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ABSTRACT

Reinforcement learning has been revolutionizing the traditional

traffic signal control task, showing promising power to relieve con-

gestion and improve efficiency. However, the existing methods lack

effective learning mechanisms capable of absorbing dynamic infor-

mation inherent to a specific scenario and universally applicable

dynamic information across various scenarios. Moreover, within

each specific scenario, they fail to fully capture the essential empir-

ical experiences about how to coordinate between neighboring and

target intersections, leading to sub-optimal system-wide outcomes.

Viewing these issues, we propose DuaLight, which aims to lever-

age both the experiential information within a single scenario

and the generalizable information across various scenarios for

enhanced decision-making. Specifically, DuaLight introduces a

scenario-specific experiential weight module with two learnable

parts: Intersection-wise and Feature-wise, guiding how to adap-

tively utilize neighbors and input features for each scenario, thus

providing a more fine-grained understanding of different inter-

sections. Furthermore, we implement a scenario-shared Co-Train

module to facilitate the learning of generalizable dynamics informa-

tion across different scenarios. Empirical results on both real-world

and synthetic scenarios show DuaLight achieves competitive per-

formance across various metrics, offering a promising solution to

alleviate traffic congestion, with 3-7% improvements. The code is

available under https://github.com/lujiaming-12138/DuaLight.
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1 INTRODUCTION

Traffic congestion has emerged as a pressing issue in metropolises,

leading to protracted travel and waiting time, heightened energy

consumption, and diminished commuting comfort [1–4]. Conse-

quently, traffic signal control (TSC) has increasingly become a focal

point of research, presenting an efficacious approach to alleviating

such urban gridlock [5].

Recently, the paradigm of TSC has predominantly shifted to-

wards deep reinforcement learning (RL) [6]. Such learning-based

approaches [7, 8] can “learn” to give optimal actions directly based

on the observation of intersections, which has proved its superior-

ity over the conventional traffic-engineering-based methods such

as SCATS and SCOOT [9–12], which are static models based on

assumptions that could be unrealistic in front of the traffic dynam-

ics. Currently, there are two state-of-the-art solutions emerging in

RL-based TSC: (1) cooperation among multi-agents and (2) learning

via multi-scenarios.

The first focuses on the cooperation of multiple intersections

in one single scenario (a simulation environment containing a set

of intersections). With each intersection as an agent, multi-agent

RL (MARL) [13, 14] have been developed. Most of the MARL-based

TSC try to advocate cooperation by aggregating the information

of the agents: they integrate the state of the target intersection

with its neighboring intersections’ states, either spatially [15, 16] or

spatiotemporally [17, 18], based on GNN [16] or GNN+LSTM/TCN

to additionally capture long-range dependency [18], respectively.

Despite their potential, these single-scenario-based approaches

ignore that how to coordinate with neighbors differs from
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Figure 1: (1) Global knowledge from co-training, and (2)

scenario-specific experiential knowledge formed as weights.

scenarios: e.g., collaborating with 1-hop neighbors works the best

in simple scenarios, while 2-hop neighbor collaboration is needed

for more complex scenarios. Thus, training the model in only one

scenario may lead to a local optimum due to overfitting [19].

The second type focuses on learning across multiple scenarios,

such that the model could be more general for various regions or

cities. To achieve this, different techniques such as meta RL [20, 21],

attention mechanism [22] and standardization of intersections [19]

have been proposed. For instance, MetaLight [21] proposed a meta

gradient learner through different datasets, and GESA [19] pro-

posed a plug-and-play mapping module to enable multi-scenario

co-training. These methods offer a potential solution to the overfit-

ting problem mentioned before. However, they are all single-agent

based, meaning one agent controls all the intersections, which

may be an easy start for multi-scenario learning. MetaGAT [23]

extended MetaLight to the multi-agent version by simply adding

GAT in multi-scene training. However, these methods overlook

that how to utilize the unique knowledge of each scenario to

facilitate the cooperation: can we design an explicit mechanism

for modeling experiential information within a single scenario?

To tackle these challenges, we propose DuaLight with two mod-

ules: scenario-shared co-train and scenario-specific experien-

tial weights. As shown in Fig 1: (1) Some knowledge about the

traffic underlining mechanisms is universal and commonly shared

across various scenarios, for example, the flow is periodic, there are

the potential morning/evening peak, and the merging and diversion

of traffic flow along the network affect the traffic. Co-Train module

enables multi-scenario joint learning of such global knowledge.

To encourage stability, only a subset of the model’s parameters

is trained concurrently, yet the essential coordination parameters

are learned within each scenario. (2) Some knowledge is scenario-

specific: for example, each scenario has its unique distribution of

the traffic flow, some tend to have more morning peaks and others

more evening peaks, etc. This will affect different cooperation pat-

terns from traffic lights. The experiential weight module defines

the coordination parameters as the intersection-wise and feature-

wise weights, guiding how to aggregate neighboring intersections’

information and different observation features, respectively. The

two weights are trained after observing a whole episode, capturing

the long-term experiences.

The combination of these two modules encourages the model

to learn and balance the shared dynamic information across multi-

ple scenarios and the dynamic experiential information within a

particular scenario, thus enabling the model to learn an effective

representation to assist decision-making. This simple and effective

dual design also supports our extension of using the neighbors

even from other scenarios, which is a novel and promising dis-

covery, as it can learn from similar intersections in other scenarios

to further improve the ability of signal control.

In summary, this paper has three main contributions:

• To the best of our knowledge, we are the first that considers

both scenario-common and scenario-specific information

by co-train module and experiential weight module, respec-

tively. This design also enables us to discover the potential

of aggregating neighbors across scenarios. Overall, we coor-

dinate multi-agents better across multi-scenario.

