𝑋𝑖 ∼
Exp(𝜆𝑖 ) for 𝑖 ∈ {1, 2, . . . , 𝑛}, let 𝑍 := min{𝑋1, 𝑋2, . . . , 𝑋𝑛} and let
𝜆 :=

∑𝑛
𝑖=1

𝜆𝑖 . It holds that
𝑍 ∼ Exp(𝜆),1. P(𝑍 = 𝑋𝑖 ) = 𝜆𝑖

𝜆
,2. 𝑍 ⊥ {𝑍 = 𝑋𝑖 },3.

where ⊥ denotes independence.

Let us now consider the distributed model where for each point

𝑥 ∈ X, we define an exponential variable 𝑌 1

𝑥 representing the

time of arrival of the first request located at 𝑥 . Then, if we look

at the whole metric space, the time of arrival of the first request 𝑟

is determined by the minimum of all these variables, min𝑥∈X 𝑌 1

𝑥 .

We denote this variable by 𝑌1. By Proposition 7, we know that 𝑌1

follows an exponential distribution with parameter 𝜆 being the

sum of components’ parameters. Moreover, by the second property

presented in this proposition, we know that the probability of 𝑟

arriving at point 𝑥 equals 𝜆𝑥/𝜆 for each 𝑥 ∈ X.
Finally, at time 𝑡 (𝑟 ) = 𝑌1 we associate each point 𝑥 ≠ ℓ (𝑟 ) with

a new independent exponential random variable 𝑍 1

𝑥 ∼ Exp(𝜆𝑥 ).
By the memoryless property from Proposition 6, we get that for

each 𝑥 the arrival time determined by 𝑡 (𝑟 ) + 𝑍 1

𝑥 follows the same

distribution as 𝑌 1

𝑥 conditioned on being greater than 𝑡 (𝑟 ). This
shows that we can look at the first request arrival as it was defined

by the centralized model and the consequent requests still follow

the distributed model. Of course, we can also continue this process

for them to transform the distributed model into a centralized one.

To get a better understanding of what is the relation between

the two models, see Figure 1. Notice that, since both are equivalent,

it gives us another way of looking at the stochastic process we

work with — it is sufficient to define an arrival rate for the whole

metric space and adjust the requests’ appearance distribution over

the points.
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distributed Poisson arrival model

𝑥

𝑦

𝑧

𝑡𝑥
𝑌 1

𝑥 𝑌 2

𝑥
· · ·

𝑡𝑦
𝑌 1

𝑦
· · ·

𝑡𝑧
𝑌 1

𝑧 𝑌 2

𝑧
· · ·

𝑡
𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

centralized Poisson arrival model

𝑥

𝑦

𝑧

𝑡𝑥
𝑌1 𝑌4

· · ·

𝑡𝑦
𝑌3

· · ·

𝑡𝑧
𝑌2 𝑌5

· · ·

𝑡
𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

𝑌1 𝑌2 𝑌3 𝑌4 𝑌5
· · ·

Figure 1: Example on the correspondence between the dis-
tributed and centralized Poisson arrival model.

3 CONSTANT COMPETITIVE ALGORITHMS
In this section, we introduce two deterministic online algorithms

for the MPMD problem: Greedy and Radius. We formally define

the radius of each metric point which is used to design the Radius

algorithm. We present the upper bounds on the expected cost of

our algorithms (Lemmas 11 and 12) and the lower bound on the

expected cost of the optimal offline solution (Lemma 13). We give

an overview of the techniques used to obtain these bounds. Finally,

with these Lemmas, we prove Theorems 1 and 2.

3.1 The Greedy Algorithm
First, we present a simple greedy algorithm: once the total waiting

time of any two pending requests exceeds the distance between

them, it matches them into one pair. It is easy to show that this

algorithm is well-defined: since the metric spaceM is bounded

(as it contains a finite number of points), the waiting time of the

last request is bounded by the diameter ofM; together with the as-

sumption that the input sequence 𝜎 has an even number of requests,

Greedy thus outputs a perfect matching on 𝜎 . Notice that this algo-

rithm works more generally in the online adversarial model, and

additionally that it does not require knowing the metric space or

the exponential parameters in advance. For a formal description of

Greedy, see the pseudo-code below.

Algorithm 1: Greedy
Input: A sequence 𝜎 of requests.

Output: A perfect matching of the requests.

1 for any time 𝑡 do
2 if there exist pending requests 𝑟, 𝑟 ′ such that

(𝑡 − 𝑡 (𝑟 )) + (𝑡 − 𝑡 (𝑟 ′)) ≥ 𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)) then
3 match them into a pair with ties broken arbitrarily.

To better understand the algorithm, we can look at its geometri-

cal interpretation. Here, when a request 𝑟 appears at some point

𝑥 , a ball centred at 𝑥 starts growing with a uniform rate as time

passes by. The radius of this ball represents the delay cost incurred

due to leaving 𝑟 unmatched. Hence, once two balls intersect, the

pending requests located at their centres are paired (see Figure 2).

The remaining part of this subsection presents a sketch of how

to prove the constant ratio-of-expectations for Greedy (Theorem 1).

First, we observe that for each request served by this algorithm,

its connection cost does not exceed its delay cost. Thus, if we find

the upper bound for the latter, we will be able to estimate the total

expected cost of the matching generated by Greedy on a request

sequence 𝜎 . To do so, let us focus on finding the expected delay

cost of a single request 𝑟 arriving at some point 𝑥 ∈ X. We say that

𝑟1

𝑡0 1 2 3 𝑡0 1 2 3

𝑟2

𝑡0 1 2 3

Greedy algorithm

𝑡0 1 2 3 𝑡0 1 2 3

Figure 2: An example of how Greedy works on a sequence of
two requests arriving at times 0 and 0.5 in a 2-point metric
space with the distance between the points equal to 1.5.

it is matched with a close request if the distance between them is

bounded by some threshold 𝜌𝑥 that we will refer to as a radius.

