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ABSTRACT
We study stable marriage problems in the 𝑑-Euclidean space. Un-
der this setting, each agent is represented as a point in the 𝑑-
dimensional space, and for each agent 𝑎, the preference of 𝑎 is
based on the sorting according to the Euclidean distances between
𝑎 and agents from the opposite gender. Let 𝛿 (𝑎, 𝑏) being the Eu-
clidean distance between two points 𝑎 and 𝑏. A man 𝑢 prefers a
woman𝑤1 to another woman𝑤2 if and only if 𝛿 (𝑢,𝑤1) < 𝛿 (𝑢,𝑤2).
If 𝛿 (𝑢,𝑤1) = 𝛿 (𝑢,𝑤2), then𝑢 ranks𝑤1 and𝑤2 indifferently, and we
say there is a tie between𝑤1 and𝑤2 in 𝑢’s preference list. A lot of
variants of Stable Marriage with Ties (SMT) have been shown
to be NP-complete when ties occur in preference lists. In this paper,
we study the most famous hard variants of SMT in 𝑑-Euclidean
space, namely, Regret-SMT, Forced-SMT, and Egalitarian-SMT.
We prove that with 𝑑 = 1, Forced-SMT and Regert-SMT can be
solved in polynomial-time, while with 𝑑 = 2, all of the three prob-
lems are NP-hard. Then we show that if the preference list can be
incomplete (agents are allowed to not give a full rank of the oppo-
site gender), the three problems and another variant Max-SMTI
are NP-hard even with 𝑑 = 1. Finally, we provide an algorithm to
recognize whether a given preference profile can be embedded into
1-Euclidean space.
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1 INTRODUCTION
Matching problems have received a considerable amount of atten-
tion from both economics and computer science communities and
have been studied for several decades, due to their rich applications
in the real world, for instance, assignment of students to colleges [1],
kidney patients to donors [29], refugees to host countries [5].

One of the most prominent matching models is the Stable Mar-
riage problem, which was introduced by Gale and Shapley [19].
Given two disjoint sets 𝑈 and𝑊 with each 𝑢 ∈ 𝑈 providing a
strictly ordered list ≻𝑢 of the members of𝑊 and vice versa, the
Stable Marriage (SM) problem seeks for a matching 𝑀 without
blocking pair. Herein, a blocking pair is a pair of 𝑢 ∈ 𝑈 and𝑤 ∈𝑊
such that 𝑢 and𝑤 are not matched by𝑀 but 𝑢 prefers𝑤 to𝑀 (𝑢) in
≻𝑢 and𝑤 prefers 𝑢 to𝑀 (𝑤) in ≻𝑤 . Conventionally, the members
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of 𝑈 are called men and the member of𝑊 are called women. We
refer to both men and women as agents. The most classic SM prob-
lem requires that each agent provides a fully, strictly ordered list
of the members of the opposite gender as his preference. Accord-
ing to the criticism that full, strict preference orders rarely suits
real-world applications [7], a lot of variants with less restrictive
preference structures haven been proposed, such as incomplete
and ties preferences [22, 23, 28], general preferences [17], pairwise
preferences [2, 4, 27], and multi-modal preferences [10, 34], etc.

We study a “geometric” variant of the StableMarriage problem,
called 𝑑-Euclidean Stable Marriage (𝑑-Euclid-SM). In this vari-
ant, each 𝑎 ∈ 𝑈 ∪𝑊 is represented by a point in the 𝑑-dimensional
Euclidean space, and the preference list of 𝑎 is based on the ranking
of the Euclidean distances between 𝑎 and agents from the opposite
gender. More precisely, given two agents 𝑏𝑖 , 𝑏 𝑗 from the opposite
gender, 𝑎 prefers 𝑏𝑖 to 𝑏 𝑗 if and only if 𝛿 (𝑎, 𝑏𝑖 ) < 𝛿 (𝑎, 𝑏 𝑗 ) with
𝛿 (𝑎, 𝑏) being the Euclidean distances between two points 𝑎 and 𝑏.

The introduction of 𝑑-Euclid-SM is mainly motivated by the
following application scenario. Consider a dating agency, which
characterize each man and woman by a vector of length 𝑑 . Each
entry of the vector corresponds to one of𝑑 questions, whose answer
range from “strongly agree” to “strongly disagree”, which could be
encoded as integers. The questions should measure the attitude of
the men and women towards various issues like pets, children, hob-
bies, etc. Then, the preference of each man (or woman) is computed
based on the Euclidean distance between the vector of this man (or
woman) and the vectors of all women (or men). Computing a stable
matching using these preferences is essentially the 𝑑-Euclid-SM
problem. In addition, there are many real-world problems that can
be modeled as 𝑑-Euclid-SM, especially when the agents’ ranking
criteria for opposite gender is defined by distance, e.g., assigning
employees to factories. 𝑑-Euclidean space can be seen as a domain
restriction of the preference lists, which guarantees many nice prop-
erties. Thus, it is interesting to check whether a hard variant of
Stable Marriage problem remains NP-hard in 𝑑-Euclidean space.

A lot of variants of Stable Marriage have been introduced,
which seek for a stable matching satisfying some constraints. Some
ask for a stable matching satisfying a score bound, such as Egalitar-
ian [24], Regret [21], Balanced [18], and Sex-equal [25], etc. Some
variants focus on finding a matching with restricted edges, such as
Forced [13–15], Forbidden [13–15], and Distinguished [31]. Let 𝜋
denote a constraint. We say a stable matching 𝑀 is 𝜋-stable if 𝑀
satisfies 𝜋 . With 𝜋 being Egalitarian/Regret/Forced, it is NP-hard
to find a 𝜋-stable matching [28] when ties occur in preference lists.

In this paper, we study the computational complexity of hard
variants of Stable Marriage in 𝑑-Euclidean space. More precisely,
we study 𝑑-Euclidean 𝜋-Stable Marriage with Ties (𝑑-Euclid-
𝜋-SMT) with 𝜋 being a constraint. Note that, an Euclidean instance
of Stable Marriage problem without ties always admits a unique
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Table 1: Overview of our results. “-” stands for that it is mean-
ingless to study Max-SMT under this setting, since there
always exists a prefect stable matching when preference lists
are complete.

𝑑=2 𝑑=1
complete complete incomplete

Regret NP-hard P NP-hard
Egalitarian NP-hard ? NP-hard
Forced NP-hard P NP-hard
Max - - NP-hard

matching and can be found in 𝑂 (𝑛2) by matching, removing the
current closest man-woman pair iteratively. In fact, this trivial algo-
rithm still holds for the more general setting, that is, 𝑑-Euclidean
Stable Roommates [3]. Regret-SMT, Egalitarian-SMT, Forced-
SMT and MAX-SMTI are proved to be NP-hard by Manlove et
al. [28]. Here, SMTI is the abbreviation of Stable Marriage with
Ties and Incomplete Preferences. Refer to Preliminaries for the
definitions of Regret, Egalitarian, Forced, and Max. We study these
four problems in the 𝑑-Euclidean space. We find that when all pref-
erence lists are complete, Regret-SMT, Egalitarian-SMT, and
Forced-SMT are NP-hard even with 𝑑 = 2, while Regret-SMT and
Forced-SMT admit polynomial-time algorithms when 𝑑 = 1. When
preference lists are permitted to be incomplete, the four problems
are NP-hard even with 𝑑 = 1. Refer to Table 1 for an overview
of our results. Due to lack of space, the proofs of the lemmas and
theorems marked with (*) are moved to Appendix.
Related Work. Arkin et al. investigated 𝑑-Euclidean Stable
Roommates, under the name Geometric Stable Roommates, and
proved that when the preference lists are complete and without
ties, the problem can be solved in polynomial time [3]. Chen and Roy
studiedMulti-Dimensional Stable Roommates in 2-Dimensional
Euclidean Space, they proved that 𝑘-Stable Roommates is NP-
hard even in 2-Euclidean space and 𝑘 = 3 [12]. In voting sys-
tem, 𝑑-Euclidean space is studied as a kind of domain restric-
tion [8, 9, 11, 16, 26, 33]. However, the definition is a little bit dif-
ferent, that is, only voters have preference lists based on Euclidean
distance, the candidates do not need to rank the voters.

2 PRELIMINARIES
Let 𝑈 = {𝑢1, · · · , 𝑢𝑛} and𝑊 = {𝑤1, · · · ,𝑤𝑛} be two 𝑛-elements
disjoint sets of agents. We call the members in 𝑈 men, and the
members in𝑊 women. The preference list of 𝑢 ∈ 𝑈 is an ordered
subset that ranks a subset of the members in𝑊 , denoted as ≻𝑢 . If
the length of ≻𝑢 is less than 𝑛, we say ≻𝑢 is incomplete. If there are
two women𝑤𝑖 and𝑤 𝑗 , who are considered equally good as partner
of𝑢, we say ≻𝑢 contains a tie and use𝑤𝑖 ∼ 𝑤 𝑗 to denote the relation
of 𝑤𝑖 and 𝑤 𝑗 in ≻𝑢 . The preference list ≻𝑤 of 𝑤 ∈ 𝑊 is defined
analogously. A matching 𝑀 ⊆ {(𝑢,𝑤) |𝑢 ∈ 𝑈 ∧𝑤 ∈𝑊 } is a set of
pairwise disjoint pairs.𝑀 is stable if𝑀 does not contain blocking
pairs; a blocking pair is a pair {𝑢,𝑤} ∉ 𝑀 such that 𝑢 prefers𝑤 to
𝑀 (𝑢) and𝑤 prefers 𝑢 to𝑀 (𝑤). We say𝑀 is a perfect matching if
|𝑀 | = 𝑛. If (𝑢,𝑤) ∈ 𝑀 , we say that𝑤 is the partner of 𝑢 matched by
𝑀 , denoted as𝑀 (𝑢), and vice versa. If 𝑢 has no partner, we define
𝑀 (𝑢) = ∅. Given an agent 𝑎, 𝑃𝑎 (𝑏) stands for the position of 𝑏 in

