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ABSTRACT
Modeling the trust of peers in peer-to-peer networks is pivotal in

maintaining the security and functionality of the network. This

trust is commonly perceived as a peer’s reliability based on past in-

teractions and is generally classified as local and global trust values.

In a traditional client-server network, the responsibility of main-

taining the integrity of the network falls on the central authority

responsible for enforcing the security protocols and safeguarding

the network against adversarial activities. In contrast, peer-to-peer

networks may lack a central authority due to their decentralized

nature, needing innovative mechanisms to maintain network trust.

Incorporating a trust mechanism that considers peer interactions

within peer groups becomes convenient in the absence of central

authority. This paper introduces a novel approach to global trust

computation. We propose a transferable utility coalitional game

that pools local trust values between peers. The coalitions of peers

aggregate the local trust values by considering internal and external

trust. Internal trust is defined as the sum of the local trust values

of the peers in the coalition, and external trust is constituted by

the minimal trustworthiness of peers in the coalition to the peers

outside. The resulting trust game is superadditive, monotone, and

has a non-empty core. The global trust values of individual peers

are the Shapley values in the trust game. Our numerical experi-

ments in three different settings show that the resulting global trust

captures the peer behavior faithfully, and we compared our method

to Eigentrust.
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1 INTRODUCTION
The domain of digital networking has witnessed a lot of advance-

ments, one of which is peer-to-peer (P2P) networks for file sharing.

These networks gained significant traction with the success of

Napster, BitTorrent, Gnutella, and Kazaa [13]. P2P networks offer

enhanced scalability and resilience by eliminating the need to go

through a server [24]. While the P2P network has transformed the

file-sharing landscape, the main challenge these networks face is

the ability to determine their peers’ trustworthiness accurately. En-

suring the reliability and authenticity of files being shared within

the vast expanse of P2P networks is important, especially when

there is no central authority to enforce security protocols.

Unlike traditional client-server architecture, P2P systems dis-

tribute responsibilities across all peers, meaning each peer acts

as a client and a server [1]. These networks are categorized as pure

P2P, hybrid, and super-peer networks based on the degree of de-

centralization [17]. Pure P2P network maintains a flat architecture

where all their peers are equal in functionality. The hybrid P2P

system combines the elements of both P2P and client-server mod-

els [27]. Striking a balance between the two, super-peer networks

work on an intermediate layer [5]. While the P2P networks avoid

a single point of failure, they become susceptible to security threats

and malicious attacks [18]. The network also attracts adversarial

peers who may deliberately disrupt the network operations.

To keep P2P networks secure, peers use their trust in other

peers to protect themselves, block others, or tell others whom to

block. Trust is a peer’s belief in another peer’s capabilities, honesty,

and reliability based on their own direct experiences [22]. Trust

models are pivotal in building any security solution because trust is

an inherent concept of any security decision. Until now, most trust

models are “I trust you or not” or better, “I trust you until I don’t

trust you and is too late”. These models propose a varying degree of

trust that changes over time to improve security decisions. A trust

model defines the method and procedure of trust modeling and

evaluation by assigning a score to each peer [21]. The score is called

a local trust if it is based on two peers’ direct interaction, and global

trust when it is a peer’s overall standing in the P2P network [9].

There is a wide range of P2P trust models studied in the literature;

see [3, 4, 12, 15, 19, 20, 23, 25]. While diverse in their methodologies,

these trust models share a common objective: to control potential

risks in peer interactions by establishing a robust trust framework.

In particular, EigenTrust [11] stands out as one of the prominent

methods in this domain.
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However, none of these models consider the intricacies of “inter-

action groups” or, more formally, the coalitions between peers to

compute trust. The coalitions are formed based on mutual benefit

and peer interactions. Peers in the network can be seen as players

forming coalitions to maximize their individual and collective bene-

fits, i.e., trust. Through cooperation, peers can better determine the

trustworthiness of other peers, pooling their collective experiences

to derive a more accurate trust score. Motivated by the observa-

tion that trust dynamics in the network are not just a function of

individual peers but rather influenced by the collective behavior

of coalitions, this paper presents a novel approach to developing a

trust model by combining the coalitional games and the Shapley

value. Our approach emphasizes the significance of collaborative

decision-making in trust evaluation. In particular, the experience

of individual peers contributes to a broader collective computation

of trust score in the network, making it challenging for adversarial

peers to thrive. In this paper, we use the terms trust and reputa-
tion interchangeably, highlighting the intrinsic overlap of the two

concepts within the context of peer-to-peer network evaluation.

The main contributions of this paper are as follows.