For now, it suffices to know that this value depends on the arrival

location 𝑥 of 𝑟 and will be defined later. To introduce formally the

radius, we use the following notation for closed and open balls.

Definition 8. For each point 𝑥 ∈ X, let 𝐵(𝑥,𝑢) (resp. 𝐵◦ (𝑥,𝑢))
denote the set of metric points 𝑦 ∈ X with a distance no more than
(resp. strictly less than) 𝑢 from 𝑥 .

The next part of the analysis heavily depends on whether there

exists a request arriving after 𝑟 at any point in 𝐵(𝑥, 𝜌𝑥 ) or not.
When the latter happens, we call 𝑟 a late request and upper bound

the cost of serving it by the highest value possible — the sum of the

metric space diameter and the expected waiting time for the next

request to arrive. Although the estimation may seem exaggerated, it

can be proved that only a few such requests exist. For the first case,

when a close request arrives after 𝑟 , with the right choice of 𝜌𝑥 ,

the expected cost of serving 𝑟 can be upper bounded by a constant

times the radius. We define radius as follows. For any subset of

points S ⊆ X, we denote 𝜆(S) :=
∑
𝑥∈S 𝜆𝑥 .

Definition 9. For each point 𝑥 ∈ X, define its radius 𝜌𝑥 as the
minimum value 𝑢 ≥ 0, such that 1

𝜆 (𝐵 (𝑥,𝑢 ) )
≤ 𝑢.

The idea behind is that it balances the relationship between

the diameter of 𝐵(𝑥,𝑢) and the expected waiting time between

consecutive request arrivals within the points of this ball. Indeed,

using the information from the preliminaries, one can show that the

latter is equal to the left-hand side of the inequality. Finally, we note

that the radius is well-defined as the function 𝑢 ↦→ 1/𝜆(𝐵(𝑥,𝑢))
is non-increasing and left-continuous. Thus, the minimal value

satisfying the given inequality exists and belongs to (0, 1/𝜆𝑥 ]. See
Figure 3 for a pictorial example.

metric space and stochastic parameters

𝜌𝑥

𝜌 ′𝑥
𝑥

𝑦

𝑧

𝑣

𝜆𝑥 = 1

6

𝜆𝑦 = 1

12

𝜆𝑧 = 1

12

𝜆𝑣 = 1

3

𝜆𝑥 = 1

6

𝜆𝑦 = 1

5

𝜆𝑧 = 1

3

𝜆𝑣 = 1

2

𝑑 (𝑥, 𝑦) = 1 𝑑 (𝑥, 𝑧 ) = 2 𝑑 (𝑥, 𝑣) = 4

𝑓 (𝑢 ) = 1

𝜆
(
𝐵̄ (𝑥,𝑢 )

) 𝑔 (𝑢 ) = 𝑢 𝑓 (𝑢 ) = 1

𝜆
(
𝐵̄ (𝑥,𝑢 )

)

ball without border points

1

𝜆𝑥

0

𝑢

𝑓 (𝑢 )

𝑔 (𝑢 )

𝜌𝑥

𝑦 𝑧 𝑣

ball with one border point

1

𝜆𝑥

0

𝑢

𝑓 (𝑢 )

𝑔 (𝑢 )

𝜌 ′𝑥

𝑦 𝑧 𝑣

Figure 3: When determining the radius for some point 𝑥 , two
cases may occur. First, the plots of 𝑓 (𝑢) = 1/𝜆(𝐵(𝑥,𝑢)) and
𝑔(𝑢) = 𝑢 may intersect explicitly (graph on the left). Second,
the value of 𝑓 (𝑢) may drop below 𝑔(𝑢) when approaching
some point on the border of the ball (graph on the right).

By the radius definition, we have the following observation.
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Observation 10. Given any point 𝑥 ∈ X,
1

𝜆(𝐵◦ (𝑥, 𝜌𝑥 ))
≥ 𝜌𝑥 ≥

1

𝜆(𝐵(𝑥, 𝜌𝑥 ))
.

Here, we present both the upper and the lower bound on the radius,

as one of them is needed to lower bound the expected cost of the

optimal offline solution, and the second one is required to upper

bound the expected cost of our algorithms. To conclude, let us state

the upper bound on the expected cost produced by Greedy.

Lemma 11. For MPMD in the Poisson arrival model, the expected
cost produced by the Greedy algorithm, over all random sequences
consisting of𝑚 requests, satisfies

E𝑚𝜎 [Greedy(𝜎)] ≤
(
4𝑚

∑︁
𝑥∈X

𝜆𝑥

𝜆(X) · 𝜌𝑥

)
+ 2|X| ·

(
𝑑max +

1

𝜆(X)

)
,

where 𝑑max := max𝑥,𝑦∈X 𝑑 (𝑥,𝑦) is the diameter of the metric space.

The last term of the right-hand side describes the cost of serving

the late requests. The first term represents the standard expected

cost of serving requests and is proportional to the length of the

sequence 𝜎 . We prove this lemma in Section 5.

3.2 The Radius Algorithm
In this subsection, our goal is to improve the performance guaran-

tees of the Greedy algorithm on stochastic inputs. For this purpose,

we design a Radius algorithm that calculates the radii upfront and

uses this information to serve the requests better. The main idea

here is to match any two requests whenever the closed balls of their

locations (with radii defined as in Definition 9) overlap.