≻𝑎 , and 𝛿 (𝑎, 𝑏) stands for the Euclidean distance between 𝑎 and 𝑏,
where 𝑏 is an agent from the opposite gender. A preference profile
𝐿 is the set of all preference lists. We say 𝐿 contains ties if at least
one preference list in 𝐿 contains ties and 𝐿 is incomplete if at least
one preference list in 𝐿 is incomplete.
Preference Lists in Euclidean Space. Each agent 𝑎 ∈ 𝑈 ∪𝑊 is
represented by a point in the 𝑑-dimensional Euclidean space, and
the preference list of 𝑎 is based on the ranking of the Euclidean
distances between𝑎 and agents from the opposite gender. Let 𝛿 (𝑎, 𝑏)
be the Euclidean distance between two points 𝑎 and 𝑏. If ≻𝑎 is
incomplete, the agents in ≻𝑎 can be inconsistent with the agents of
the opposite gender, that is, an agent 𝑏 might not be a member of
≻𝑎 even if 𝛿 (𝑏, 𝑎) < 𝛿 (𝑐, 𝑎) and 𝑐 is in ≻𝑎 .
Constraints and Problems. There are four constraints studied
in this paper, namely, Regret, Egalitarian, Forced, and Max. We
use Reg and Egal to denote Regret and Egalitarian. Each stable
marriage problem with a constraint 𝜋 has an additional input 𝜋𝑖 ,
and an additional requirement 𝜋𝑟 for the solution matching𝑀 . We
define them in Table 2.

Table 2: The four constraints studied.

𝜋 𝜋𝑖 𝜋𝑟

Reg an integer 𝑡 max𝑎∈𝑈∪𝑊 𝑃𝑎 (𝑀 (𝑎)) ≤ 𝑡

Egal an integer 𝑡
∑
𝑎∈𝑈∪𝑊 𝑃𝑎 (𝑀 (𝑎)) ≤ 𝑡

Forced a forced pair set 𝐹 𝐹 ⊆ 𝑀

Max an integer 𝑡 |𝑀 | ≥ 𝑡

Now, we formally define the problem we study in this paper. Let
𝜋 ∈ { Reg, Forced, Egal, Max}.

𝑑-Euclidean 𝜋-Stable Marriage with Ties (𝑑-

Euclid-𝜋-SMT)

Input: Two sets of agents𝑈 and𝑊 with |𝑈 | = |𝑊 | =
𝑛, an embedding 𝑈 ∪𝑊 → R𝑑 of the agents into
𝑑-dimensional Euclidean space, and 𝜋𝑖 .
Question: Is there a matching𝑀 satisfying 𝜋𝑟 ?

3 NP-HARDNESS IN 2-EUCLIDEAN SPACE
In this section, we prove 2-Euclid-𝜋-SMT is NP-hard by providing a
polynomial-time reduction from Planar and Cubic Exact Cover
by 3 Sets problem [32], which is an NP-complete special case of
the Exact Cover by 3 Sets problem [20].

Planar and Cubic Exact Cover by 3 Sets (PC-

X3C)

Input: A 3𝑛-element set X = {𝑥1, · · · , 𝑥3𝑛} and a
collection S = {𝑆1, · · · , 𝑆𝑚} with each 𝑆 𝑗 ∈ S being a
3-elements subset ofX and each element occurring in
exactly three sets, and the associated graph is planar.
Output: a subcollectionK ⊆ S such that each 𝑥𝑖 ∈ 𝑋

occurs in exactly one member of K .
Here, we say a graph𝐺 = (𝑉 , 𝐸) is an associated graph of a PC-X3C
instance 𝐼 = (X,S), if (1) 𝑉 = 𝑉X ∪𝑉S with𝑉X = {𝑣𝑖 |𝑥𝑖 ∈ X} and
𝑉S = {𝑣 𝑗 |𝑆 𝑗 ∈ S}, and (2) 𝐸 = {𝑒𝑖 𝑗 |𝑥𝑖 ∈ 𝑆 𝑗 , 𝑥𝑖 ∈ X, 𝑆 𝑗 ∈ S}. Then,
𝐺 is a planar graph with the vertex degree being three. Thus, based
on the work of Battista et al. [6], 𝐺 can be embedded in the grid
Z2 in polynomial time, such that its vertices are at the integer grid
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points and its edges are drawn using at most one horizontal and
one vertical segment in the grid.

Theorem 3.1. For every 𝑑 ≥ 2, 𝑑-Euclid-𝜋-SMT is NP-hard. Here,
𝜋 ∈ {Reg, Egal, Forced} and all preference lists are complete.

Due to lack of space, we only prove the NP-hardness of 2-Euclid-
Reg-SMT with 𝑡 = 4. 2-Euclid-𝜋-SMT with 𝜋 ∈ {𝐸𝑔𝑎𝑙, 𝐹𝑜𝑟𝑐𝑒𝑑}
can be proved in a similar way by slightly modifying the auxiliary
agents.

3.1 The Construction
Main idea. Given an instance 𝐼 = (X,S) of PC-X3C, we first em-
bed the associated graph𝐺 (𝐼 ) into a 2-dimensional grid with edges
drawn using line segments of length at least 𝐿 > 1000, and the
distance between two parallel line segments is at least 𝐿. In the
construction process, we used 6 kinds of gadgets, each of which is
composed of agents. For each set 𝑆 𝑗 ∈ S, we create a set gadget,
consisting of four reception gadgets, and guarantee that the agents
in the gadget can only be matched in two ways, one standing for 𝑆 𝑗
in the solution, and the other for not. For each element 𝑥𝑖 ∈ X, we
create a gadget, called selection gadget, whose agents can only be
matched in three ways, denoted as 𝑀𝑆𝑎

𝑥𝑖 , 𝑀
𝑆𝑏
𝑥𝑖 , 𝑀

𝑆𝑐
𝑥𝑖 with 𝑆𝑎, 𝑆𝑏 , 𝑆𝑐

being three sets containing 𝑥𝑖 , each of which encodes how 𝑥𝑖 is
covered by the PC-X3C solution. We use chain gadgets to “link”
element gadgets and set gadgets, that is, to coordinate the matching
decisions of a element gadget and a set gadget, whose correspond-
ing element 𝑥𝑖 and set 𝑆 𝑗 satisfy 𝑥𝑖 ∈ 𝑆 𝑗 . Thus, the element and set
gadgets are placed in the positions of their corresponding elements
and sets in the 2-dimensional plane, while the chain gadgets are
placed along the edges of 𝐺 (𝐼 ). To fulfill their purpose, chain gad-
gets need to be able to deal with the following three tasks: (1) the
matching decision of an element/set gadget need to be broadcasted
to its corresponding set/element gadgets; (2) a chain gadget need
to be able to turn 90 degrees; (3) chain gadgets can cross each other.
For each of the tasks, we create a gadget, which can be considered
as a component of chain gadget, called “broadcast gadget”, “turn
gadget”, and “crossover gadget”.
Chain gadget. Each chain gadget consists of the so-called “basic
components”, each of which contains two pairs of agents. There
are two types of basic components, which alternatively occur in a
chain gadget. See Figure 1 for an illustration. Given a chain gadget
Γ, let |Γ | be the number of basic components of Γ, and Γ [𝑖] be the
𝑖-th component of Γ with 1 ≤ 𝑖 ≤ |Γ |. For a Type-A component, we
have 𝛿 (𝑢Γ2𝑖−1,𝑤

Γ
2𝑖 ) = 2 + 𝜖 , and for a Type-B component, we have

𝛿 (𝑤Γ
2𝑖−1, 𝑢

Γ
2𝑖 ) = 2 + 𝜖 , where 𝜖 = 1

10000 . Given two components Γ [𝑖]
and Γ [𝑖+1] of chain gadget Γ, define 𝛿 (Γ [𝑖], Γ [𝑖+1]) = 𝛿 (𝑢Γ2𝑖 ,𝑤

Γ
2𝑖+1)

if Γ [𝑖] is Type-A, and 𝛿 (Γ [𝑖], Γ [𝑖+1]) = 𝛿 (𝑤Γ
2𝑖 , 𝑢

Γ
2𝑖+1) if Γ [𝑖] is Type-

B. For each 1 ≤ 𝑖 ≤ |Γ | −1, we set
√
2 < 𝛿 (Γ [𝑖], Γ [𝑖 +1]) ≤ 2. In one

chain gadget, we always let Γ [𝑖] and Γ [𝑖 + 1] be on a straight line,
except for turn gadget. A chain gadget must be set between two
agents or gadgets. We say “a chain from 𝑃 to 𝑄” if Γ [1] is around
the position of 𝑃 and Γ [|Γ |] is around the position of 𝑄 with 𝑃 and
𝑄 being agents or gadgets, denoted as Γ(𝑃,𝑄). In the following, we
will use “chain” for “chain gadget”.
Selection gadget. For each 𝑥𝑖 ∈ X with 𝑥𝑖 ∈ 𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 , we create
one selection gadget. A selection gadget, denoted as Δ𝑥𝑖 , consists

Type-A Type-B Type-A Type-B

𝑢Γ1
𝑢Γ2

𝑤Γ
1

𝑤Γ
2

𝑤Γ
3

𝑤Γ
4

𝑢Γ3

𝑢Γ4

𝑢Γ5
𝑢Γ6

𝑤Γ
5

𝑤Γ
6

𝑤Γ
7

𝑤Γ
8

𝑢Γ7

𝑢Γ8

Figure 1: A chain gadgets Γ with |Γ | = 4. There are 𝑑 pairs
of auxiliary agents in each red point, where 𝑑 is an integer
that is set equal to the regret score bound 𝑡 . Note that the
basic component only has 4 agents, the lines between the
agents are just to highlight that the agents are from the same
component.