• The design of the trust model that offers a fresh perspective

on trust computation in P2P networks based on cooperative

game theory.

• The formulation of a coalitional game tailored to P2P net-

works, capturing trust relationships between peers within

the coalition and peers outside the coalition.

• The application of Shapley value to compute a peer’s global

trust through collaborative trust computation.

The rest of the paper is structured as follows. Section 2 provides

an overview of the related work from the literature regarding trust

computation. Themodel design and theoretical results are presented

in section 3. Numerical experiments are described in section 4 and

the analysis of results is provided in section 5. Section 6 contains

the conclusions and topics for future research.

2 RELATEDWORK
The main objective of the trust models is to keep the network

reliable, secure, and eliminate the distribution of inauthentic files

and data by identifying potentially harmful peers in the network.

This is mainly done through the computation of the global trust
of each peer in the network.

In this context, EigenTrust [11] computes global trust by aggre-

gating local trust values based on past peer interactions. The lo-

cal trust values are normalized to mitigate malicious interactions.

EigenTrust is based on the PowerMethod applied to the trust matrix

of normalized local trust values, which is guaranteed to converge

to the dominant eigenvector under some conditions, thereby estab-

lishing a global trust value for each peer. However, EigenTrust may

perform poorly in cases where convergence to the dominant eigen-

vector does not occur [2]. Another notable limitation of EigenTrust

is its dependability on pre-trusted peers. The absence of such peers

makes the algorithm vulnerable to collusion attacks.

To address the reliance on pre-trusted peers, the HonestPeer [12]

algorithm, an enhanced version of EigenTrust, uses the concept of

an “honest peer”. The peer classified as an honest peer possesses

the maximum reputation in the system at any given point and is in-

fluential in calculating the global trust of a peer. If the honest peer is

among pre-trusted peers, these peers maintain significant influence

on the global trust values; otherwise, the influence is marginalized.

While HonestPeer adeptly addresses the disproportionate influence

of pre-trusted peers, it does not completely eliminate the depen-

dency on them. The algorithm still uses the concept of pre-trusted

peers, adjusting their influence based on the presence or absence

of the honest peer in the cohort.

In a similar way, the PowerTrust system [29] draws inspiration

from the power law to dynamically select “power nodes” that are the

most reputable using a distributed ranking. The PowerTrust system

operates within a decentralized framework, relying on a structured

overlay called the Trust Overlay Network to efficiently manage and

retrieve trust data. This overlay, similar to Distributed Hash Tables,

provides an organized storage and rapid retrieval of trust values.

PowerTrust improves the accuracy of global trust value through

a look-ahead random walk strategy. However, it relies on a selected

group of peers, similar to the reliance on pre-trusted peers.

Global trust is typically calculated from the aggregation of local

trust values, which reflects the quality of interactions between

peers. Authors of PeerTrust [26] identify five factors essential for

evaluating a peer’s trustworthiness, one of which is peer interaction

quality. The five factors are averaged according to a weighting for

each factor to compute the general trust value of a peer.

One of the complexities to capture in peer interactions is the pres-

ence of deceptive users and malicious activities, which is addressed

in AbsoluteTrust [3]. The authors use a weighted average approach

to give greater significance to trust values stemming from authentic

interactions, thereby minimizing the impact of potentially mali-

cious peers. Another interesting approach towards capturing the ac-

tivities of malicious nodes is presented in [28]. The authors use

the concepts of proximity, familiarity, and similarity from human

social psychology to calculate the trust value. The authors argue

for a holistic view of trust encompassing local and global trust

values. Bayesian networks have also been applied to model trust re-

lationships probabilistically [22]. The Bayesian approach quantifies

direct interactions, assimilates peer feedback, and forms a peer’s

global trust in the network.

3 MODEL DESIGN
In this section, we develop our model of global trust assessment

in P2P networks. We assume that the set of peers and the con-

nections between them are represented by a trust graph, which is

a weighted directed graph G = (𝑁, 𝐸), where 𝑁 = {1, . . . , 𝑛} is
the set of peers and the local trust 𝑎𝑖 𝑗 ∈ [0, 1] of peer 𝑖 towards 𝑗 is
assigned to each edge (𝑖, 𝑗) ∈ 𝐸. The local trust value 𝑎𝑖 𝑗 is the rep-

utation of peer 𝑗 from the viewpoint of peer 𝑖 . The dependence

of weighted graph G on values 𝑎𝑖 𝑗 is tacitly understood. We as-

sume that G is simple (no loops, (𝑖, 𝑖) ∉ 𝐸 for every 𝑖 ∈ 𝑁 ). In other

words, no peer is allowed to assign the reputation to itself. We don’t

require that G is a complete graph, but the local trust value 𝑎𝑖 𝑗
must be defined for each edge (𝑖, 𝑗) ∈ 𝐸.