In the geometrical interpretation, whenever a request arrives

at some point 𝑥 , the algorithm directly sets its ball to be 𝐵(𝑥, 𝜌𝑥 ).
Hence, once a request 𝑟 appears, if its location belongs to the closed

ball of any pending request 𝑟 ′, then the two are matched
2
. Oth-

erwise, if there exists another request 𝑟 ′′ within the distance of

𝜌ℓ (𝑟 ) + 𝜌ℓ (𝑟 ′′ ) from 𝑟 ’s location, 𝑟 can be matched with any such

request. Finally, if no request satisfies the above conditions, 𝑟 is

temporarily left unmatched. See the pseudo-code shown in Algo-

rithm 2 for a precise description of Radius. Notice that since Radius

calculates the radii, it needs to know the metric space (X, 𝑑) and the
exponential parameters {𝜆𝑥 }𝑥∈X . This is not a heavy requirement,

since in the case of stochastic inputs, by the Law of large numbers,

one can learn in constant time𝑂 (1/min𝑥∈X 𝜆𝑥 ) an arbitrarily good

estimate of the arrival rates.

It turns out that using the radius information directly in the

algorithm leads to a better ratio-of-expectations. Below we present

an upper bound on the expected cost of the Radius solution.

Lemma 12. For MPMD in the Poisson arrival model, the expected
cost produced by the Radius algorithm, over all random sequences
consisting of𝑚 requests, satisfies

E𝑚𝜎 [Radius(𝜎)] ≤
(
2𝑚

∑︁
𝑥∈X

𝜆𝑥

𝜆(X) · 𝜌𝑥

)
+ 1

2

· |X| · 𝑑max,

where 𝑑max := max𝑥,𝑦∈X 𝑑 (𝑥,𝑦) is the diameter of the metric space.

2
Notice that there exists at most one such request 𝑟 ′ . Otherwise, if at the moment of

its arrival, 𝑟 belonged to the closed balls of two requests 𝑟 ′ and 𝑟 ′′ , their balls would
intersect. Thus, they should have been paired before, which leads to a contradiction.

Algorithm 2: Radius
Input: A sequence 𝜎 = (𝑟1, . . . , 𝑟𝑚) of requests, the arrival

rate of each metric point.

Output: A perfect matching of the requests.

1 Compute the radius 𝜌𝑥 for each point 𝑥 ∈ X (Definition 9);

2 𝑃 ← the set of pending requests, initially empty;

3 for 𝑖 = 1 to𝑚 do
4 let 𝑡 = 𝑡 (𝑟𝑖 ) denote the arrival time of the 𝑖-th request 𝑟𝑖 ;

5 if there exists a pending request 𝑟 ′ ∈ 𝑃 such that
𝑑 (ℓ (𝑟𝑖 ), ℓ (𝑟 ′)) ≤ 𝜌ℓ (𝑟 ′ ) then

6 match 𝑟𝑖 and 𝑟
′
together, and remove 𝑟 ′ from 𝑃 .

7 else if there exists a pending request 𝑟 ′ ∈ 𝑃 such that
𝑑 (ℓ (𝑟𝑖 ), ℓ (𝑟 ′)) ≤ 𝜌ℓ (𝑟 ′ ) + 𝜌ℓ (𝑟𝑖 ) then

8 match 𝑟𝑖 and 𝑟
′
together, breaking ties arbitrarily,

and remove 𝑟 ′ from 𝑃 .

9 else
10 add 𝑟𝑖 in 𝑃 .

11 if 𝑃 ≠ ∅ then
12 match all requests in 𝑃 arbitrarily.

The formal proof of this lemma can be found in Section 6. Here, we

conclude the algorithm description with an example illustrated in

Figure 4.

𝜌𝑥

𝜌𝑧

𝑥

𝑧

𝑑 (𝑥, 𝑧 ) = 1.5
𝜌𝑥 = 2 𝜌𝑧 = 1

metric space

𝑟1

𝑟2

ℓ (𝑟1 ) = 𝑥

𝑡 (𝑟1 ) = 0

ℓ (𝑟2 ) = 𝑧

𝑡 (𝑟2 ) = 0.5

requests

𝑟1

𝑡0 1 2 3

𝑟1

𝑟2

𝑡0 1 2 3

Radius algorithm

𝑟1

𝑟2

𝑡0 1 2 3

Figure 4: An example of how Radius works for two requests.

3.3 Lower Bounding OPT

It remains to present an overview of the lower bounding scheme

for the optimal offline solution of the MPMD problem. Having

such a result will enable us to find the performance ratio for the

two algorithms introduced before and show that they both achieve

constant ratio-of-expectations.

The crucial part of the lower bounding process is to analyze each

request 𝑟 in a sequence 𝜎 separately and observe that two situations

can happen when 𝑟 is not matched immediately. On one hand, 𝑟

can be matched early with some distant request, thus, paying a

high connection cost. On the other hand, it can wait for a closer

request to arrive and pay a higher delay cost. A similar situation

takes place when 𝑟 is paired at the moment of its arrival with an

older request. The only difference then is that we go through the

timeline in the opposite direction.

Let us set the threshold for a request to be considered close to 𝑟

as the radius of 𝑟 ’s arrival location, i.e., 𝜌ℓ (𝑟 ) . Then, the expected
cost of serving 𝑟 can be upper bounded by the expected value of

the minimum of three things. The first one is the cost of matching

𝑟 with the latest request that has arrived in 𝐵◦ (𝑥, 𝜌𝑥 ) before 𝑟 . The
second is equal to the cost of matching 𝑟 with the earliest request
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arriving after it at any point in this ball. Finally, the third one is

just the radius 𝜌𝑥 as it is the lower bound for the connection cost

outside the ball. When we use the stochastic assumption to compute

this minimum, we obtain the following.