• Specifically, we design the scenario-specific experiential

weights that encourage modeling the influence of neighbors

and input features, adaptive to different scenarios.

• We conduct experiments in both real-world and synthetic

scenarios: DuaLight has the fastest and the most stable train-

ing and achieved the best results with 3-7% improvements.

2 RELATEDWORK

Learning to cooperate. In the realm of RL-based TSC, [24, 25] di-

rectly train a centralized agent by using the observations of all inter-

sections in a scenario as input to the model and providing a decision

for each intersection. However, the complexity of these methods

increases as the number of intersections increases, and it is hard to

explore and optimize due to the curse of dimension in joint action

space. To ease this complexity, many MARL models take each inter-

section as an agent [26], with surrounding intersections considered

for better decisions. For example, CoLight [16] and MetaGAT [23]

employed GAT to assign varied weights to neighboring intersec-

tions. Yet, this approach primarily views neighboring intersections’

information from a spatial standpoint in an instant short-sighted

manner, without considering the influence of historical experiences

on decision-making. To consider temporal information, STMARL

[17] and DynSTGAT [18] proposed to use LSTM or TCN to capture

the historical state information, e.g., traffic flow, and employs GNN

or GAT to extract the spatial dependencies. However, these meth-

ods only considered the temporal dependency of state (𝑠1, 𝑠2, 𝑠3, ...),
such as traffic flow; our experiential module instead allows for ex-

plicit capture of dynamic sequences (𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, ...) through
gradient propagation, offering a more comprehensive and nuanced

understanding of scenario-specific decision dynamics. Moreover,

as mentioned before, these methods neglect that different scenarios

will have different collaboration patterns due to various network

structures and traffic dynamics. Our Experiential Weight uniquely

adapts to varying scenario impacts through learnable weights. Un-

like methods limited to single-scenario, DuaLight dynamically cap-

tures both unique and shared traffic dynamics across scenarios,

enhancing adaptability and insight through backpropagation.

Learning across multiple scenarios. Simultaneously, some

methods examine training in multi-scenario for optimized perfor-

mance. The single-agent version is mostly dominating. MetaLight
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Figure 2: Two state-of-the-art methods: (1) whether it’s multi-

agent and (2) whether it’s multi-scenario.

[21], based onMeta RL [27], permitted joint scenario training and di-

rect transfer to new scenarios. Similarly, GeneraLight [20] enhanced

generalization by merging various traffic flows with generative ad-

versarial networks and the MetaRL. AttendLight [22] introduced

a training framework suitable for intersections of varying traffic

flows and configurations by utilizing two attention models. The

most recent GESA [19] presented a universal intersection normal-

ization scheme and leveraged the A3C algorithm for joint training

across multiple scenarios. However, a single agent controlling all

is not optimal. Yet simply putting a multi-agent model in a multi-

scenario learning setting could experience devastatingly unstable

training, which has already taken shape in the single-agent MetaL-

ight. MetaGAT [23], as the most related work, tried to coordinate

multi-agents across multi-scenario: It stabilized the training by sep-

arate task encoding (based on GAT+TCN) and controlling. Similarly,

we stabilize the learning by only training part of the parameters

concurrently, and the scenario-specific experiential weights are

learned separately. These weights not only explicitly preserve the

long-term MDP experiences of each scenario, guiding a scenario-

adaptive GAT and input-feature aggregation, but also enable a

simple extension to use neighbors even across scenarios.

3 PROBLEM DEFINITON

Before introducing the model, we shortly recap some key concepts

integral to TSC. We recommend referring to [19] for more details.

Definition 3.1 (Intersection). An intersection 𝐼𝑖 is where
multiple roads connect and are controlled by a traffic light. A standard
intersection, shown in Fig. 3(a), consists of four entrance arms (N,
S, E, W), each containing three possible entrance lanes: left-turn,
through, and right-turn (also known as traffic movements). Each
entrance arm has an exit arm as an outlet for vehicles. The majority
of intersections are either with 3-arm or 4-arm structures.

Definition 3.2 (Phase). A traffic phase is a combination of
traffic movements in which there is no conflict between them. Fig.3(b)
depicts eight phases in a standard intersection. In the setting of RL in
TSC, the action space A of the agent refers to select the phase.

We reconceptualize the TSC problem as a Partially Observable

Markov Decision Process (POMDP) since each agent only observes

part of the whole global state of the city.

Problem Statement 3.1. TSC as POMDP: TSC is a sequential
decision-making problem. Assuming there are 𝑁 intersections in a
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Figure 3: (a) A 4-arm intersection with eight traffic move-

ments (1-8), presently controlled by phase F. (b) Eight phases

(A-H), each having two non-conflicting traffic movements.

scenario, each intersection is controlled by an independent agent. The
agent’s goal is to learn a signal control policy to optimize travel time,
which can be formulated as a POMDP ⟨S,O,A,P, 𝑟 , 𝛾, 𝜋⟩.

System state space S and Partial observation space O: At
the time 𝑡 , each agent can observe a local observation 𝑜𝑡

𝑖
∈ O from

the global system state 𝑠𝑡 ∈ S, including the current phase and the

number of stopped vehicles on the road.

Action space A: A of each agent is to select one of the eight

traffic phases (A-F) shown in Fig. 3: Based on 𝑜𝑡
𝑖
, each agent selects

an action 𝑎𝑡
𝑖
∈ A as the traffic signal control logic for the next time

interval Δ𝑡 .
Transition probability P: A function for the system to enter

the next state 𝑠𝑡+1, which is defined as P
(
𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡

)
. This is an

unknown function that encapsulates the dynamic information of

traffic system operations.