We follow the standard terminology of cooperative game theory

[7, 10, 16]. The players in our game are the peers. A subset of peers

𝑆 ⊆ 𝑁 is called a coalition. Our goal is to define the trust (reputation)
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of each coalition based on the trust graph. This means that we seek

the suitable definition of a (coalitional) game

𝑣 : P(𝑁 ) → R,
a function mapping every coalition in the powerset P(𝑁 ) to a real

number, where 𝑣 (∅) = 0. We assume that the coalitional trust can

be decomposed into internal and external trust. When coalition 𝑆 is

formed, its members generate the internal trust, which corresponds

to the total intercoalitional trust among members of 𝑆 , and the

external trust representing the reputation of members in 𝑆 from the

perspective of peers outside 𝑆 . We want to combine the internal

and external trust into the coalitional trust for 𝑆 .

Our approach is based on combining internal and external trust

additively. The former is the sum of all local trust values between

the peers in a coalition, whereas the latter reflects the trust between

the peers inside and outside the coalition, and it is based on the

conservative (pessimistic) assessment of the trust of peers in the

coalition. This idea can be formalized as follows.

Definition 3.1. Let G = (𝑁, 𝐸) be a trust graph. For every coali-

tion of peers 𝑆 ⊆ 𝑁 , define

𝑆∗ = { 𝑗 ∈ 𝑆 | there exists 𝑖 ∉ 𝑆 such that (𝑖, 𝑗) ∈ 𝐸}.
The trust game 𝑣G is given by

𝑣G (𝑆) =
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 , 𝑆 ⊆ 𝑁 . (1)

Observe that the second summand in (1) is zero whenever 𝑆∗ = ∅
by the definition of empty sum. This ensures that 𝑣G is a coalitional

game. The first term sums up the weights of the edges between

nodes within the coalition 𝑆 , which represents the internal trust,

and the second term calculates the aggregated weight of the edges

external to the coalition 𝑆 , which amounts to the minimal trust

exerted on the coalition from external nodes. Summing up, the

definition of the coalitional function (1) is based on two principles.

(1) Trust values between different pairs of peers in the coalition

are aggregated additively.
(2) Trust values exerted on a single peer from peers external to

the coalition are combined using minimum.

The second principle is a pessimistic way to assess the total trust

exerted on a peer 𝑗 ∈ 𝑆 since the peer 𝑗 is trusted only to the

minimal degree of trust 𝑎𝑖 𝑗 among those 𝑖 ∉ 𝑆 with (𝑖, 𝑗) ∈ 𝐸. The

use of minimum instead of, say, multiplication, avoids paradoxical

situations when the peer highly trusted by many other peers would

have very low trust.

The meaning of formula (1) is straightforward in the situation

when the trust graph captures only the relations of maximal trust

between peers.

Example 3.2. Let G = (𝑁, 𝐸) be the trust graph such that 𝑎𝑖 𝑗 = 1

for all (𝑖, 𝑗) ∈ 𝐸. Then the trust game is

𝑣G (𝑆) = |{(𝑖, 𝑗) ∈ 𝐸 | 𝑖, 𝑗 ∈ 𝑆}| + |𝑆∗ |, 𝑆 ⊆ 𝑁,

which is just the number of trust relations in 𝑆 plus the number of

peers in 𝑆 that are trusted by at least one peer outside 𝑆 . We note

that the non-monotonicity of the operator
∗
makes further analysis

of this game somewhat complicated.

We will establish the basic properties of trust games from the

viewpoint of cooperative game theory. A coalitional game 𝑣 is called

monotone if
𝑣 (𝑆) ≤ 𝑣 (𝑇 )

for all 𝑆,𝑇 ∈ P(𝑁 ) with 𝑆 ⊆ 𝑇 , and superadditive if

𝑣 (𝑆) + 𝑣 (𝑇 ) ≤ 𝑣 (𝑆 ∪𝑇 )

for all 𝑆,𝑇 ∈ P(𝑁 ) with 𝑆 ∩𝑇 = ∅.

Proposition 3.3. LetG = (𝑁, 𝐸) be any trust graph. Then the trust
game 𝑣G is monotone and superadditive.