Lemma 13. For MPMD in the Poisson arrival model, the expected cost
of the optimal offline solution, over all random sequences consisting
of𝑚 requests, satisfies

E𝑚𝜎 [OPT(𝜎)] ≥ 𝑚 · 1 − 𝑒−2

4

∑︁
𝑥∈X

𝜆𝑥

𝜆(X) · 𝜌𝑥 .

We present a detailed proof of this lemma in Section 4.

Following Lemmas 11, 13 and 12, we immediately conclude The-

orems 1 and 2 stated in the introduction.

4 LOWER BOUNDING OPT

We prove Lemma 13 in this section. The main idea of the proof

goes as follows. To obtain a lower bound on the expected cost of

the optimal matching over a request sequence 𝜎 , we analyze each

element of 𝜎 separately. First, we observe that for each request, the

sum of its connection and delay cost is at least equal to the cost of

connecting it to its cheapest neighbor in 𝜎 (in terms of connection

+ delay cost). Then, the core of the proof (Claim 17) consists of

showing that, in expectation, this cost is at least a constant times

the radius of the corresponding point.

Given any input sequence 𝜎 and any request 𝑟 ∈ 𝜎 , we define the
minimum total cost of 𝑟 in 𝜎 as

𝑐 (𝜎, 𝑟 ) := min

𝑟 ′∈𝜎,𝑟 ′≠𝑟

{
𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)) + |𝑡 (𝑟 ) − 𝑡 (𝑟 ′) |

}
Claim 14. For any input 𝜎 it holds that OPT(𝜎) ≥ 1

2

∑
𝑟 ∈𝜎 𝑐 (𝜎, 𝑟 ).

Before formally stating Claim 17, we need the following two results.

Proposition 15. Let 𝜎 = (𝑟1, 𝑟2, . . .) be an infinite sequence of
requests generated by the centralized Poisson process and ordered by
their arrival times. Then, for any point 𝑥 ∈ X and any index 𝑖 ≥ 1, the
distribution of the waiting time for the next request to arrive after 𝑟𝑖 at
some point in a set 𝑆 ⊆ X, 𝑥 ∈ 𝑆 , follows an exponential distribution
with parameter 𝜆(𝑆).
Claim 16. Given any 𝑎 > 0 and an exponential variable𝑌 ∼ Exp(𝜇),
E[min{𝑌, 𝑎}] = 1−𝑒−𝜇𝑎

𝜇𝑎 · 𝑎.

Now we present the core component to prove Lemma 13.

Claim 17. Given a sequence 𝜎 , we order the requests in 𝜎 = (𝑟1, . . . ,
𝑟𝑚) according to their arrival times. Then, for any point 𝑥 ∈ X and
any index 𝑖 , 1 ≤ 𝑖 ≤ 𝑚, the expected minimum cost of the 𝑖-th request
𝑟𝑖 in a random sequence 𝜎 , assuming that 𝑟𝑖 is located on 𝑥 , is

E𝑚𝜎 [𝑐 (𝜎, 𝑟𝑖 ) | ℓ (𝑟𝑖 ) = 𝑥] ≥
1 − 𝑒−2

2

· 𝜌𝑥 .

We provide a proof sketch here due to the space limitation. First,

given any random request sequence 𝜎 = (𝑟1, . . . , 𝑟𝑚), we extend it

by some dummy random requests 𝑟 𝑗 for 𝑗 ≤ 0 and 𝑗 ≥ 𝑚 to get an

extended random sequence

𝜎 = (. . . , 𝑟−2, 𝑟−1, 𝑟0, 𝑟1, . . . , 𝑟𝑚−1, 𝑟𝑚, 𝑟𝑚+1, . . . ) .
To generate requests before 𝑟1 and after 𝑟𝑚 we use the centralized

Poisson arrival model (i.e., for every integer 𝑗 , (𝑡 (𝑟 𝑗+1) − 𝑡 (𝑟 𝑗 )) ∼

Exp(𝜆(X)) and P(ℓ (𝑟 𝑗 ) = 𝑦) = 𝜆𝑦/𝜆(X) for all 𝑦 ∈ X). Note
that given an extended random sequence 𝜎 , define its truncation

𝜎𝑚 := (𝑟1, . . . , 𝑟𝑚). We have 𝑐 (𝜎, 𝑟 𝑗 ) ≤ 𝑐 (𝜎, 𝑟 𝑗 ) (where 𝜎 = 𝜎𝑚) and

E𝑚𝜎 [𝑐 (𝜎, 𝑟𝑖 ) | ℓ (𝑟𝑖 ) = 𝑥] ≥ E𝜎 [𝑐 (𝜎, 𝑟𝑖 ) | ℓ (𝑟𝑖 ) = 𝑥] .

Notice that for any 𝑗, 𝑗 ′ ∈ {0, 1, . . . ,𝑚},

E𝜎 [𝑐 (𝜎, 𝑟 𝑗 ) | ℓ (𝑟 𝑗 ) = 𝑥] = E𝜎 [𝑐 (𝜎, 𝑟 𝑗 ′ ) | ℓ (𝑟 𝑗 ′ ) = 𝑥] .

We thus only need to show that

E𝜎 [𝑐 (𝜎, 𝑟0) | ℓ (𝑟0) = 𝑥] ≥
1 − 𝑒−2

2

· 𝜌𝑥 .