of three men 𝑢𝑥𝑖
𝑆𝑎
, 𝑢

𝑥𝑖
𝑆𝑏
, 𝑢

𝑥𝑖
𝑆𝑐
, and three women𝑤𝑥𝑖

1 ,𝑤
𝑥𝑖
2 ,𝑤

𝑥𝑖
3 . We put

𝑤
𝑥𝑖
1 and 𝑤

𝑥𝑖
2 at the same position. The distance between 𝑤

𝑥𝑖
1 (or

𝑤
𝑥𝑖
2 ) and 𝑢𝑥𝑖

𝑆𝑎
(or 𝑢𝑥𝑖

𝑆𝑏
, 𝑢

𝑥𝑖
𝑆𝑐
) equals 1, which is less than the distance

between𝑤𝑥𝑖
3 and the three men, which is at least

√
5. See Figure 2a

for an illustration. There are three chains around Δ𝑥𝑖 . The distances
between 𝑢𝑥𝑖

𝑆𝑎
, 𝑢

𝑥𝑖
𝑆𝑏
, 𝑢

𝑥𝑖
𝑆𝑐

and their respective closest chains are equal
to 2.
Reception gadget. For each 𝑆 𝑗 ∈ S, we create four reception
gadgets to form an “𝑆 𝑗 -square” with one for each side, denoted as
Λ
𝑆 𝑗

0 and Λ
𝑆 𝑗

𝑥𝑖 with 𝑥𝑖 ∈ 𝑆 𝑗 . Each reception gadget has 7 pairs of
agents. See Figure 2b for an illustration. Given a reception gadget
Λ
𝑆 𝑗

𝑥𝑖 with 𝑆 𝑗 ∈ S and 𝑥𝑖 ∈ 𝑆 𝑗 , there are three chains that link Λ
𝑆 𝑗

𝑥𝑖
to the selection gadget of 𝑥𝑖 . The distances between the chains and
their respective closest agents from Λ

𝑆 𝑗

𝑥𝑖 are equal to 2, as illustrated
in Figure 2b. We use “YES-chain” to denote the chain in the middle,
and use “NO-chains” to denote the other two chains.
Crossover gadget. A crossover gadget does not introduce new
agents and consists of two basic components of each of two chains
which cross each other. Given two chains Γ1 and Γ2 that cross
with each other, we let Γ1 [𝑖], Γ1 [𝑖 + 1], Γ2 [ 𝑗], Γ2 [ 𝑗 + 1] be the four
components forming the crossover gadget. Here, we need to reset
the positions of agents in Γ1 [𝑖 + 1] and Γ2 [ 𝑗 + 1], that is, exchange
the positions of 𝑤Γ1

2(𝑖+1) and 𝑤
Γ1
2(𝑖+1)−1 if Γ1 [𝑖 + 1] is Type-A, or

exchange the positions of 𝑢Γ12(𝑖+1) and 𝑢
Γ1
2(𝑖+1)−1 if Γ1 [𝑖 + 1] is Type-

B. The positions of agents of Γ2 [ 𝑗 + 1] can be reset in a similar way.
See Figure 2c for an illustration.
Turn gadget. See Figure 2d for an illustration.
Broadcast gadget. Broadcast gadget consists of 9 pairs of agents,
which form a “square”. Each side of the “square” is linked by a chain
to either selection gadgets or reception gadgets. The distances be-
tween the chains and their respective closest agents in the broadcast
gadgets are all equal to 2. We use “IN-chain” to denote the chain
that links broadcast gadget to selection gadgets, and “OUT-chain”
to denote the chains to reception gadgets. A broadcast gadget has
exactly one IN-chain and three OUT-chains. See Figure 2e for an
illustration.

For each element 𝑥𝑖 ∈ X, we create one selection gadget and
three broadcast gadgets, denoted as Δ𝑥𝑖 and 𝐵𝑥𝑖

𝑆𝑎
, 𝐵

𝑥𝑖
𝑆𝑏
, 𝐵

𝑥𝑖
𝑆𝑐

with 𝑥𝑖 ∈
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𝑢𝑆𝑎

𝑢𝑆𝑏 𝑢𝑆𝑐

𝑤1,𝑤2

𝑤3

𝑤

𝑤𝑤

(a) A selection Gadget for 𝑥𝑖 ∈ X with 𝑥𝑖 ∈
𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 .

𝑤

Γ𝑌𝐸𝑆Γ𝑁𝑂 Γ𝑁𝑂
′

𝑤𝑤

𝑢4 𝑤4 𝑢5 𝑤5 𝑢6 𝑤6 𝑢7 𝑤7𝑤3𝑢3𝑤2𝑢2𝑤1
𝑢1

𝑑 − 3

𝑑 − 2
𝑑 − 2

𝑤7′′

𝑢7′′

𝑢1′

𝑤1′

𝑢2′

(b) A reception gadget for 𝑆 𝑗 ∈ S. Note that a set needs four such gadgets to form an
“𝑆 𝑗 -square”. For each red point there are 𝑑 − 3 or 𝑑 − 2 pairs of auxiliary agents. the
gray agents are created by reception gadgets from other sides.

Γ1

Γ2

Γ1 [𝑖 + 1]
Γ2 [ 𝑗 + 1]

𝑤 𝑤

𝑢

𝑢

𝑢 𝑢

𝑤

𝑤

𝑢

𝑤

𝑢 𝑤

𝑤

𝑢
𝑤

𝑢

(c) A crossover gadget formed by Γ1 [𝑖 ], Γ1 [𝑖 +
1], Γ2 [ 𝑗 ], Γ2 [ 𝑗 + 1] with Γ1 and Γ2 being two
chains. Note that the positions of some agents
of Γ1 [𝑖 + 1] and Γ2 [ 𝑗 + 1] have been reset. In
addition, the positions of auxiliary agents of
red components have been reset.

𝑤 𝑤

𝑢

𝑢
𝑢

𝑤
𝑢 𝑤

𝑤𝑢

𝑢

𝑤
𝑢 𝑤

𝑤 𝑢

Turn left

Turn right

(d) Turn left and turn right gadget. We remove
the auxiliary agents of the red component.
Moreover, we add 𝑑 − 3 auxiliary agents to
the red points.

𝑢

Γ𝐼𝑁

Γ𝑂𝑈𝑇

Γ𝑂𝑈𝑇
′

Γ𝑂𝑈𝑇
′′

𝑤1
𝑢1

𝑢2 𝑤2 𝑢3
𝑤3

𝑢4
𝑤4
𝑢5

𝑤5

𝑤

𝑢6𝑤6𝑢7𝑤7𝑢8

𝑤

𝑤8

𝑢9

𝑤9
𝑤

(e) Broadcast gadget. We remove the auxiliary
agents of the red component and add 𝑑 − 2
auxiliary agents to each red points.

Figure 2: Five Gadgets used in the construction. 𝑑 is set equal to the regret score bound 𝑡 . The auxiliary agents of chains are
omitted if not stated explicitly. We also omit the superscripts of agents in all five figures to make the figures clearer.

𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 and 𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 ∈ S. For each broadcast gadget 𝐵𝑥𝑖
𝑆𝑘

with
𝑘 ∈ {𝑎, 𝑏, 𝑐}, we create a chain Γ(𝑢𝑥𝑖

𝑆𝑘
, 𝐵

𝑥𝑖
𝑆𝑘
) with 𝑢𝑥𝑖

𝑆𝑘
being the man

created in Δ𝑥𝑖 , and let it be the IN-chain of 𝐵𝑥𝑖
𝑆𝑘
.

For each 𝑆 𝑗 ∈ S, we create four reception gadgets, denoted as
Λ
𝑆 𝑗

𝑥𝛼 ,Λ
𝑆 𝑗

𝑥𝛽
,Λ

𝑆 𝑗

𝑥𝛾 and Λ
𝑆 𝑗

0 with 𝑆 𝑗 = {𝑥𝛼 , 𝑥𝛽 , 𝑥𝛾 }.
For each pair of (𝐵𝑥𝑖

𝑆 𝑗
,Λ𝑆𝑘

𝑥𝑖 ) with 𝑥𝑖 ∈ 𝑆 𝑗 , 𝑆𝑘 , we create a chain

Γ(𝐵𝑥𝑖
𝑆 𝑗
,Λ𝑆𝑘

𝑥𝑖 ). The chain is an OUT-chain of 𝐵𝑥𝑖
𝑆 𝑗
, and is a YES-chain

of Λ𝑆𝑘
𝑥𝑖 if 𝑆 𝑗 = 𝑆𝑘 (or a NO-chain of Λ𝑆𝑘

𝑥𝑖 if 𝑆 𝑗 ≠ 𝑆𝑘 ). See Figure 3 for
a concrete example.

Next, we set 𝑑 = 𝑡 = 4 with 𝑡 being the regret score bound, and
create auxiliary agents for each gadget as we show in Figure 1 and
Figure 2.

Finally, for each agent 𝑎 created in the construction, we compute
a preference list based on the distances between 𝑎 and opposite
gender agents.

3.2 The correctness proof
Before showing the equivalence of the instances, we prove several
properties of the constructed instance. Here, 𝑀 is the solution
matching of 𝐼 ′ with 𝐼 ′ being the instance created as shown before.

Lemma 3.2. Given a chain Γ, the following hold. Here, 1 ≤ 𝑖 ≤ |Γ |,
and assume that both Γ [1] and Γ [|Γ |] are Type-A.

(1) Each component Γ [𝑖] can only be matched in two ways, that is
(a) {(𝑢Γ2𝑖−1,𝑤

Γ
2𝑖−1), (𝑢

Γ
2𝑖 ,𝑤

Γ
2𝑖 )} ⊆ 𝑀 , “Forward”-matching,

(b) {(𝑢Γ2𝑖−1,𝑤
Γ
2𝑖 ), (𝑢

Γ
2𝑖 ,𝑤

Γ
2𝑖−1)} ⊆ 𝑀 , “Backward”-matching.