Reward function 𝑟 : After executing a phase, a reward can

be obtained from the system based on the reward function. The

immediate reward of agent 𝑖 at time 𝑡 : 𝑟𝑡
𝑖
= −𝑤 ∑

𝑙 𝑞
𝑡
𝑖,𝑙
, in which,

𝑞𝑡
𝑖,𝑙

represents the number of stopped vehicles on the approaching

lane 𝑙 at time 𝑡 , and 𝑤 represents the punishment coefficient, we

set it as 0.25.

Policy 𝜋 : a agent’s controlling policy. At each time 𝑡 , each agent

follows policy 𝜋 (𝑎𝑡 | 𝑜𝑡 ) to make an action 𝑎𝑡 based on the current

observation 𝑜𝑡 , with the objective of minimizing all rewards 𝐺𝑡
𝑖
=∑𝑇

𝑡=𝜏 𝛾
𝑡−𝜏𝑟𝑡

𝑖
, where 𝛾 is the discount factor (𝛾 = 0.95).

4 METHODOLOGY

In the subsequent section, we delineate our proposed DuaLight, an

end-to-end MARL architecture, as depicted in Fig. 4. We will first

introduce the feature extraction module, followed by the Scenario-

Specific Experiential Weight Module and its coordination with GAT

to aggregate observation information within neighbor intersections

and self-features. Then, we will introduce the Scenario-Shared Co-

train Module and the objective function for training.

4.1 Feature Extractor

In this stage, we first obtain feature representations from the simula-

tor’s raw observations of all lanes at the intersection, including the

number of cars and the current stage. The multi-layer perceptron

(MLP) is applied as the feature extractor 𝑓 𝑒 (·) in the following.

𝜓 (𝑜𝑖 ) = 𝑓 𝑒 (𝑜𝑖 ) = 𝜎 (𝑜𝑖𝑾𝑓 + 𝑏 𝑓 ), (1)
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Figure 4: The illustration of our proposed DuaLight. The upper part of the figure represents the trainable experimental weights.

The lower part gives the detailed interference process of all the modules.

where 𝑜𝑖 ∈ R𝐹 is the raw observation of the intersection 𝑖 with the

dimension of 𝐹 ,𝑾𝑓 ∈ R𝐹×𝐷 , 𝑏 𝑓 ∈ R𝐷 are the weight matrix and

the bias of the MLP, and 𝜎 (·) denotes the 𝑅𝑒𝐿𝑈 activation function.

Thus, we obtain a 𝐷-dimensional representation as the base

feature for each intersection. Next, we present the experiential

weight to process these features further.

4.2 Scenario-Specific Experiential Weight

Merely projecting raw observations is often inadequate for traffic

light control, as it requires a long-term and experiential understand-

ing of both intersection-wise and self-feature-wise perceptions.

Specifically, the ability to perceive intersection-wise information

is crucial for the decision-making process of an intersection, as it

enables effective coordination between multiple intersections, lead-

ing to improved traffic flow and reduced congestion throughout the

road network. Additionally, self-feature-wise perception is also es-

sential for accurate decision-making that can alleviate congestion at

the current intersection. Thus, we propose the experiential weight

mechanism, which enables keeping the neighbor-intersection-wise

and the self-feature-wise memory throughout the training process.

4.2.1 Two Trainable Experiential Weights. Here, we define
the trainable experiential weight matrices as intersection-wise

{𝐸𝑚𝑏𝑘
𝑖𝑛𝑡
}𝐾
𝑘=1

, and feature-wise {𝐸𝑚𝑏𝑘
𝑓 𝑒𝑎
}𝐾
𝑘=1

, where for a given

scenario 𝑘 , 𝐸𝑚𝑏𝑘
𝑖𝑛𝑡
∈ R𝑁𝑘×(1+𝑁𝑛𝑒𝑖 )

, 𝐸𝑚𝑏𝑘
𝑓 𝑒𝑎
∈ R𝑁𝑘×𝐷

.𝐾, 𝑁𝑘 , 𝑁𝑛𝑒𝑖

denote the number of scenarios, the number of intersections in the

scenario 𝑘 , and the number of neighbors of an intersection, respec-

tively. Moreover, to ensure precise attention to an agent’s own

features, it is crucial to assign a separate feature weight to each

scenario 𝑘 . These two weight matrices are updated at each iteration

during the training phase and are fixed during inference.

In the implementation, the trainable experiential weight ma-

trix corresponds to a special MLP layer without bias and non-

linear activation function, implemented as a PyTorch module using

𝑛𝑛.𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔. During the training, these embeddings can be up-

dated using the gradient ▽𝜙L of optimization objective L (details

in Eq. (13)) in an end-to-end manner, which enables these mod-

ules to contain intersection-wise and feature-wise representative

historical information from the experiential replay buffer.

𝐸𝑚𝑏𝑘{𝑖𝑛𝑡,𝑓 𝑒𝑎} ← 𝐸𝑚𝑏𝑘{𝑖𝑛𝑡,𝑓 𝑒𝑎} − 𝛼∇L𝜙 (2)

Next, we introduce the acquisition process of these weights,

elaborated as follows.