To prove this bound, consider an extended sequence 𝜎 with ℓ (𝑟0) =
𝑥 . W.l.o.g., we also assume that 𝑡 (𝑟0) = 0 as it can be achieved by

shifting all arrival times by the same constant. Define𝑊 − (resp.

𝑊 +) as the (random) time duration between the arrival of the last

request before 𝑟0 (resp. first request after 𝑟0) arriving at any point

𝑦 ∈ 𝐵◦ (𝑥, 𝜌𝑥 ) and the arrival of 𝑟0. By definition of 𝑐 (𝜎, 𝑟0),

𝑐 (𝜎, 𝑟0) ≥ min

{
min{𝑊 −,𝑊 +}, 𝜌𝑥

}
.

In fact,𝑊 − and𝑊 + are mutually independent and follow the same

exponential distribution Exp(𝜆(𝐵◦ (𝑥, 𝜌𝑥 ))). Thanks to Proposition

7, we immediately have

min{𝑊 −,𝑊 +} ∼ Exp(2𝜆(𝐵◦ (𝑥, 𝜌𝑥 ))) .

By Claim 16 (with 𝑎 = 𝜌𝑥 , 𝜇 = 2𝜆(𝐵◦ (𝑥, 𝜌𝑥 ))), it follows that

E𝜎 [𝑐 (𝜎, 𝑟0) | ℓ (𝑟0) = 𝑥] ≥ E𝜎

[
min

{
min{𝑊 −,𝑊 +}, 𝜌𝑥

}]
=

1 − 𝑒−2𝜆 (𝐵◦ (𝑥,𝜌𝑥 ) ) ·𝜌𝑥

2𝜆(𝐵◦ (𝑥, 𝜌𝑥 )) · 𝜌𝑥
· 𝜌𝑥 .

Since the function 𝑡 ↦→ 1−𝑒−𝑡
𝑡 is strictly decreasing, together with

Observation 10, we have 𝜆(𝐵◦ (𝑥, 𝜌𝑥 )) · 𝜌𝑥 ≤ 1 and

1 − 𝑒−2𝜆 (𝐵◦ (𝑥,𝜌𝑥 ) ) ·𝜌𝑥

2𝜆(𝐵◦ (𝑥, 𝜌𝑥 )) · 𝜌𝑥
≥ 1 − 𝑒−2

2

,

E𝜎 [𝑐 (𝜎, 𝑟0) | ℓ (𝑟0) = 𝑥] ≥
1 − 𝑒−2

2

· 𝜌𝑥 ,

which concludes the proof of Claim 17.

Proof of Lemma 13. Let 𝜎 = (𝑟1, . . . , 𝑟𝑚) be a sequence of re-
quests sorted by increasing order arrival times. We have

E𝑚𝜎 [OPT(𝜎)]

≥ E𝑚𝜎

[
1

2

𝑚∑︁
𝑖=1

𝑐 (𝜎, 𝑟𝑖 )
]

(Claim 14)

=
1

2

𝑚∑︁
𝑖=1

∑︁
𝑥∈X
P𝜎 (ℓ (𝑟𝑖 ) = 𝑥) · E𝑚𝜎 [𝑐 (𝜎, 𝑟𝑖 ) | ℓ (𝑟𝑖 ) = 𝑥]

≥ 1

2

𝑚∑︁
𝑖=1

∑︁
𝑥∈X

𝜆𝑥

𝜆(X) ·
1 − 𝑒−2

2

· 𝜌𝑥 (Claim 17)

=𝑚 · 1 − 𝑒−2

4

∑︁
𝑥∈X

𝜆𝑥

𝜆(X) · 𝜌𝑥 .

This concludes the proof. □
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5 UPPER BOUNDING THE GREEDY SOLUTION
In this section, we prove Lemma 11 that establishes an upper bound

on the expected cost of the Greedy algorithm. We first observe that

the total connection cost of the Greedy solution is at most equal to

its total delay cost, and then we bound the latter.

Given any input sequence 𝜎 , let (𝑀, 𝑠) denote the solution output
by the Greedy algorithm, where 𝑀 is the set of matched pairs of

requests, and 𝑠 is the service times of the requests. The waiting time

of a request 𝑟 ∈ 𝜎 is denoted by𝑤 (𝑟 ) := 𝑠 (𝑟 )−𝑡 (𝑟 ). Greedy matches

two requests 𝑟 and 𝑟 ′ when the sum of their delay cost𝑤 (𝑟 ) +𝑤 (𝑟 ′)
is at least equal to their distance 𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)). In particular, when

summing over all requests we obtain:

Claim 18. For any input sequence 𝜎 , the cost of the solution returned
by the Greedy algorithm is at most twice its total delay cost, i.e.,
Greedy(𝜎) ≤ 2

∑
𝑟 ∈𝜎 𝑤 (𝑟 ).

To upper bound thewaiting time of each request, we distinguish two

types of requests. For each request 𝑟 ∈ 𝜎 , define 𝑡 ′ (𝑟 ) := 𝑡 (𝑟 ) +𝜌ℓ (𝑟 ) .
We say that 𝑟 is a late request if (1) 𝑟 is still pending at time 𝑡 ′ (𝑟 )
and (2) there is no request 𝑟 ′ arriving within the closed ball of 𝑟 ’s

location (i.e., 𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)) ≤ 𝜌ℓ (𝑟 ) ) after time 𝑡 ′ (𝑟 ). Otherwise, we
say that 𝑟 is a nice request, and we define 𝑌nice

𝑟 := 0 if 𝑟 is matched

at time 𝑡 ′ (𝑟 ); otherwise we define 𝑌nice

𝑟 as

min

𝑟 ′∈𝜎

{
𝑡 (𝑟 ′) − 𝑡 ′ (𝑟 ) | 𝑡 (𝑟 ′) > 𝑡 ′ (𝑟 ) and 𝑑 (ℓ (𝑟 ′), ℓ (𝑟 )) ≤ 𝜌ℓ (𝑟 )

}
.