(2) If 𝛤 [𝑖] is matched as “Forward”-matching, then Γ [𝑖 + 1] must
be matched as “Forward”-matching. If 𝛤 [𝑖 + 1] is matched as
“Backward”-matching, then Γ [𝑖] must be matched as “Back-
ward”-matching.

(3) Given a matching 𝑀 , if there is a woman 𝑤+ with
√
2 <

𝛿 (𝑤+, 𝑢Γ1 ) ≤ 2 and 𝛿 (𝑤+, 𝑀 (𝑤+)) > 𝛿 (𝑤+, 𝑢Γ1 ), then Γ must
be matched as “Forward”-matching. Here, we say 𝛤 is matched
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Δ𝑥𝛾

𝐵
𝑥𝛾

𝑆𝑎
𝐵
𝑥𝛾

𝑆𝑏

𝐵
𝑥𝛾

𝑆𝑐
Ψ Ψ

Ψ

Λ𝑆𝑏
𝑥𝛾

Λ𝑆𝑏
𝑥𝛼

Λ𝑆𝑏
0

Λ𝑆𝑏
𝑥𝛽

Γ(𝐵𝑥𝛾
𝑆𝑐
,Λ𝑆𝑏

𝑥𝛾 )

Γ(𝐵𝑥𝛾
𝑆𝑏
,Λ𝑆𝑏

𝑥𝛾 )

Γ(𝐵𝑥𝛾
𝑆𝑎
,Λ𝑆𝑏

𝑥𝛾 )

Γ(𝐵𝑥𝛾
𝑆𝑎
,Λ𝑆𝑐

𝑥𝛾 ), Γ(𝐵
𝑥𝛾

𝑆𝑐
,Λ𝑆𝑐

𝑥𝛾 ), Γ(𝐵
𝑥𝛾

𝑆𝑏
,Λ𝑆𝑐

𝑥𝛾 )

Γ(𝐵𝑥𝛾
𝑆𝑐
,Λ𝑆𝑎

𝑥𝛾 )

Γ(𝐵𝑥𝛾
𝑆𝑎
,Λ𝑆𝑎

𝑥𝛾 )

Γ(𝐵𝑥𝛾
𝑆𝑏
,Λ𝑆𝑎

𝑥𝛾 )

Γ(𝐵𝑥𝛼
𝑆+,Λ

𝑆𝑏
𝑥𝛼 )

Γ(𝐵𝑥𝛼
𝑆𝑏
,Λ𝑆𝑏

𝑥𝛼 )

Γ(𝐵𝑥𝛼
𝑆++

,Λ𝑆𝑏
𝑥𝛼 )

Γ(𝐵𝑥𝛽
𝑆∗ ,Λ

𝑆𝑏
𝑥𝛽
)

Γ(𝐵𝑥𝛽
𝑆𝑏
,Λ𝑆𝑏

𝑥𝛽
)

Γ(𝐵𝑥𝛽
𝑆∗∗

,Λ𝑆𝑏
𝑥𝛽
)

Figure 3: Gadgets created for 𝑥𝛾 and 𝑆𝑏 with 𝑥𝛾 ∈ 𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 and 𝑆𝑏 = {𝛼, 𝛽,𝛾}. Here, 𝑥𝛼 ∈ 𝑆𝑏 , 𝑆+, 𝑆++ and 𝑥𝛽 ∈ 𝑆𝑏 , 𝑆∗, 𝑆∗∗.

as “Forward”-matching if all components of 𝛤 are matched as
“Forward”-matching. The “Backward”-matching of 𝛤 is defined
in a similar way.

(4) Given a matching 𝑀 , if there is a woman 𝑤− with
√
2 <

𝛿 (𝑤−, 𝑢Γ2 |Γ |) ≤ 2 and 𝛿 (𝑤−, 𝑀 (𝑤−)) > 𝛿 (𝑤−, 𝑢Γ2 |Γ |), then Γ

must be matched as “Backward”-matching.

Proof. We first prove (1). Assume that Γ [𝑖] is Type-A. Through-
out the construction, there is no man 𝑢∗ with 𝛿 (𝑢∗,𝑤Γ

2𝑖−1) ≤
√
2

even in crossover and turn gadgets. Thus,𝑤Γ
2𝑖−1 prefers 𝑢

Γ
2𝑖−1 and

𝑢Γ2𝑖 to other men. The distances between 𝑢Γ2𝑖−1 (or 𝑢Γ2𝑖 ) and all
women except for 𝑤Γ

2𝑖 are greater than
√
2, which implies that

𝑢Γ2𝑖−1 and 𝑢
Γ
2𝑖 prefer 𝑤

Γ
2𝑖−1 to other women. Thus, 𝑤Γ

2𝑖−1 can only
be matched to either 𝑢Γ2𝑖−1 or 𝑢

Γ
2𝑖 . The first 𝑑 men in𝑤Γ

2𝑖 can only
be members in {𝑢Γ2𝑖−1, 𝑢

Γ
2𝑖 , 𝑢

Γ′
2𝑗−1} ∪ {𝑢 |𝑢 is an auxiliary man} with

Γ′ being another chain and 1 ≤ 𝑗 ≤ |Γ′ |. Thus, like 𝑤Γ
2𝑖−1, 𝑤

Γ
2𝑖

can only be matched to either 𝑢Γ2𝑖−1 or 𝑢
Γ
2𝑖 . Considering𝑀 is a per-

fect matching, we have either {(𝑢Γ2𝑖−1,𝑤
Γ
2𝑖−1), (𝑢

Γ
2𝑖 ,𝑤

Γ
2𝑖 )} ⊆ 𝑀 , or

{(𝑢Γ2𝑖−1,𝑤
Γ
2𝑖 ), (𝑢

Γ
2𝑖 ,𝑤

Γ
2𝑖−1)} ⊆ 𝑀 .

For (2), if {(𝑢Γ2𝑖−1,𝑤
Γ
2𝑖−1), (𝑢

Γ
2𝑖 ,𝑤

Γ
2𝑖 )} ⊆ 𝑀 , then 𝑤Γ

2(𝑖+1)−1 can
only be matched to 𝑢Γ2(𝑖+1)−1 since

√
2 < 𝛿 (𝑢Γ2𝑖 ,𝑤

Γ
2(𝑖+1)−1) ≤ 2 ≤

2 + 𝜖 = 𝛿 (𝑤Γ
2(𝑖+1)−1, 𝑢

Γ
2(𝑖+1) ), Here, Γ [𝑖 + 1] is Type-B since we

assume that Γ [𝑖] is Type-A. The other case can be proved in a
similar way. (3) and (4) can be seen as a simple extension of (2), and
can be proved in a similar way. □

Lemma 3.3. Given a selection gadget Δ𝑥𝑖 with 𝑥𝑖 ∈ X and 𝑥𝑖 ∈
𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 , the following holds.

(1) 𝑢Δ𝑥𝑖

𝑆𝑎
, 𝑢Δ

𝑥𝑖

𝑆𝑏
, 𝑢Δ

𝑥𝑖

𝑆𝑐
can only be matched to𝑤Δ𝑥𝑖

1 ,𝑤Δ𝑥𝑖

2 ,𝑤Δ𝑥𝑖

3 . Let
𝑆 𝑗 ∈ {𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 }, we say Δ𝑥𝑖 matched as “𝑆 𝑗 -Yes”-matching if
(𝑢Δ𝑥𝑖

𝑆 𝑗
,𝑤Δ𝑥𝑖

3 ) ∈ 𝑀 .

(2) If 𝛥𝑥𝑖 is matched as “𝑆 𝑗 -Yes”-matching, then Γ(Δ𝑥𝑖 , 𝐵𝑥𝑖
𝑆 𝑗
) must

be matched as “Forward”-matching.

Proof. Both𝑤Δ𝑥𝑖

1 and𝑤Δ𝑥𝑖

2 prefer𝑢Δ𝑥𝑖

𝑆𝑎
, 𝑢Δ

𝑥𝑖

𝑆𝑏
, 𝑢Δ

𝑥𝑖

𝑆𝑐
to other men

and vice versa. So𝑤Δ𝑥𝑖

1 ,𝑤Δ𝑥𝑖

2 can only be matched to the three men.
The first 𝑑 men in the preference list of𝑤Δ𝑥𝑖

3 is 𝑢Δ𝑥𝑖

𝑆𝑎
, 𝑢Δ

𝑥𝑖

𝑆𝑏
, 𝑢Δ

𝑥𝑖

𝑆𝑐
and

𝑢Γ2 with Γ = Γ(Δ𝑥𝑖 , 𝐵𝑥𝑖
𝑆 𝑗
). The last man cannot be matched to𝑤Δ𝑥𝑖

3
by Lemma 3.2. Thus,𝑤Δ𝑥𝑖

3 can only be matched to 𝑢Δ𝑥𝑖

𝑆𝑎
, 𝑢Δ

𝑥𝑖

𝑆𝑏
, 𝑢Δ

𝑥𝑖

𝑆𝑐
.

For (2), we have 𝛿 (Δ𝑥𝑖 , 𝐵𝑥𝑖
𝑆 𝑗
) = 2. Then Γ(Δ𝑥𝑖 , 𝐵𝑥𝑖

𝑆 𝑗
) must be matched

as “Forward”-matching by Lemma 3.2. □

Lemma 3.4 (*). Given a broadcast gadget 𝐵𝑥𝑖
𝑆 𝑗

with 𝑥𝑖 ∈ 𝑆 𝑗 , 𝑥𝑖 ∈ X
and 𝑆 𝑗 ∈ S, the following hold. Here, let 𝐵∗ = 𝐵

𝑥𝑖
𝑆 𝑗
.