1) The acquisition of intersection-wise experiential weight.
To compute the intersection-wise experiential weight for each agent

𝑖 , we begin by setting 𝑁𝑛𝑒𝑖 = 4 and N𝑖 = { 𝑗1, 𝑗2, 𝑗3, 𝑗4}. Here, we
assume that there are four neighbors that can be found through the

nearest distance metric, and this assumption holds for the rest of

the discussion. In Sec. 6, we relax it by taking more neighbors, even

from other scenarios. To obtain the intersection-wise experiential

weight, we use the operator 𝑙𝑜𝑜𝑘𝑢𝑝 (X, 𝑖) to return the 𝑖-th row of
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X:
𝑤𝑒𝑖𝑔ℎ𝑡

𝑘,𝑖
𝑖𝑛𝑡

= 𝑙𝑜𝑜𝑘𝑢𝑝 (𝐸𝑚𝑏𝑘𝑖𝑛𝑡 , 𝑖), (3)

where𝑤𝑒𝑖𝑔ℎ𝑡
𝑘,𝑖
𝑖𝑛𝑡
∈ R1+𝑁𝑛𝑒𝑖

and 𝐸𝑚𝑏𝑘
𝑖𝑛𝑡

is trained in an end-to-end

manner according to the RL target. Thus, as the training process

progresses, the weight is endowed with high-level semantic infor-

mation that represents the degree of attention between agents and

their neighbors in the long run. This simple yet effective design

(storable embedding + readout) allows a good extendability when

even considering the neighbors from other scenarios (in Sec. 6).

2) The acquisition of feature-wise experiential weight. For
each scenario 𝑘 and each intersection 𝑖 , we can obtain the feature-

wise experiential weight as follows.

𝑤𝑒𝑖𝑔ℎ𝑡
𝑘,𝑖

𝑓 𝑒𝑎
= 𝑙𝑜𝑜𝑘𝑢𝑝 (𝐸𝑚𝑏𝑘

𝑓 𝑒𝑎
, 𝑖) (4)

where𝑤𝑒𝑖𝑔ℎ𝑡
𝑘,𝑖

𝑓 𝑒𝑎
∈ R𝐷 . Similarly, as the training process continues,

the model learns the optimal weight for each intersection feature,

allowing it to assign appropriate attention to each feature during

decision-making. The feature weight is critical to ensure the model

adapting to varying scenarios and making reliable predictions, as

each scenario may require a different emphasis on certain features.

In summary, the model’s two weights have distinct roles. The

intersection-wise weight linearly transforms input features before

the GAT layer, capturing complex feature relationships and im-

proving the model’s learning and generalization. The feature-wise

weight ensures reliable predictions by adapting to different scenar-

ios, each requiring emphasis on specific features.

Next, we will introduce how to integrate the experiential weights

into the decision-making process.

4.2.2 Scenario-Specific Knowledge Injection. As shown in

the lower part of Fig. 4, there involves scenario-specific knowledge

injection in the decision-making process.

1) The knowledge from the neighboring intersection. At the
intersection-wise level, we take the experiential (global) and instant

(local) impacts into consideration. The global experiential impact

can be perceived through the intersection-wise weight, and the

weighted observation feature of agent 𝑖 and its neighbors N𝑖 ∈
R𝑁𝑛𝑒𝑖

can be represented as follows.

𝑤 (𝑜𝑖 ) = 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑖𝑛𝑡 ⊗𝜓 (𝑜
𝑖 ) (5)

{𝑤 (𝑜 𝑗 )} 𝑗∈N𝑖
= 𝑤𝑒𝑖𝑔ℎ𝑡

𝑗
𝑖𝑛𝑡
⊗𝜓 (𝑜 𝑗 ), (6)

where ⊗ denotes the Hardmard product.

Then we extract the local instant impact via GAT [16, 28] due to

its powerful representation capacity. Through the attention mecha-

nism in GAT, the important coefficients 𝑎𝑖 𝑗 are computed:

𝑎𝑖 𝑗 =
exp(𝑤 (𝑜𝑖 )̂𝑾 (𝑤 (𝑜 𝑗 )̂𝑾 )T/

√
𝐷 ′ )∑

𝑙 ∈N𝑖
exp(𝑤 (𝑜𝑖 )̂𝑾 (𝑤 (𝑜𝑙 )̂𝑾 )T/

√
𝐷 ′ )

,
∑︁
𝑗 ∈N𝑖

𝑎𝑖 𝑗 = 1, (7)

where 𝑙 iterates among the set containing the agent 𝑖 and its neigh-

bors N𝑖 , ̂𝑾 ∈ R𝐷×𝐷
′
is a learnable weight matrix for the attention

mechanism, 𝐷′ denotes the dimension of the latent vector. More-

over, multi-head attention (MHA) is used to stabilize the training

process. We apply the average pooling to the hidden vectors from

each head and pass through a transformation to produce the final

Algorithm 1: The Pseudo-code of DuaLight

ensure : the co-training networks𝐶 = { 𝑓 𝑒,𝐺𝐴𝑇,𝑀𝐿𝑃 }, and the

experiential weights 𝐸𝑚𝑏 = {𝐸𝑚𝑏𝑖𝑛𝑡 , 𝐸𝑚𝑏𝑓 𝑒𝑎 }
initialize :𝐿,𝑇 , 𝐾 , 𝑁𝑘 , B; // The number of training episodes, the

number of timesteps in an episode, the number of scenarios,

the number of intersections in scenario 𝑘 , and the experience

replay buffer;

initialize : the parameter 𝜃 for the co-training networks𝐶 , and 𝜙 for the

experiential weights 𝐸𝑚𝑏;

1 for episode 𝑙 = 1 to 𝐿 do

2 for timestep 𝑡 = 1 to𝑇 do

3 for scenario 𝑘 = 1 to 𝐾 do

4 for intersection 𝑖 = 1 to 𝑁𝑘 do

5 Observe 𝑜
𝑘,𝑖
𝑡 ;

6 Get the experiential weights by Eq. (3), and Eq. (4);

7 Obtain action 𝑎
𝑘,𝑖
𝑡 by argmax𝑄𝑖

of Eq. (10);

8 Receive the reward 𝑟
𝑘,𝑖
𝑡 and the next observation 𝑜

𝑘,𝑖
𝑡+1 ;

9 Store the transition (𝑜𝑘,𝑖𝑡 , 𝑎
𝑘,𝑖
𝑡 , 𝑟

𝑘,𝑖
𝑡 , 𝑜

𝑘,𝑖
𝑡+1 ) in B;

10 Sample a minibatchM1 from B;
11 Update the experiential weights 𝐸𝑚𝑏 using Eq. (14a) with

M1 ;

12 Sample a minibatchM2 from B;
13 Update the co-train networks𝐶 using Eq. (14b) withM2 ;

output. Thus, the final latent feature𝑤𝑔 (𝑜𝑖 ) aggregates 𝑖’s neigh-
bors’ information into 𝑖 by adopting GAT:.