We bound the waiting time of nice requests as follows:

Claim 19. For each nice request 𝑟 ∈ 𝜎 , we have𝑤 (𝑟 ) ≤ 𝜌ℓ (𝑟 ) +𝑌 nice
𝑟 .

We now bound the total delay time induced by late requests. Unfor-

tunately, the waiting time of a late request can possibly be as large

as the diameter 𝑑max = max𝑥,𝑦∈X 𝑑 (𝑥,𝑦) of the metric space. How-

ever, we show that there are only constantly many such requests.

Let 𝑡 (𝑟𝑚) denote the arrival time of the last request in 𝜎 . For any

late request 𝑟 , we define 𝑌 late

𝑟 as follows:

- if 𝑡 (𝑟 ) + 𝑑max ≥ 𝑡 (𝑟𝑚), then 𝑌 late

𝑟 := 0,

- otherwise, 𝑡 (𝑟 ) + 𝑑max < 𝑡 (𝑟𝑚), then

𝑌 late

𝑟 := min

𝑟 ′∈𝜎
{𝑡 (𝑟 ′) − (𝑡 (𝑟 ) + 𝑑max) | 𝑡 (𝑟 ′) > 𝑡 (𝑟 ) + 𝑑max}.

Claim 20. For any point 𝑥 ∈ X, there is at most one late request
located on𝑥 . In particular, there are atmost |X| late requests. Moreover,
for each late request 𝑟 , we have𝑤 (𝑟 ) ≤ 𝑑max + 𝑌 late

𝑟 .

Thanks to Claims 19 and 20, we can show that

- for each late request, the expected cost is ≤ 𝑑max + 1

𝜆 (X) ;

- for each nice request, the expected cost is ≤ ∑
𝑥∈X

𝜆𝑥
𝜆 (X) ·2𝜌𝑥 ,

which concludes Lemma 11 (see the full proof in [45]).

6 UPPER BOUNDING THE RADIUS SOLUTION
In this section, we prove Lemma 12 that establishes an upper bound

on the expected cost of the Radius algorithm. To bound the total

cost of the solution produced by the Radius, we separately analyze

the delay cost and the connection cost.

To bound the connection cost we differentiate two types of edges

(pairs matched by the algorithm). Let𝑀 denote the matching pro-

duced by the Radius algorithm on the input sequence 𝜎 . Let us call

𝑒 ∈ 𝑀 a nice edge3 if the corresponding matched pair was created

during the main loop of the algorithm, i.e., before the arrival time

of the last request in 𝜎 . Otherwise, we call this edge late. Similarly,

a request is called nice if it is an endpoint of a nice edge, and late
otherwise. Intuitively, since the late requests are matched arbitrar-

ily by the Radius algorithm, the connection cost induced by each

of these late edges can possibly be as large as the diameter of the

metric space. Fortunately, there are only a constant number of them

(i.e., independent from𝑚).

Claim 21. For any point 𝑥 ∈ X, there is at most one late request
located on 𝑥 . In particular, there are at most |X|/2 late edges.

We now bound the connection cost of the solution induced by

nice edges. Two nice requests are matched together by the Radius

algorithm if and only if their distance is at most the sum of their

radii. By summing over all the nice edges, we obtain:

Claim 22. For any input sequence 𝜎 , the connection cost induced by
all nice edges is at most

∑
𝑟 ∈𝜎 𝜌ℓ (𝑟 ) .

We now upper bound the total delay cost. Let 𝑡 (𝑟𝑚) denote the
arrival time of the last request of 𝜎 , which correspond to the time at

which all remaining pending (late) requests are matched together

by the Radius algorithm. Let 𝑟 be any request in 𝜎 . We define 𝑌𝑟
as the duration between the arrivals of 𝑟 and the first request 𝑟 ′

that appears on a point of 𝐵(ℓ (𝑟 ), 𝜌ℓ (𝑟 ) ) after 𝑟 . If there is no such

request 𝑟 ′ ∈ 𝜎 , then we set 𝑌𝑟 := 𝑡 (𝑟𝑚) − 𝑡 (𝑟 ).

Claim 23. Each request 𝑟 in 𝜎 is delayed by the Radius algorithm
for a time at most equal to 𝑌𝑟 .

Let 𝜎 be a sequence of𝑚 requests, and let𝑀 denote the perfect

matching output by the Radius algorithm. We split it into two sets

𝑀nice and𝑀late
of nice and late edges, respectively. The total cost

Radius(𝜎) of the solution is equal to CC(𝑀nice) + CC(𝑀
late
) + DC,

the sum of the connection cost CC(𝑀nice) induced by the nice

edges, the connection cost CC(𝑀
late
) induced by the late edges and

the total delay cost DC. We show that

- CC(𝑀
late
) ≤ 1

2
· |X| · 𝑑max;

- E𝑚𝜎 [CC(𝑀nice)] ≤ 𝑚
∑
𝑥∈X

𝜆𝑥
𝜆 (X) · 𝜌𝑥 ;

- E𝑚𝜎 [DC] ≤ 𝑚∑
𝑥∈X

𝜆𝑥
𝜆 (X) · 𝜌𝑥 ,

which concludes Lemma 12 (see the full proof in [45]).