(1) 𝐵∗ can only be matched in two ways, either {(𝑢𝐵∗

𝑘
,𝑤𝐵∗

𝑘
) |1 ≤

𝑘 ≤ 9} ⊆ 𝑀 , or {(𝑢𝐵∗

𝑘
,𝑤𝐵∗

𝑘−1) |1 ≤ 𝑘 ≤ 9} ⊆ 𝑀 with 𝑤𝐵∗
0 =

𝑤𝐵∗
9 . We say the first matching is “Forward”-matching of 𝐵∗

and the second is “Backward”-matching of 𝐵∗.
(2) If the IN-chain of 𝐵∗ is matched as “Forward”-matching, then

𝐵∗ and the three OUT-chains must be matched as “Forward”-
matchings.

(3) If there is anOUT-chain of𝐵∗matched as “Backward”-matching,
then𝐵∗ and the IN-chain of𝐵∗must bematched as “Backward”-
matchings.

Lemma 3.5 (*). Given a reception gadget Λ𝑆 𝑗

𝑥𝛾 with 𝑥𝛾 ∈ X, 𝑆 𝑗 ∈ S
and 𝑆 𝑗 = (𝑥𝛼 , 𝑥𝛽 , 𝑥𝛾 ), the following holds. Here, we assume that Λ𝑆 𝑗

𝑥𝛾

is on the top side of the “𝑆 𝑗 -square”, and Λ
𝑆 𝑗

𝑥𝛼 , Λ
𝑆 𝑗

𝑥𝛽
are on the left and

right side, respectively. We let Λ∗ = Λ
𝑆 𝑗

𝑥𝛾 , Λ
− = Λ

𝑆 𝑗

𝑥𝛼 .

(1) Λ∗ can only be matched in two ways, either {(𝑢Λ∗

𝑘
,𝑤Λ∗

𝑘
) |1 ≤

𝑘 ≤ 7} ⊆ 𝑀 , or {(𝑢Λ∗

𝑘
,𝑤Λ∗

𝑘−1) |1 ≤ 𝑘 ≤ 7} ⊆ 𝑀 with 𝑤Λ∗
0 =

𝑤Λ−
7 . We say the first matching is “Yes”-matching of Λ∗ and

the second is “No”-matching of Λ∗.
(2) If the YES-chain of Λ∗ is matched as “Forward”-matching, then

Λ∗ must be matched as “Yes”-matching, and the two NO-chains
must be matched as “Backward”-matching.

(3) If at least one NO-chain of Λ∗ is matched as “Forward”, then
Λ∗ must be matched as “No”-matching, and the YES-chain
must be matched as “Backward”-matching.

(4) Reception gadgets of the four sides of 𝑆 𝑗 -squaremust bematched
in the same way.

By Lemma 3.3, Lemma 3.4, and Lemma 3.5, we can get the fol-
lowing corollary.
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Corollary 3.6. Given a matching𝑀 , let 𝑥𝛾 ∈ X be a member of
𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 ∈ S, and 𝑆𝑏 = 𝑥𝛼 , 𝑥𝛽 , 𝑥𝛾 with 𝑥𝛼 , 𝑥𝛽 ∈ X. The following
hold.

(1) If Δ𝑥𝛾 is matched as “𝑆𝑏 -Yes”-matching, then Λ𝑆𝑏
𝑥𝛾 must be

matched as “Yes”-matching andΛ𝑆𝑎
𝑥𝛾 , andΛ

𝑆𝑐
𝑥𝛾 must bematched

as “No”-matchings.
(2) If Λ𝑆𝑏

𝑥𝛾 is matched as “Yes”-matching, then Δ𝑥𝛼 , Δ𝑥𝛽 and Δ𝑥𝛾

must be matched as “𝑆𝑏 -Yes”-matchings. If Λ𝑆𝑏
𝑥𝛾 is matched

as “No”-matching, then none of Δ𝑥𝛼 , Δ𝑥𝛽 , Δ𝑥𝛾 is matched as
“𝑆𝑏 -Yes”-matching.

Lemma 3.7 (*). Given a crossover gadget formed by Γ1 [𝑖], Γ1 [𝑖 + 1],
Γ2 [ 𝑗], and Γ2 [ 𝑗+1] with Γ1 and Γ2 being two chains. We have either Γ1
is matched as “Forward”-matching and Γ2 is matched as “Backward”-
matching, or Γ1 is matched as “Backward”-matching and Γ2 is matched
as “Forward”-matching.

Now, we have all tools to prove the equivalence of the instance.
“⇒”: Given a solution of 𝐼 = (X,S) of PC-X3C, we can construct
a matching of 𝐼 ′ = (𝑈 ,𝑊 , 𝐿, 𝑡) as follows. For each 𝑆 𝑗 ∈ K with
𝑆 𝑗 = {𝑥𝛼 , 𝑥𝛽 , 𝑥𝛾 }, we let

(1) Λ𝑆 𝑗

𝑥𝛼 ,Λ
𝑆 𝑗

𝑥𝛽
,Λ

𝑆 𝑗

𝑥𝛾 ,Λ
𝑆 𝑗

0 match as “Yes”-matchings,
(2) Δ𝑥𝛼 ,Δ𝑥𝛽 ,Δ𝑥𝛾 match as “𝑆 𝑗 -Yes”-matching.

For each 𝑥𝑖 ∈ 𝑆 𝑗 , 𝑆𝑘 , 𝑆ℓ with Δ𝑥𝑖 matched as “𝑆 𝑗 -Yes”-matching, we
let

(1) 𝐵𝑥𝑖
𝑆 𝑗

match as “Forward”-matching.
(2) 𝐵𝑥𝑖

𝑆𝑘
, 𝐵𝑥𝑖

𝑆ℓ
match as “Backward”-matchings

(3) Γ(𝑢𝑥𝑖
𝑆 𝑗
, 𝐵

𝑥𝑖
𝑆 𝑗
), Γ(𝐵𝑥𝑖

𝑆 𝑗
,Λ

𝑆 𝑗

𝑥𝑖 ), Γ(𝐵
𝑥𝑖
𝑆 𝑗
,Λ𝑆𝑘

𝑥𝑖 ), Γ(𝐵
𝑥𝑖
𝑆 𝑗
,Λ𝑆ℓ

𝑥𝑖 ) match as
“Forward”-matchings.

(4) Γ(𝑢𝑥𝑖
𝑆𝑘
, 𝐵

𝑥𝑖
𝑆𝑘
), Γ(𝐵𝑥𝑖

𝑆𝑘
,Λ

𝑆 𝑗

𝑥𝑖 ), Γ(𝐵
𝑥𝑖
𝑆𝑘
,Λ𝑆𝑘

𝑥𝑖 ), match as “Backward”-
matchings.

(5) Γ(𝑢𝑥𝑖
𝑆ℓ
, 𝐵

𝑥𝑖
𝑆ℓ
), Γ(𝐵𝑥𝑖

𝑆ℓ
,Λ

𝑆 𝑗

𝑥𝑖 ), Γ(𝐵
𝑥𝑖
𝑆ℓ
,Λ𝑆ℓ

𝑥𝑖 ), match as “Backward”-
matchings.

(6) Γ(𝐵𝑥𝑖
𝑆𝑘
,Λ𝑆ℓ

𝑥𝑖 ) match as “Forward”-matching and Γ(𝐵𝑥𝑖
𝑆ℓ
,Λ𝑆𝑘

𝑥𝑖 )
match as “Backward”-matching.

Note that Γ(𝐵𝑥𝑖
𝑆𝑘
,Λ𝑆ℓ

𝑥𝑖 ) and Γ(𝐵𝑥𝑖
𝑆ℓ
,Λ𝑆𝑘

𝑥𝑖 ) cross each other, so we let
one of them be “Forward”-matching and let the other be “Backward”-
matching. Obviously, the constructedmatching is stable by Lemma 3.2
to Lemma 3.5, Corollary 3.6 and Lemma 3.7.
“⇐”: Given a matching 𝑀 , construct a K as follows. For each
𝑥𝑖 ∈ X with 𝑥𝑖 ∈ 𝑆𝑎, 𝑆𝑏 , 𝑆𝑐 , we let 𝑆 𝑗 be a member of K if Λ𝑆 𝑗

𝑥𝑖

is matched as“Yes”-matching. We claim that only one of Λ𝑆𝑎
𝑥𝑖 , Λ

𝑆𝑏
𝑥𝑖 ,

Λ𝑆𝑐
𝑥𝑖 is matched as“Yes”-matching. Suppose there are two of Λ𝑆𝑎

𝑥𝑖 ,
Λ𝑆𝑏
𝑥𝑖 , Λ

𝑆𝑐
𝑥𝑖 matched as“Yes”-matching, for instance, both Λ𝑆𝑎

𝑥𝑖 , Λ
𝑆𝑏
𝑥𝑖 are

matched as “Yes”-matching. Then both Γ(𝐵𝑥𝑖
𝑆𝑎
,Λ𝑆𝑎

𝑥𝑖 ) and Γ(𝐵
𝑥𝑖
𝑆𝑏
,Λ𝑆𝑎

𝑥𝑖 )
arematched as “Forward”-matchings. Then, an agent in Γ(𝐵𝑥𝑖

𝑆𝑏
,Λ𝑆𝑎

𝑥𝑖 )
will form a blocking pair with an agent in Λ𝑆𝑎

𝑥𝑖 , and𝑀 is not a sta-
ble matching. Suppose none of Λ𝑆𝑎

𝑥𝑖 , Λ
𝑆𝑏
𝑥𝑖 , Λ

𝑆𝑐
𝑥𝑖 is matched as “Yes”-

matching, then we have 𝐵𝑋𝑖

𝑆𝑎
, 𝐵𝑋𝑖

𝑆𝑏
, 𝐵𝑋𝑖

𝑆𝑐
are matched as “Backward”-

matching. Thus, at least one blocking pair is formed by them with
Δ𝑥𝑖 by Lemma 3.3, which implies that𝑀 is not stable. □

4 RESULTS IN 1-EUCLIDEAN SPACE
In this section, we study 1-Euclid-𝜋-SMT, that is, that agents in
𝑈 ∪𝑊 are embedded into a line. Without loss of generality, we
assume that the line is horizontal. Under this setting, 1-Euclid-Reg-
SMT and 1-Euclid-Forced-SMT can be solved in polynomial time.
If preference lists are incomplete, 1-Euclid-𝜋-SMT is NP-hard for
all 𝜋 ∈ {Reg, Egal, Forced, Max}.