𝑤𝑔 (𝑜𝑖 ) = 𝜎
©­« 1

𝑀

𝑀∑︁
𝑚=1

∑︁
𝑗∈N𝑖

𝑎
𝑖 𝑗
𝑚𝑾

𝑚𝑤 (𝑜 𝑗 )ª®¬ , (8)

where 𝜎 (·) is the activation function,𝑀 is the number of attention

heads, 𝑎
𝑖 𝑗
𝑚 is the attention score of the𝑚-th attention head in Eq.

(7),𝑾𝑚
is the learnable matrix with respect to the head𝑚.

2) The knowledge from the self input feature. At the feature-
wise level, the feature𝜙 (𝑜𝑖 ) of the agent 𝑖 is weighted by the feature-
wise weight from Sec. 4.2.1.2), calculated as follows.

𝑤 𝑓 (𝑜𝑖 ) = 𝑤𝑒𝑖𝑔ℎ𝑡𝑘,𝑖𝑓 𝑒𝑎 ⊗ 𝜙 (𝑜
𝑖 ) (9)

At the end, the multi-source message is contacted and passed

through an MLP layer to predict the final state-action value.

𝑄𝑖 = 𝑀𝐿𝑃 (𝑤𝑔 (𝑜𝑖 ) ⊕𝑤 𝑓 (𝑜𝑖 ))
= (𝑤𝑔 (𝑜𝑖 ) ⊕𝑤 𝑓 (𝑜𝑖 ))𝑾𝑜 + 𝑏𝑜

(10)

where 𝑝 = 8 is the dimension of the action space, i.e., the number of

phases. ⊕ denotes the concat operator,𝑾𝑜 ∈ R2𝐷×𝑝 and 𝑏𝑜 ∈ R𝑝
are the weight matrix and the bias vector of the output MLP layer.

4.3 Scenario-Shared Co-Train Module

To encourage the model to learn the common patterns that are inde-

pendent of scenarios, we aim to co-train various scenarios together.

The difficulties are: most RL-based TSC models assume homogene-

ity across intersections, i.e., equalities in observation space, action

space, reward function, and policy 𝜋 . However, the standard 4-arm

intersection structure does not ubiquitously apply in the real world.

There are 4-arm intersections with irregular angles and also 3-arm

or 5-arm intersections. Different cities definitely have different

intersections with different structures (with different numbers of

entrance arms, different combinations of lanes). This observation

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1287



necessitates the standardization of intersections, translating non-

standard forms into a uniform 4-arm structure. To achieve this,

we deploy a mapping approach in [19]: GESA uses the relative

orientation of entrance arms (e.g., the relative angels) to decide the

conflicting movements, instead of the absolute orientation (N, S, E,

W). The “missing” entrance arm’s corresponding state is masked,

and its action is zero-padded. More detail is given in [19].

Contrasting the approaches by GESA [19] and other MetaRL-

based methods [21, 23, 29], where all parameters of the model un-

dergo joint training across multiple scenarios, our Co-Train module

only allows the parameters within the fe, GAT, and MLP in Fig. 4

to participate in such joint training. Conversely, the Experiential

Weight module employs data exclusively from a single scenario

for their training. This mechanism enables the Experiential Weight

module to concentrate more effectively on capturing information

within a specific scenario, whereas the fe, GAT, andMLP modules

focus on grasping the general information across various scenarios.

During co-training, we use multi-processing, with each process

using SUMO [30] for interaction across different scenarios and

subsequently aggregating all data from each process into a unified

buffer. When we sample data from the buffer for model updating,

data from different scenarios are sampled with equal weight. During

the network update, the parameters of the three modules—fe, GAT,

and MLP—are updated using data from all scenarios.

Our results demonstrate that the incorporation of the Multi-

Scenario Co-Train module expedites the convergence of the model.

When paired with the Experiential Weight module, the model not

only becomes more stable but also delivers improved performance.

4.4 Training Objective

We adopt the value-based reinforcement learning regime to define

the loss. The parameter-sharing mechanism is applied across all the

agents. For scenario𝑘 , the objective is to find the optimal Q-function

that maximizes the expected return.

𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 ) = E
[ ∞∑︁
𝑡=0

𝛾𝑟𝑘𝑡 |𝑠𝑡 , 𝑎𝑡

]
, (11)

where 𝑄𝑘 is the action-value function for the scenario 𝑘 , 𝑠𝑡 and 𝑎𝑡
are the state and action at time step 𝑡 , 𝑟𝑡 is the immediate reward

received after taking action 𝑎𝑡 , and 𝛾 is the discounted factor.

At the time 𝑡 , we can compute target Q value as below:

𝑄𝑘𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑘𝑡 + 𝛾 max𝑎′ 𝑄
𝑘− (𝑠𝑡+1, 𝑎′), (12)

where 𝑄𝑘− is the target network.This target network is a copy of

the main network that is used to calculate the Q-values during

training, but its parameters are not updated during the learning

process. Instead, the target network’s parameters are periodically

updated with the parameters of the main network, which helps to

stabilize the learning process and prevent oscillations or divergence.