7 EXTENSION TO GENERAL DELAY COSTS
In this section, we study a generalization of the MPMD problem

where the delay cost function is not required to be linear. In this

version of the problem, referred to as 𝑓 -MPMD, the decision of

matching a request can be postponed for time 𝑡 at a delay cost of

𝑓 (𝑡), where 𝑓 is the delay cost function. We require this function

to be positive (otherwise some solutions may have negative value),

and non-decreasing. In the full version of this paper [45], we show

that w.l.o.g., we can assume 𝑓 (0) = 0, i.e., if a request is directly

matched at its arrival time, no delay cost is incurred.

This more general version of MPMD has been investigated for

the classic online adversarial model among others by Azar et al. [8]

and Liu et al. [43]. Their works suggest that in general, the 𝑓 -MPDM

3
Notice that the current definition differs from the previous section.
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problem is even more challenging than the original MPMD problem.

For instance, in [8], Azar et al. considered a special type of concave

delay cost function and showed that even for the single-point met-

ric, obtaining a constant competitive algorithm is a non-trivial task

(whereas for the linear case, the optimal algorithm simply matches

two consecutive requests). Liu et al. [43] showed that under some

natural requirements for function 𝑓 , any deterministic online algo-

rithm for 𝑓 -MPMD on a 𝑘-points metric must have a competitive

ratio Ω(𝑘).
In the online stochastic Poisson arrival model, we show in The-

orem 25 that our Greedy and Radius algorithms for MPMD can

be adapted to 𝑓 -MPMD, and that their corresponding ratios-of-

expectations remain a constant, which depends on 𝑓 .

The adaptation of the Greedy algorithm for 𝑓 -MPMD is quite

straightforward: when the sum of the delay cost of two pending

requests exceeds their distance, match them together, i.e., match

pending requests 𝑟 and 𝑟 ′ at time 𝑡 whenever 𝑓 (𝑡 − 𝑡 (𝑟 )) + 𝑓 (𝑡 −
𝑡 (𝑟 ′)) ≥ 𝑑 (ℓ (𝑟 ), ℓ (𝑟 ′)). The Radius algorithm works in the general

case exactly as in the linear case but using the following generalized

definition of radius.

Definition 24. Given the positive and non-decreasing delay cost
function 𝑓 , for any point 𝑥 ∈ X, define its radius 𝜌𝑥 as the smallest
value𝑢 ∈ R+∪{∞} such that𝑢 ≥ E[𝑓 (𝑊 (𝑥,𝑢))]. Here𝑊 (𝑥,𝑢) is an
exponential variable of parameter 𝜆(𝐵(𝑥,𝑢)) :=

∑
𝑦∈X:𝑑 (𝑥,𝑦)≤𝑢 𝜆𝑦 .

Since functions 𝑢 ↦→ 𝜆(𝐵(𝑥,𝑢)) and 𝑓 are both non-decreasing, the

function 𝑢 ↦→ E[𝑓 (𝑊 (𝑥,𝑢))] is non-increasing. This implies that

the radius of each point is well-defined and unique. Moreover, since

E[𝑊 (𝑥,𝑢))] = 1/𝜆(𝐵(𝑥,𝑢)), in the case when 𝑓 (𝑡) = 𝑡 , this defini-
tion coincides with our initial Definition 9. Similarly as presented

in Observation 10, it is easy to see that E[𝑓 (𝑊 ◦ (𝑥, 𝜌𝑥 ))] ≥ 𝜌𝑥 ,

where𝑊 ◦ (𝑥, 𝜌𝑥 ) is a random variable of parameter 𝜆(𝐵◦ (𝑥, 𝜌𝑥 )) :=∑
𝑦∈X:𝑑 (𝑥,𝑦)<𝜌𝑥 𝜆𝑦 .

Theorem 25. Consider an instance of the 𝑓 -MPMD problem such
that E[𝑓 (𝑋 )] < ∞, where𝑋 ∼ Exp(𝜆(X)) is an exponential variable
of parameter 𝜆(X) :=

∑
𝑥∈X 𝜆𝑥 . Then, both the Greedy and Radius

algorithms achieve ratio-of-expectations of 𝑂 (𝐾𝑓 ), where 𝑘𝑓 denotes

max

𝜇>0

{
E[𝑓 (𝑋 )]

E[min{𝑓 (𝑋 ′),E[𝑓 (𝑋 )]}] |𝑋 ∼ Exp(𝜇), 𝑋 ′ ∼ Exp(2𝜇)
}
.

8 PAYING PENALTIES TO CLEAR REQUESTS
Let us now consider a variant of MPMD called MPMDfp [30],

where it is allowed to clear any request by paying a fixed penalty

𝑝 > 0. For this problem, we propose the following algorithm ALG,

which works similarly to Radius, obtaining a constant ratio-of-

expectations.

Given the metric space (X, 𝑑), define X (1) = {𝑥 ∈ X : 𝜌𝑥 <

𝑝} and X (2) = {𝑥 ∈ X : 𝜌𝑥 ≥ 𝑝} (where 𝜌𝑥 is the radius of

point 𝑥 ∈ X as defined in Definition 9). Suppose that at time 𝑡 , a

new request 𝑟 arrives. Then, our algorithm performs the following

actions depending on whether ℓ (𝑟 ) ∈ X (2) or ℓ (𝑟 ) ∈ X (1) :
- Suppose ℓ (𝑟 ) ∈ X (2) . If there exists a pending request 𝑟 ′

located at point 𝑦 ∈ X (1) and 𝑥 ∈ 𝐵(𝑦, 𝜌𝑦), then match 𝑟

with 𝑟 ′. Otherwise, clear 𝑟 .