4.1 1-Euclid-Reg-SMT
We introduce some notations that will be used in the algorithms.
Free-agent and reselecting-agent. Given a line which𝑈 and𝑊
are embedded into, a man 𝑢0 ∈ 𝑈 and two women 𝑤1,𝑤2 with
𝑤1 is on the left side of 𝑢0 and 𝑤2 is on the right side of 𝑢0, and
a stable matching 𝑀1 ⊆ 𝑈 ×𝑊 with {𝑢0,𝑤1} ∈ 𝑀1, we say 𝑢0 is
a free-man between 𝑤1 and 𝑤2 in 𝑀1 if 𝛿 (𝑢0,𝑤1) = 𝛿 (𝑢0,𝑤2) and
𝛿 (𝑢0,𝑤2) < 𝛿 (𝑀1 (𝑤2),𝑤2). We can define free-woman in a similar
way, and we call both free-men and free-women as free-agents.
Given𝑈 ,𝑊 , a stable matching𝑀1, a free-man 𝑢0 ∈ 𝑈 between two
different women𝑤1,𝑤2 ∈𝑊 in𝑀1, the following hold.

Lemma 4.1. If (𝑢0,𝑤1) ∈ 𝑀1, then there exists another stable
matching𝑀2 with (𝑢0,𝑤2) ∈ 𝑀2.

Proof. Since 𝛿 (𝑢0,𝑤2) < 𝛿 (𝑀1 (𝑤2),𝑤2), 𝑤2 must prefer 𝑢0 to
𝑀1 (𝑤2). (𝑢0,𝑤1) is not a blocking pair since 𝛿 (𝑢0,𝑤1) = 𝛿 (𝑢0,𝑤2).
We can construct a matching𝑀2 as follows. Let 𝑢2 = 𝑀1 (𝑤2). First,
let𝑀2 = 𝑀1 \ {(𝑢0,𝑤1), (𝑢2,𝑤2)} ∪ {{𝑢0,𝑤2}, {𝑢2,𝑤1}}. Then, we
check whether there is a man 𝑢3 with𝑤3 = 𝑀2 (𝑢3), such that there
is no man 𝑢4 with𝑤4 = 𝑀2 (𝑢4) with

(1) 𝛿 (𝑢3,𝑤1) < 𝛿 (𝑢2,𝑤1),
(2) 𝛿 (𝑢3,𝑤1) < 𝛿 (𝑢3,𝑤3),
(3) 𝛿 (𝑢4,𝑤1) < 𝛿 (𝑢4,𝑤4),
(4) 𝛿 (𝑢4,𝑤1) < 𝛿 (𝑢3,𝑤1).

If so, let𝑀2 = 𝑀2\{(𝑢3,𝑤3), (𝑢2,𝑤1)}∪{{𝑢3,𝑤1}, {𝑢2,𝑤3}}. Repeat
until there is no man satisfying the requirement. Then, we do a
similar process to𝑢2, that is, finding the closest woman who prefers
𝑢2 to her partner, matching them together, and repeat this process
until no woman satisfies the requirement. Thus, we can claim that
𝑀2 is stable, since there is no pair of agents who prefer each other
to their partners matched by𝑀2. □

We say 𝑢0 reselects his partner from 𝑀1 to 𝑀2, and say 𝑢0 is a
reselecting-agent.
Vanish-set and newborn-set. Let 𝑀old = 𝑀1 \ (𝑀1 ∩ 𝑀2) and
𝑀new = 𝑀2 \ (𝑀1 ∩𝑀2), we have

• |𝑀old | = |𝑀new |.
• 𝑈old = 𝑈new and𝑊old =𝑊new.

Here,𝑈old = {𝑢𝑖 |𝑢𝑖 ∈ 𝑈 ,𝑤 𝑗 ∈𝑊, (𝑢𝑖 ,𝑤 𝑗 ) ∈ 𝑀old}. The other three
sets can be defined in a similar way. We say 𝑀old is the vanish-set
caused by 𝑢0, and say𝑀new is a newborn-set caused by 𝑢0.
Rematch-chain. Let (𝑢end,𝑤end) be the farthest pair in 𝑀old ∪
𝑀new, that is, 𝛿 (𝑢end,𝑤end) > 𝛿 (𝑢𝑖 ,𝑤 𝑗 ) with (𝑢𝑖 ,𝑤 𝑗 ) ∈ 𝑀old ∪
𝑀new \ {𝑢end,𝑤end}. We create a ( |𝑈new | + |𝑊new |)-size sorted set
of agents, denoted as𝐶 , and set it as follows. First, let𝑤end be𝐶 [1]
with 𝐶 [𝑖] being the 𝑖-th agent in 𝐶 . Then, we construct 𝐶 [2] to
𝐶 [𝑛] in two ways. If {𝑢end,𝑤end} ∈ 𝑀old, let 𝑀2 (𝑤end) be 𝐶 [2]
and 𝑀1 (𝑀2 (𝑤end)), denoted as 𝑤 ′, be 𝐶 [3]. Then let 𝑀2 (𝑤 ′) be
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𝐶 [4] and𝑀1 (𝑀2 (𝑤 ′)) be 𝐶 [5], and so on. If {𝑢end,𝑤end} ∈ 𝑀new,
let 𝑀1 (𝑤end) be 𝐶 [2] and 𝑀2 (𝑀1 (𝑤end)), denoted as 𝑤 ′, be 𝐶 [3].
Then let𝑀1 (𝑤 ′) be 𝐶 [4] and𝑀2 (𝑀1 (𝑤 ′)) be 𝐶 [5], and so on. We
say 𝐶 is a rematch-chain caused by 𝑢0. Assume that 𝑢0 is 𝐶 [𝑖].
Recall that 𝑢0 is a free-agent and𝑤1,𝑤2 are the two partners that
𝑢0 can reselect. We can get the following observation based on the
definition of 𝐶 , that is, 𝐶 [ 𝑗] prefers 𝐶 [ 𝑗 + 1] to 𝐶 [ 𝑗 − 1] if 𝑗 < 𝑖 ,
named the “men-happy” side of 𝐶 , and 𝐶 [ 𝑗] prefers 𝐶 [ 𝑗 − 1] to
𝐶 [ 𝑗 − 1] if 𝑗 > 𝑖 , named the “women-happy” side 𝐶 .

Given an agent 𝑎 ∈ 𝑈 ∪𝑊 and a pair (𝑢,𝑤) with 𝑢 ∈ 𝑈 ,𝑤 ∈𝑊 ,
we say 𝑎 is between (𝑢,𝑤) if 𝑎 is between 𝑢 and 𝑤 . We say a
pair (𝑢end,𝑤end) is the farthest pair of a set 𝑃 if 𝛿 (𝑢end,𝑤end) >

𝛿 (𝑢𝑖 ,𝑤 𝑗 ) with (𝑢𝑖 ,𝑤 𝑗 ) ∈ 𝑃 \ {𝑢end,𝑤end}. Given two stable match-
ings𝑀1, 𝑀2 with𝑀2 being the resulting matching after a free-agent
𝑎0 ∈ 𝑈 ∪𝑊 reselects his/her partner from 𝑀1, let 𝑀old, 𝑀new be
the vanish- and newborn-sets of 𝑎0, and 𝐶 be the rematch-chain
caused by 𝑎0, and 𝑎0 is between a pair (𝑢arc,𝑤arc) ∈ 𝑀1.

Lemma 4.2. Let (𝑢end,𝑤end) be the farthest pair in𝑀old ∪𝑀new.
Let 𝑎in ∈ 𝑈 ∪𝑊 be an agent who is between (𝑢end,𝑤end) with
𝑎in ∉ (𝑈old ∪𝑊old), and 𝑎out ∈ 𝑈 ∪𝑊 be an agent who is not
between (𝑢arc,𝑤arc) ∈ 𝑀1, the following holds

(1) Either (𝑢end,𝑤end) ∈ 𝑀1, or (𝑢end,𝑤end) ∈ 𝑀2.
(2) If𝐶 [𝑖] is on the left side of𝐶 [𝑖 + 1], then𝐶 [𝑖 − 1] is on the left

side of 𝐶 [𝑖].
(3) 𝑎0 is between 𝑢end and𝑤end.
(4) {𝑎out} ∩ (𝑈old ∪𝑊old) = ∅.