Next, using Stochastic Gradient Descent (SGD) to approximate

the gradient of Q-learning and compute the loss and its gradient,

we can write down the following rules.

L = 1

2
∥𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 ) −𝑄𝑘𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑎𝑡 )∥2,

▽𝜃,𝜙L = (𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 ) −𝑄𝑘𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑡 , 𝑎𝑡 )) ▽𝜃,𝜙 𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 ),
(13)

Now we can update the parameters by

𝜃 ← 𝜃 − 𝛼 · ▽𝜃L, 𝜙 ← 𝜙 − 𝛼 · ▽𝜙L, (14)

where 𝛼 is the learning rate, 𝜃 denotes the parameter for the co-

training networks {fe,GAT,MLP}, and 𝜙 denotes the experiential

weights 𝐸𝑚𝑏{𝑖𝑛𝑡,𝑓 𝑒𝑎} . The model is summarized in Algorithm 1.

5 EXPERIMENTS

In this section, we outline the configuration of our experiments, the

dataset, the comparative methods, and design multi-dimensional

experiments to verify the effectiveness of our proposed DuaLight.

5.1 Experiment Settings

Environment Setting: For performance evaluation, we adopt the

Simulation of Urban Mobility (SUMO)
1
, extensively acknowledged

and embraced by both academia and industry, as our experimental

simulation platform. Within this simulated framework, each indi-

vidual simulation proceeds for a duration of 3600 seconds, with the

model making its decisions at an interval of Δ𝑡 = 15 seconds.

Model Setting: We provide the detailed hyper-parameter set-

tings in Table A2 of Appendix B.

5.2 Datasets

Our model is assessed using three synthetic datasets and four

datasets derived from real-world scenarios, summarized in Table A1

of Appendix A. Synthetic Datasets include Grid 4 × 4 [31], Avenue
4 × 4 [32], and Grid 5 × 5. Real-world Datasets include Cologne8
[33] and Ingolstadt21 [34] from Germany, as well as Fenglin and

Nanshan [19] from China. For more details, please refer to [19, 35].

5.3 Compared Methods

DuaLight is compared with two distinct categories of signal control

models: the first category is traditional traffic-engineering-based

models and the second is RL-based models.

Traditional Methods:

• Fixed-timed Control (FTC) [9]: This method employs ex-

pert knowledge to manually assign fixed phase sequences

and durations to each traffic signal.

• MaxPressure [36, 37]: The pressure at each intersection

is estimated by gauging the number of vehicles and queue

length. Subsequently, the algorithm invariably selects phases

that maximize this pressure in a greedy manner.

Reinforcement Learning-based Methods:

• IPPO [35, 38]: In independent PPO agents, each traffic signal

is modeled as an independent agent. They utilize the same

network architecture, but their parameters are not shared.

• MPLight [31]: This algorithm is based on the phase compe-

tition FRAP framework [39] and employs pressure as both

state and reward for the DQN agents.

• MetaLight [21]: It integrates the FRAP framework with

Meta RL to facilitate swift adaptation to new scenarios and

enhance overall performance. This algorithm bears similari-

ties with our proposed Multi-Scenario Co-train module.

1
https://www.eclipse.org/sumo/
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Methods

Avg. Trip Time (seconds) Avg. Delay Time (seconds)

Grid4×4 Grid5×5 Arterial4×4 Ingolstadt21 Cologne8 Fenglin Nanshan Grid4×4 Grid5×5 Arterial4×4 Ingolstadt21 Cologne8 Fenglin Nanshan
FTC 206.68 (0.54) 550.38 (8.31) 828.38 (8.17) 319.41 (24.48) 124.4 (1.99) 344.76 (6.84) 729.02 (37.03) 94.64 (0.43) 790.18 (7.96) 1234.30 (6.50) 183.70 (26.21) 62.38 (2.95) 283.13( 12.78 ) 561.69 (37.09)

MaxPressure 175.97 (0.70) 274.15 (15.23) 686.12 (9.57) 375.25 (2.40) 95.96 (1.11) 316.01 ( 4.86 ) 720.89 (29.94 ) 64.01 (0.71) 240.00 (18.43) 952.53 (12.48) 275.36 (14.38) 31.93 (1.07) 372.08 ( 267.2 ) 553.94 ( 32.61 )

MPLight 179.51 (0.95) 261.76 (6.60) 541.29 (45.24) 319.28 (10.48) 98.44 (0.62) 329.81 (4.19) 668.81 (7.92) 67.52 (0.97) 213.78 (14.44) 1083.18 (63.38) 185.04 (10.70) 34.38 (0.63) 399.34 (248.82) 494.05 (7.52)

IPPO 167.62 (2.42) 259.28 (9.55) 431.31 (28.55) 379.22 (34.03) 90.87 (0.40) 368.14 (6.25) 743.69 (38.9) 56.38 (1.46) 243.58 (9.29) 914.58 (36.90) 247.68 (35.33) 26.82 (0.43) 324.57 (12.19) 577.99 (42.22)

rMAPPO 164.96 (1.87) 300.90 (8.31) 565.67 (44.8) 453.61 (29.66) 97.68 (2.03) 412.73 (14.54) 744.47 (30.07) 53.65 (1.00) 346.78 (28.25) 1185.2 (167.48) 372.2 (39.85) 33.37 (1.97) 403.6 (57.29) 580.49 (33.6)