- Suppose ℓ (𝑟 ) ∈ X (1) . Apply the Radius algorithm to match

this request.

There possibly exist an odd number of late requests (due to clearing

an odd number of requests arriving at points X (2) ). In that case,

ALG has to clear the last request 𝑟𝑚 even when ℓ (𝑟𝑚) ∈ X (1) .

Theorem26. ForMPMDfp in the Poisson arrival model,ALG achieves
a ratio-of-expectations of 8/(1 − 𝑒−2).

9 CONCLUSION
In this paper, we studied MPMD with additional stochastic assump-

tions on the sequence of the input requests. In the case where the re-

quests follow a Poisson arrival process, we presented two simple de-

terministic online algorithms with constant ratios-of-expectations.

In particular, we observed that the cost of the optimal offline solu-

tion is proportional to the number of requests in the sequence, and

gave a tight (up to a constant factor independent from the instance)

estimation of the constant of proportionality. In the following text,

we briefly discuss some potential future directions.

Bipartite Case in the Poisson Arrival Model. Previously, the bi-
partite version of MPMD (i.e., MBPMD) has been considered in

the adversarial model [2] where each request has a color, either

red or blue, and only requests of different colors can be matched

into a pair
4
. In an equivalent definition, given the metric space

M = (X, 𝑑), the points of X are partitioned into two subsets 𝐴 and

𝐵, such that the requests arriving at points 𝐴 can only be matched

with requests from points 𝐵. Ashlagi et al. [2] proposed twoO(log𝑛)-

competitive randomized online algorithms for this problem. Be-

sides, they established a lower bound of Ω(
√︁

log𝑛/log log𝑛) on the

competitive ratio of any online algorithm. Note that the MBPMD

problem can be seen as a special case of the non-metric perfect
matching problem with delays, where the connection cost function

𝑑 : X × X → R+ ∪ {∞} can have infinite values and is no longer

assumed to satisfy the triangle inequality.

A natural direction would be to explore MBPMD in the Poisson

arrival model. Unfortunately, an initial difficulty is established: the

expected cost of the offline optimal algorithm on a random sequence

of length𝑚 cannot be upper bounded by 𝑂 (𝑚) (see the detail in
the full version of this paper [45]).

𝑘-way Min-cost Perfect Matching with Delays. Another direction,
that was introduced by [46] for the online adversarial model, would

be to consider a generalized 𝑘-way min-cost perfect matching with

delays (𝑘-MPMD) in the stochastic input model, where each pair

(a.k.a., 𝑘-tuple) consists of 𝑘 different requests (𝑘 ≥ 2 is an arbi-

trary integer). Note that such 𝑘-MPMD problem indeed has real

applications from ride-sharing taxi platforms (when a taxi picks

up 𝑘 passengers from different locations for one ride) and online

gaming platforms (when a gaming session consists of 𝑘 different

players). To attack this version of the MPMD problem, one should

first come out with a suitable notion of “connection cost” of a 𝑘-set.

This might be for instance measured by the maximum distance

between any two requests of that set, the average distance, the

weight of a minimum spanning tree, etc.

4
For an application, imagine that the red requests come from customers and the blue

ones represent the suppliers.

Session 3C: Matching
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

983



ACKNOWLEDGMENTS
This work was partially supported by the ERC CoG grant TUgbOAT

no 772346 and NCN grant no 2020/37/B/ST6/04179.

REFERENCES
[1] Ali Aouad and Ömer Saritaç. 2020. Dynamic stochastic matching under limited

time. In Proc. EC. 789–790.
[2] Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim

Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. 2017. Min-cost

bipartite perfect matching with delays. In Proc. APPROX / RANDOM. 1:1–1:20.

[3] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. 2017. Polylogarithmic bounds

on the competitiveness of min-cost perfect matching with delays. In Proc. SODA.
1051–1061.

[4] Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. 2020. Set Cover

with Delay–Clairvoyance Is Not Required. In Proc. ESA.
[5] Yossi Azar, Yuval Emek, Rob van Stee, and Danny Vainstein. 2019. The price of

clustering in bin-packing with applications to bin-packing with delays. In Proc.
SPAA. 1–10.

[6] Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. 2017. Online service

with delay. In Proc. STOC. 551–563.
[7] Yossi Azar and Amit Jacob-Fanani. 2020. Deterministic min-cost matching with

delays. Theory of Computing Systems 64, 4 (2020), 572–592.
[8] Yossi Azar, Runtian Ren, and Danny Vainstein. 2021. The min-cost matching

with concave delays problem. In Proc. SODA. 301–320.
[9] Yossi Azar and Noam Touitou. 2019. General framework for metric optimization

problems with delay or with deadlines. In Proc. FOCS. 60–71.
[10] Yossi Azar and Noam Touitou. 2020. Beyond tree embeddings–a deterministic

framework for network design with deadlines or delay. In Proc. FOCS. 1368–1379.
[11] Haris Aziz, Péter Biró, Tamás Fleiner, Serge Gaspers, Ronald de Haan, Nicholas

Mattei, and Baharak Rastegari. 2017. Stable Matching with Uncertain Pairwise

Preferences. In Proc. AAMAS. 344–352.
[12] Johannes Bäumler, Martin Bullinger, Stefan Kober, and Donghao Zhu. 2022. High

Satisfaction in Thin Dynamic Matching Markets. arXiv preprint arXiv:2206.10287
(2022).

[13] Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph
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