Proof. (1) is true since𝑀old∩𝑀new = ∅. For (2), if𝐶 [𝑖] is on the
left side of 𝑎0, we have 𝐶 [𝑖] prefers 𝐶 [𝑖 + 1] to 𝐶 [𝑖 − 1]. if 𝐶 [𝑖 − 1]
is between 𝐶 [𝑖] and 𝐶 [𝑖 + 1], then 𝐶 [𝑖] must prefer 𝐶 [𝑖 − 1] to
𝐶 [𝑖 + 1], a contradiction. If 𝐶 [𝑖] is on the right side of 𝑎0, we have
𝐶 [𝑖] prefers𝐶 [𝑖−1] to𝐶 [𝑖 +1], and𝐶 [𝑖−1] prefers𝐶 [𝑖−2] to𝐶 [𝑖],
and so on. If 𝐶 [𝑖 − 1] is between 𝐶 [𝑖] and 𝐶 [𝑖 + 1], then 𝐶 [𝑖 − 2]
must between 𝐶 [𝑖 − 1] and 𝐶 [𝑖 + 1], then 𝐶 [𝑖 − 3] must between
𝐶 [𝑖 − 2] and𝐶 [𝑖 + 1], that is, each𝐶 [ 𝑗 − 1] must between𝐶 [ 𝑗] and
𝐶 [𝑖 + 1] with 𝑗 < 𝑖 , which implies that 𝑢0 must be in the right side
of 𝐶 [𝑖], a contradiction. In the definition, we always let 𝑤end be
𝐶 [1] and 𝑢end be 𝐶 [𝑛], thus, (3) is true by (2). For (4), assume that
𝑎𝑜𝑢𝑡 is in the woman happy side. If {𝑎out} ∩ (𝑈old ∪𝑊old), 𝑎𝑜𝑢𝑡
must have an index greater than 𝑢end in 𝐶 by (2), which implies
that (𝑢end,𝑤end) is not the farthest pair. □

Given a line which𝑈 ,𝑊 are embedded into, we can safely match
and remove a man-woman pair if the distance of them is less than
all other pairs. We call the process, that matching and removing
the closet man-woman pair repeatedly until no such pair exists, as
Update. We say a man𝑢0 ∈𝑊 between𝑤1,𝑤2 ∈𝑊 is a chosen-man
if 𝛿 (𝑢0,𝑤1) = 𝛿 (𝑢0,𝑤2) and 𝛿 (𝑢0,𝑤1) is less than all distances of
other man-woman pairs. We can define chosen-woman in a similar
way. Let 𝑈 𝐿 be the men on the left side of 𝑢0, and let 𝑈 𝐿

1 ⊆ 𝑈 𝐿

be the resulting set of𝑈 𝐿 after removing 𝑢0,𝑤1 and updating, let
𝑈 𝐿
2 ⊆ 𝑈 𝐿 be the resulting set of 𝑈 𝐿 after removing 𝑢0,𝑤2 and

updating. Define𝑊 𝐿,𝑊 𝐿
1 , and𝑊

𝐿
2 analogously. If | |𝑈 𝐿

1 | − |𝑊 𝐿
1 | | ≤

| |𝑈 𝐿
2 | − |𝑊 𝐿

2 | |, we say𝑤1 is the better-partner of 𝑢0; otherwise, we
say𝑤2 is the better-partner of 𝑢0.

Theorem 4.3. 1-Euclid-Reg-SMT can be solved in polynomial time
when preference profile is complete.

Proof. Given an instance 𝐼 of 1-Euclid-Reg-SMT with an input
line that𝑈 and𝑊 are embedded into, let𝑀 = ∅. We do the following
process repeatedly until |𝑀 | = |𝑈 |:

(1) Update the line and set 𝑀 = 𝑀 ∪ 𝑀𝑢𝑝𝑑𝑎𝑡𝑒 with 𝑀𝑢𝑝𝑑𝑎𝑡𝑒

being the pairs matched through the update process.
(2) Find a chosen-agent and match him/her to the better-partner,

denoted as (𝑢𝑐 ,𝑤𝑐 ). Set 𝑀 = 𝑀 ∪ (𝑢𝑐 ,𝑤𝑐 ) and remove 𝑢𝑐
and𝑤𝑐 from the line.

The correctness of the algorithm follows from Lemma 4.1 and
Lemma 4.2. Let (𝑢𝑖𝑐 ,𝑤𝑖

𝑐 ) be the 𝑖-th chosen-pair added to𝑀 . Here,
we say (𝑢𝑖𝑐 ,𝑤𝑖

𝑐 ) is a chosen-pair if one of 𝑢1𝑐 and 𝑤1
𝑐 is a chosen-

agent. Given a stable matching𝑀0 with (𝑢1𝑐 ,𝑤1
𝑐 ) ∉ 𝑀0, there must

be another matching𝑀1 with (𝑢1𝑐 ,𝑤1
𝑐 ) ∈ 𝑀1 by Lemma 4.1, since

the chosen-agent is obviously a free-agent of𝑀0. Since the chosen-
agent, i.e., 𝑢1𝑐 , does not match with his better-partner, we have the
men on the left side of 𝑢1𝑐 , denoted as 𝑈 𝐿 , are not equal to the
women on the left side of 𝑢1𝑐 , denoted as 𝑈𝑅 . Thus, at least one
agent 𝑎arc ∈ 𝑈 𝐿 ∪𝑈𝑅 must be matched to an agent 𝑏arc who is on
the right side of 𝑢1𝑐 . By Lemma 4.2, all agents in the rematch-chain
are between 𝑎arc and 𝑏arc. Thus,𝑀2 is a solution matching of 𝐼 if𝑀1
is a solution of 𝐼 , since (𝑎arc, 𝑏arc) ∈ 𝑀1. Similarly, there must be
another matching 𝑀2 with (𝑢2𝑐 ,𝑤2

𝑐 ) ∈ 𝑀2, if (𝑢2𝑐 ,𝑤2
𝑐 ) ∉ 𝑀1. Thus,

𝑀 is a solution matching of 𝐼 . □

4.2 1-Euclid-Forced-SMT
Let𝑀1, 𝑀2, 𝑀3 be three stable matchings with𝑀2 (or𝑀3) being the
resulting matching after a free-agent 𝑎1 (or 𝑎2) ∈ 𝑈 ∪𝑊 reselects
his/her partner from 𝑀1 (or 𝑀2). Given a pair {𝑢arc,𝑤arc} ∈ 𝑀1
with 𝑎1, 𝑎2 being between 𝑢arc and𝑤arc, the following holds.

Lemma 4.4. Given an agent 𝑎out who is not between 𝑢arc and𝑤arc,
we have 𝑎out is neither a member of 𝐶1 nor a member of 𝐶2, where
𝐶1 and 𝐶2 are rematch-chains caused by 𝑎1 and 𝑎2, respectively.

Proof. 𝑎out is not a member of 𝐶1 by Lemma 4.2.(4).
If (𝑢arc,𝑤arc) ∈ 𝑀2, then𝑎 ∉ 𝐶2 by Lemma 4.2.(4). If (𝑢arc,𝑤arc) ∈

𝑀2, then there is an index 𝑖 with 1 < 𝑖 < |𝐶1 |, such that 𝑎2 is be-
tween𝐶1 [𝑖] and𝐶1 [𝑖 +1]. If (𝐶1 [𝑖],𝐶1 [𝑖 +1]) ∈ 𝑀2, then 𝑎out is not
a member of 𝐶2 since (𝑢arc,𝑤arc) ∈ 𝑀2. If (𝐶1 [𝑖],𝐶1 [𝑖 + 1]) ∈ 𝑀1,
then 𝑎2 is also a free-agent in𝑀1. Thus, let 𝑎2 reselect his/her part-
ner in 𝑀1 and get a resulting matching 𝑀 ′

2. We have 𝑎1 is still a
free-agent in𝑀 ′

2, and (𝑢arc,𝑤arc) ∈ 𝑀 ′
2. Then let 𝑎1 reselect his/her

partner in𝑀 ′
2 and denote the resulting matching as𝑀 ′

3. Obviously,
𝑀3 = 𝑀 ′

3. Let 𝐶
′
1 denote the rematch-chain caused by 𝑎1 from

𝑀 ′
2 to 𝑀 ′

3. Then, 𝑎out is not a member of 𝐶 ′
1, since 𝑎1 is between

(𝑢arc,𝑤arc) ∈ 𝑀 ′
2. □

Lemma 4.5. Given a matching 𝑀 , let (𝑢1,𝑤1), (𝑢2,𝑤2) be two
pairs matched in𝑀 . If one of 𝑢2,𝑤2 is between {𝑢1,𝑤1} and the other
is not, then𝑀 is not a stable matching.

Proof. Assume that 𝑢2 is between 𝑢1,𝑤1 and 𝑤1 is not. If the
order of the four agents from left to right is 𝑢1, 𝑢2,𝑤1,𝑤2, then 𝑢2
and 𝑤1 form a blocking pair. If the order is 𝑤2, 𝑢1, 𝑢2,𝑤1, then 𝑢1
and𝑤2 form a blocking pair. □
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Let𝑀1, 𝑀2, 𝑀3 be three stable matchings with 𝑀2 (or𝑀3) being
the resulting matching after a free-agent 𝑎1 (or 𝑎2) ∈ 𝑈 ∪𝑊 rese-
lecting his/her partner from𝑀1 (or𝑀2). In addition, for each pair
(𝑢,𝑤) ∈ 𝑀1, either both 𝑎1, 𝑎2 are between 𝑢,𝑤 , or neither is be-
tween 𝑢,𝑤 . Given a pair (𝑢arc,𝑤arc) ∈ 𝑀1 with 𝑎1, 𝑎2 not between
𝑢arc and𝑤arc, the following holds.

Lemma 4.6. Given an agent 𝑎in who is between 𝑢arc and𝑤arc, we
have 𝑎in is neither a member of 𝐶1 nor 𝐶2, where 𝐶1 and 𝐶2 are
rematch-chains caused by 𝑎1 and 𝑎2, respectively.