CoLight 163.52 (0.00) 242.37 (0.00) 409.93 (0.00) 337.46 (0.00) 89.72 (0.00) 324.2 (0.00 ) 608.01 (0.00 ) 51.58 (0.00) 248.32 (0.00) 776.61 (0.00) 226.06 (0.00) 25.56 (0.00) 262.32 ( 0.00 ) 428.95 (0.00 )

MetaLight 169.21 (1.26) 265.51 (10.53) 424.39 (24.49) 349.89 (2.65) 97.93 (0.74) 316.57 (4.29) 653.23(9.15) 57.56 (0.76) 270.06 (31.54) 873.28 (39.01) 227.48 (4.25) 29.01 (0.69) 376.11 ( 244.85 ) 478.81 (10.29)

MetaGAT 165.23 (0.00) 266.60 (0.00) 374.80 (0.87) 290.73 (0.45) 90.74 (0.00) 290.73 ( 0.45 ) 676.42 ( 0.00 ) 53.20 (0.00) 234.80 (0.00) 772.36 (0.00) 264.07 (9.85) 26.85 (0.00) 176.86 (2.37) 503.42 (0.00)

DuaLight 161.04 (0.00) 221.83 (0.00) 396.65(0.00) 317.97 (0.00) 89.74 (0.00) 313.22 (4.88) 609.89 (0.00) 49.32 (0.00) 237.71 (0.00) 756.99 (69.44) 182.67 (9.34) 25.35 (0.00) 260.87 (0.00) 429.49 (0.00 )

Table 1: Performance of synthetic and real-world data, including the mean and standard deviation (in parentheses). Best results

in boldface, and the second best results underlined.

• rMAPPO [14, 40]: It is a widely adopted MARL framework

with an actor-critic architecture that leverages proximal pol-

icy optimization to boost the stability of training. In this

instance, we employ a variant equipped with an RNN mod-

ule to encode historical information.

• CoLight [16]: It utilizes a GAT to aggregate the state infor-

mation of neighboring intersections.

• MetaGAT [23] utilizes GAT-based context to enhance col-

laborative interactions between intersections. It is also a

multi-agent multi-scenario method.

5.4 Evaluation Metrics

Consistent with [35], we utilize Average Delay, Average Trip

Time, and Average Waiting Time as evaluation metrics to mea-

sure the efficacy of the various TSC models. Among them, Delay

represents the delay caused by signalized intersections (stop or

approach delay), Trip Time represents the total time for a vehicle to

travel from its starting point to its destination, and Waiting Time

represents the time spent by a vehicle waiting at the intersections.

5.5 Main Results

In this section, we introduce the results yielded by DuaLight and

other methods based on the various evaluation metrics.

Tables 1 present the outcomes of our proposed DuaLight algo-

rithm in comparison to other traditional control algorithms and

RL-based algorithms. DuaLight exhibits optimal performance on

the majority of indicators or holds competitive outcomes in relation

to the best-performing algorithm.

Among all scenarios, DuaLight demonstrates the most substan-

tial enhancement in the AverageWaiting Time metric, with an aver-

age improvement of 4.52%, 6.86% on the synthetic dataset, and 2.76%

on the real-world scenario. This is owing to our scenario-specific

experiential weight design and scenario-shared multi-scenario co-

training. Despite DuaLight achieving SOTA results on the Delay

metric barring Grid 5 × 5 and Nanshan, its average performance is

not as exceptional due to its less impressive performance on Grid
5×5 compared to MPLight. Looking at the TripTime metric, Fenglin,
Ingolstadt21, and Grid 5 × 5 all achieved significant improvements,

indicating that DuaLight can handle complex scenarios. Full metrics

evaluation is shown in Table A3 of Appendix C.

5.6 Embedding Visualization of DuaLight

To ascertain how our proposed scenario-specific experiential weight

module is utilized, and to explore the information learned by it, we

visualize the embeddings post message aggregation using t-SNE

Metric All Synthesized Real-world

Avg. Delay -0.35% -1.43% 0.45%

Avg. Trip Time 2.03% 4.41% 0.25%

Avg. Wait 4.52% 6.86% 2.76%

Table 2: Improvement of DuaLight across different scenarios

(a1) Ours: Round 1 (a2) Ours: Round 40 (a3) Ours: Round 80

(b1) CoLight: Round 1 (b2) CoLight: Round 40 (b3) CoLight: Round 80

Figure 5: The t-SNE visualization of the hidden embeddings

after message aggregation

[41] after different rounds. We independently repeat the evaluation

five times, and each time we select time steps 100-110 for visual-

ization. For each agent, we extract its weighted embeddings before

the MLP in Fig. 4, and visualize them via t-SNE, shown in Fig. 5.

A point in Fig. 5 represents an agent, and different colors rep-

resent agents from disparate scenarios. From Fig. 5(a1) to (a3), we

observe that, after a certain number of training iterations, Dua-

Light’s agent embeddings (weighted by experiential module) from

the same scenario are moving closer to form one cluster. This sug-

gests that our experiential weight module assists agents in captur-

ing information within a certain scenario. While the embeddings

weighted by GAT for CoLight, shown in Fig. 5(b1) to (b3), reveal that

even after numerous training iterations, CoLight remains unable to

distinguish differences between scenarios.

This is owing to our learnable Intersection-wise and Feature-wise

modules participating in each round of model updating. Through

continuous iterations of model updating, these modules can aggre-

gate historical and environmental experiential information and ex-

tract the dynamic characteristics of neighbors and self-feature infor-

mation in the corresponding scenarios.More specifically, Intersection-

wise can aid agents in comprehending the long-term impact of

surrounding neighbors, while Feature-wise can assist agents in

understanding the significance of different features. Conversely,

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1289



CoLight predominantly focuses on local feature information, mak-

ing it challenging to extract information about diverse scenarios.