Proof. First, we claim that 𝑎in ∉ 𝐶1. If it is not true, 𝑀2 is not
a stable matching by Lemma 4.5. If 𝑢arc,𝑤arc ∉ 𝐶1, then 𝑎in ∉ 𝐶2
can be proved in a similar way as above. If 𝑢arc,𝑤arc ∈ 𝐶1, we have
two cases. Let (𝑢𝑓 𝑎𝑟 ,𝑤 𝑓 𝑎𝑟 ) be the farthest pair in 𝑀1

new ∪ 𝑀1
old,

with𝑀1
new, 𝑀

1
old being the newborn- and vanish-sets caused by 𝑎1,

respectively. Obviously, 𝑎in is between 𝑢𝑓 𝑎𝑟 and𝑤 𝑓 𝑎𝑟 . If 𝑎2 is not
between 𝑢𝑓 𝑎𝑟 and𝑤 𝑓 𝑎𝑟 , then 𝑎in ∉ 𝐶2 can be proved as above. If 𝑎2
is between 𝑢𝑓 𝑎𝑟 and 𝑤 𝑓 𝑎𝑟 , then 𝑎2 is between a pair (𝑢,𝑤) ∈ 𝑀2,
while 𝑎in is not. We can prove 𝑎in ∉ 𝐶2 by Lemma 4.4. □

Before showing the algorithm, we give a formal definition of
cross-score, which is used in the algorithm.
Cross-score. Given a matching 𝑀 and a pair (𝑢,𝑤) ∈ 𝑊 , the
cross-score of (𝑢,𝑤), denoted as 𝜉 (𝑢,𝑤), is equal to |𝐴(𝑢,𝑤) |, where
𝐴(𝑢,𝑤) is the set of agents who are between 𝑢 and 𝑤 (and 𝑢,𝑤 ∈
𝐴(𝑢,𝑤) ). The cross-score of 𝑀 , denoted as 𝜉 (𝑀), is set as 𝜉 (𝑀) =∑

(𝑢,𝑤) ∈𝑀 𝜉 (𝑢,𝑤). Let𝑀1, 𝑀2 be two stable matchings with𝑀2 be-
ing the resulting matching after a free-agent 𝑎0 ∈ 𝑈 ∪𝑊 reselecting
his/her partner. Let (𝑢end,𝑤end) be the farthest pair in𝑀old∪𝑀new
with𝑀old and𝑀new being the vanish- and newborn-sets caused by
𝑎0, respectively. The following hold.

Lemma 4.7. (1) If (𝑢end,𝑤end) ∈ 𝑀1, then 𝜉 (𝑀1) > 𝜉 (𝑀2). (2) If
(𝑢end,𝑤end) ∈ 𝑀2, then 𝜉 (𝑀1) < 𝜉 (𝑀2).

Proof. By the definition of cross-score, we have 𝜉 (𝑀2) = 𝜉 (𝑀1∪
𝑀new \ 𝑀old). Thus, if 𝜉 (𝑀new) > 𝜉 (𝑀old), then 𝜉 (𝑀2) > 𝜉 (𝑀1).
If (𝑢end,𝑤end) ∈ 𝑀1, then 𝜉 ((𝑢end,𝑤end)) >

∑
(𝑢,𝑤) ∈𝑀new 𝜉 (𝑢,𝑤),

since there are no two pairs (𝑢1,𝑤1), (𝑢2,𝑤2) ∈ 𝑀old, such that
𝑢1,𝑤1 are between 𝑢2 and𝑤2. Similarly, If (𝑢end,𝑤end) ∈ 𝑀2, then
𝜉 ((𝑢end,𝑤end)) >

∑
(𝑢,𝑤) ∈𝑀old 𝜉 (𝑢,𝑤). □

Let 𝐼 be an instance of 1-Euclid-Forced-SMT and 𝑀 be a stable
matching of 𝐼 . Given two agents 𝑎𝐿, 𝑏𝑅 ∈ 𝑈 ∪𝑊 , let 𝐴(𝑎𝐿,𝑏𝑅 )
denote the set of agents between 𝑎𝐿 and 𝑏𝑅 (and 𝑎𝐿, 𝑏𝑅 ∈ 𝐴(𝑎𝐿,𝑏𝑅 ) ).
We say 𝐴(𝑎𝐿,𝑏𝑅 ) has a closed-matching if𝑀 (𝑎𝑖 ) ∈ 𝐴(𝑎𝐿,𝑏𝑅 ) for all
𝑎𝑖 ∈ 𝐴(𝑎𝐿,𝑏𝑅 ) . Denote the matching of 𝐴(𝑎𝐿,𝑏𝑅 ) in 𝑀 as 𝑀(𝑎𝐿,𝑏𝑅 ) ,
and let𝑀 ′

(𝑎,𝑏) be the closed-matching of 𝐴(𝑎𝐿,𝑏𝑅 ) , which is stable
and has the minimum cross-score among all closed-matchings of
𝐴(𝑎𝐿,𝑏𝑅 ) . Let𝑀

′ = 𝑀 ∪𝑀 ′
(𝑎,𝑏) \𝑀(𝑎,𝑏) , the following holds.

Lemma 4.8 (*). 𝑀 ′ is a stable matching of 𝐼 .

Theorem 4.9. 1-Euclid-Forced-SMT can be solved in polynomial
time, if preference profile is complete.

Proof. Given a line that 𝑈 and𝑊 are embedded into, 𝐴𝑖, 𝑗 ⊆
𝑈 ∪𝑊 consists of agents between 𝑎𝑖 and 𝑎 𝑗 (including 𝑎𝑖 and 𝑎 𝑗 )
with 𝑎𝑖 , 𝑎 𝑗 being the 𝑖-th and 𝑗-th agents. The basic idea of the

algorithm is, given a subset 𝐴𝑖, 𝑗 , we can always divide it into three
disjoint parts, that is, {𝑎𝑖 , 𝑎𝑘 },𝐴𝑖+1,𝑘−1 and𝐴𝑘+1, 𝑗 . By enumerating
all possible 𝑘 , we can get the optimal matching of 𝐴𝑖, 𝑗 , that is, the
closed-matching with the minimum cross-score on 𝐴𝑖, 𝑗 , as long as
we have all optimal matchings of𝐴𝑖+1,𝑘−1 and𝐴𝑘+1, 𝑗 with 𝑖 < 𝑘 < 𝑗 .
Thus, we can use a dynamic programming to calculate the optimal
matching of 𝐴𝑖, 𝑗 from 𝑗 − 𝑖 = 1 to 𝑗 − 𝑖 = 2𝑛 − 1. Let𝑀 [𝑖, 𝑗] be the
optimal matching of 𝐴𝑖, 𝑗 , that is, 𝑀 [𝑖, 𝑗] has the minimum cross-
score among all feasible-matchings of 𝐴𝑖, 𝑗 . Here, a matching𝑀 is a
feasible-matching if and only if 𝑀 is stable and does not break any
pair in 𝐹 . Here, a matching𝑀 breaks a forced pair (𝑢,𝑤) ∈ 𝐹 , if 𝑢
is matched by 𝑀 but 𝑀 (𝑢) ≠ 𝑤 . Let 𝐷 (𝑖, 𝑗) be the cross-score of
𝑀 [𝑖, 𝑗].
Initialization. We initialize𝑀 [𝑖, 𝑖 + 1], 𝐷 [𝑖, 𝑖 + 1] as follows.

𝑀 [𝑖, 𝑖 + 1] = {𝑎𝑖 , 𝑎𝑖+1}
𝐷 [𝑖, 𝑖 + 1] = 𝜉 (𝑎𝑖 , 𝑎𝑖+1)

Recursive formulas. Then we calculate 𝐷 [𝑖, 𝑗] from 𝑗 − 𝑖 + 1 = 4
to 𝑗 − 𝑖 + 1 = 2𝑛.

𝐷 [𝑖, 𝑗] = min
𝑘∈(𝑖, 𝑗)

𝐸 [𝑖, 𝑗, 𝑘]

Here, 𝐸 [𝑖, 𝑗 .𝑘] = 𝜉 (𝑎𝑖 , 𝑎𝑘 ) +𝐷 [𝑖 + 1, 𝑘 − 1] +𝐷 [𝑘 + 1, 𝑗] if {𝑎𝑖 , 𝑎𝑘 } ∪
𝑀 [𝑖 + 1, 𝑘 − 1] ∪ 𝑀 [𝑘 + 1, 𝑗] is a feasible matching; otherwise,
𝐸 [𝑖, 𝑗 .𝑘] = +∞. If 𝐷 [𝑖, 𝑗] ≠ +∞, we let 𝑀 [𝑖 . 𝑗] be the correspond-
ing optimal matching. This process can be done in 𝑂 (𝑛2) time.
If 𝐷 [𝑖, 𝑗] ≠ +∞, then the solution matching of 𝐼 is 𝑀 [𝑖, 𝑗] by
Lemma 4.8. □

4.3 Other Results
Theorem 4.10 (*). If preference lists are incomplete, 𝑑-Euclid-𝜋-

SMT is NP-hard even with 𝑑 = 1. Here, 𝜋 ∈ {Max, Reg, Egal, Forced}.

Theorem 4.11 (*). Given a preference profile 𝐿, it is polynomial-
time decidable whether 𝐿 can be embedded into a line.

5 CONCLUSION
In this paper, we study 𝜋-Stable Marriage with Ties (𝜋-SMT)
in the 𝑑-Euclidean space. If the preference profile is complete, 𝜋-
SMT with 𝜋 ∈ {Reg,Egal,Forced} is NP-hard even with 𝑑 = 2. With
𝑑 = 1, there exist polynomial-time algorithms solving Reg-SMT
and Forced-SMT. If the preference profile is incomplete, 𝜋-SMTI
with 𝜋 ∈ {Reg,Egal,Forced,MAX} is NP-hard evenwith𝑑 = 1. In Ta-
ble 1, we left an open problem, that is, can 1-Euclidean-Egal-SMT be
solved in polynomial time? For the future work, (1) it might be inter-
esting to check other variants of Stable Marriage in 𝑑-Euclidean
space, such as Balanced Stable Marriage [18], Sex-eqal Sta-
ble Marriage [25], Man-Exchange Stable Marriage [30], etc.
(2) Another possible direction is to combine 𝑑-Euclidean space with
Stable Marriage with strict preference orders, such as Pairwise
Stable Marriage [2, 4] and Stable Matching with General
Preferences [17]. (3) Are there any fixed-parameter algorithms
or approximation algorithms for the NP-hard cases? (4) The in-
completeness of preference list has an alternative interpretation,
that is, non-listed alternatives are further away than listed ones. It
might be interesting to check how the results would be different
when 𝑑 = 1.
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