5.7 Ablation Studies

To investigate the impact of each module, we conduct ablation

experiments, including four settings: (1) without (w/o) the Co-

Train module, (2) w/o the Experiential weight module, (3) w/o

the Intersection-wise module, and (4) w/o the Feature-wise module.

Model

Metrics

Delay Trip Time Wait

w/o Co-Train -4.85% -1.55% -4.58%

w/o Experiential weight -2.30% -4.47% -14.89%

w/o Intersection-wise weight -5.53% -1.61% -6.71%

w/o Feature-wise weight -1.57% -2.85% -4.66%

Table 3: The results of ablation experiments

Table 3 presents the results. Overall, the absence of any module

will result in a decrease in model performance. Specifically, we ob-

serve that the Co-training and Intersection-wise weight are critical

to improve delay, and the Experiential weight is essential to reduce

the trip time and wait time. Full evaluation is in Table A4.

6 CROSS-SCENARIO NEIGHBORS

As mentioned before, our Co-Train + Experiential Weight design

could easily be extended to even incorporate the “neighbors” from

other scenarios. In this section, we provide some preliminary results

and they are quite promising.

The illustration of how to select cross-scenario neighbors is

shown in Fig. 6, elaborated as follows. Given an observation of a

target intersection 𝑜𝑘,𝑖 , we first compute the cosine similarity 𝑆𝑐

between the embedding of 𝑜𝑘,𝑖 and all the observations from other

scenarios 𝑜𝑘
′,·
, where 𝑘′ ∈ {1, ..., 𝐾}\𝑘 , as follows.

𝑆𝑐 (Ψ(𝑜𝑘,𝑖 ),Ψ(𝑜𝑘
′,· ) ) := Ψ(𝑜𝑘,𝑖 ) · Ψ(𝑜𝑘′,· )

| |Ψ(𝑜𝑘,𝑖 ) | | | |Ψ(𝑜𝑘′,· ) | |
(15)

We design two ways of injecting cross-scenario neighbors. Way-

(1) the direct ones: in Fig. 6(a), we select the messages of the

top-𝑘 (here 𝑘 = 5) correlated neighbors as the augmented external

knowledge, or Way-(2) the twin’s: in Fig. 6(b), we find the most

similar neighbor (the twin) in scenario 𝑘′ and we use the twin

and its four neighbors, together with the four neighbors from the

same scenario (then in total 𝑁𝑛𝑒𝑖 = 9 ) , we enhance the decision-

making process. Thus, benefiting from our framework design, we

can directly get the weights from the intersection-wise weights

with the least change: for Way-(1), we only need to re-train bigger

intersection-wise weight matrice𝑤𝑒𝑖𝑔ℎ𝑡𝑘
𝑖𝑛𝑡
∈ R𝑁𝑘×(1+𝑁𝑛𝑒𝑖 )

(here

1+𝑁𝑛𝑒𝑖 = 10), thus capturing the weight of all the𝑁 intersections in

each scenario; for Way-(2), we can directly use the current weights

𝑤𝑒𝑖𝑔ℎ𝑡
𝑘,𝑖
𝑖𝑛𝑡
∈ R5 and𝑤𝑒𝑖𝑔ℎ𝑡𝑘

′,𝑖′

𝑖𝑛𝑡
∈ R5 to concat as a 10-dimensional

weight to embed the 9 neighbors to 𝑜𝑘,𝑖 .

As a preliminary study, we follow Way-(1) only, with the initial

intersection-wise parameter set as 1. Table 4, compared with our

DuaLight, demonstrates that incorporating the neighbors across

scenarios based on similarity can help the model improve perfor-

mance even further.
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Figure 6: Two ways of picking cross-scenario neighbors

Scenarios

Metrics

Delay Trip Time Wait

Grid 4 × 4 48.59 ± 0.0 160.55± 0.0 23.02 ± 0.0

Avenue 4 × 4 693.82± 0.0 530.03 ± 7.6 372.06 ± 0.0

Grid 5 × 5 200.03± 0.0 217.46± 0.0 78.11 ± 0.0

Cologne8 26.39 ± 0.0 90.71 ± 0.0 7.82 ± 0.0

Ingolstadt21 168.1 ± 3.04 282.1 ± 8.7 95.87 ± 5.7

Fenglin 249.61± 0.0 320.72 ± 0.0 171.02 ± 0.0

Nanshan 530.23 ± 0.0 696.28 ± 0.0 379.14 ± 0.0

Table 4: DuaLight++: with cross-scenario neighbors

7 CONCLUSION

This paper proposes a RL-based traffic signal control agent, with

two integral components. The first is the Experiential Weighted

module, which supports the model in learning dynamic informa-

tion about both the neighboring feature weights and self-feature

weights within a specific scenario. When combined with the GAT,

these two weights empower the model to focus simultaneously on

real-time neighbor information and environmental information in-

herent in the scenario. Secondly, we introduce the Co-train module,

a component which is jointly trained with DQN across multiple sce-

narios. This facilitates the model’s learning of shared and generic

dynamic information across diverse scenarios. Our results suggest

that DuaLight delivers SOTA performance, or performs competi-

tively against the existing SOTA. Embedding’s visualization reveals

that DuaLight is capable of learning superior feature representa-

tions, enabling better decisions. Moreover, we give the promising

result of incorporating neighbors from other scenarios.

Limitation and Future Work: The limitation is the require-

ment for retraining upon the addition of new scenarios. Future

work will focus on developing a flexible weight learning mecha-

nism to improve generalization to unseen scenarios, allowing for

immediate adaptation without retraining.
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