Proof. Let 𝑆 ⊆ 𝑇 for 𝑆,𝑇 ∈ P(𝑁 ). For each 𝑗 ∈ 𝑆∗ we denote

𝑀𝑇 \𝑆 ( 𝑗) = {𝑖 ∈ 𝑇 \ 𝑆 | 𝑎𝑖 𝑗 = min

𝑘∉𝑆
𝑎𝑘 𝑗 }

and

𝑀𝑁 \𝑇 ( 𝑗) = {𝑖 ∉ 𝑇 | 𝑎𝑖 𝑗 = min

𝑘∉𝑆
𝑎𝑘 𝑗 ≠ min

𝑘∈𝑇 \𝑆
𝑎𝑘 𝑗 }.

Then

𝑣G (𝑆) =
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 ,

where ∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 =
∑︁
𝑗∈𝑆∗

𝑖∈𝑀𝑇 \𝑆 ( 𝑗 )
(𝑖, 𝑗 ) ∈ 𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑆∗

𝑖∈𝑀𝑁 \𝑇 ( 𝑗 )
(𝑖, 𝑗 ) ∈ 𝐸

𝑎𝑖 𝑗

≤
∑︁

𝑖∈𝑇 \𝑆,𝑗∈𝑆
(𝑖, 𝑗 ) ∈ 𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑇 ∗

min

𝑖∉𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 .

(2)

Now, the monotonicity follows from the decomposition

𝑣G (𝑇 ) =
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁

𝑖, 𝑗∈𝑇 \𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁

𝑖∈𝑆,𝑗∈𝑇 \𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +

∑︁
𝑗∈𝑆,𝑖∈𝑇 \𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑇 ∗

min

𝑖∉𝑇,(𝑖, 𝑗 ) ∈𝐸
𝑎𝑖 𝑗 .

and from (2) applied to the last two summands above.

As for superadditivity, let 𝑆,𝑇 ⊆ 𝑁 and 𝑆 ∩𝑇 = ∅. Then
𝑣G (𝑆) + 𝑣G (𝑇 )

=
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑖, 𝑗∈𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑇 ∗

min

𝑖∉𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 .

Using (2) we get∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑇 ∗

min

𝑖∉𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 ≤∑︁
𝑖∈𝑆,𝑗∈𝑇
(𝑖, 𝑗 ) ∈ 𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆∪𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁

𝑖∈𝑇,𝑗∈𝑆
(𝑖, 𝑗 ) ∈ 𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑇 ∗

min

𝑖∉𝑆∪𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗

︸                                                                        ︷︷                                                                        ︸
𝑏B

.

Since

𝑣G (𝑆 ∪𝑇 ) = 𝑏 +
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑖, 𝑗∈𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗
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we obtain

𝑣G (𝑆) + 𝑣G (𝑇 ) ≤ 𝑣G (𝑆 ∪𝑇 ),
which concludes the proof. □

There are many solution concepts for coalitional games. Any

such concept maps a coalitional game to the set of plausible alloca-
tions, which are just vectors

x = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 .

Interestingly enough, every trust game has at least one allocation x∗

in the core. This allocation is defined for each peer 𝑗 ∈ 𝑁 simply as

the sum of incoming local trust values:

𝑥∗𝑗 =
∑︁
𝑖∈𝑁

(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 . (3)

Recall that the core of a coalitional game 𝑣 is the convex polytope

of efficient and coalitionally rational allocations,

C(𝑣) =
{
x ∈ R𝑛 |

∑︁
𝑖∈𝑁

𝑥𝑖 = 𝑣 (𝑁 ),
∑︁
𝑖∈𝑆

𝑥𝑖 ≥ 𝑣 (𝑆), for each 𝑆 ⊆ 𝑁

}
.

Proposition 3.4. For every trust game, x∗ ∈ C(𝑣G).

Proof. The allocation x∗ = (𝑥∗
1
, . . . , 𝑥∗𝑛) defined by (3) is efficient

since ∑︁
𝑗∈𝑁

𝑥∗𝑗 =
∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑁

(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 = 𝑣G (𝑁 ).

It is also coalitionally rational since, for every 𝑆 ⊆ 𝑁 , we get∑︁
𝑗∈𝑆

𝑥∗𝑗 =
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑁

(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 =
∑︁
𝑗,𝑖∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁

𝑗∈𝑆,𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 ,

where the right-hand side above is greater or equal than 𝑣G (𝑆)
by the definition of trust game. □

Important classes of coalitional games are the families of exact

games and supermodular games [10]. Recall that a game 𝑣 is called

exact if, for each coalition 𝑆 ⊆ 𝑁 , there is an allocation

x ∈ C(𝑣) such that 𝑣 (𝑆) = ∑
𝑖∈𝑆

𝑥𝑖 .

A game 𝑣 is supermodular if the inequality

𝑣 (𝑆) + 𝑣 (𝑇 ) ≤ 𝑣 (𝑆 ∪𝑇 ) + 𝑣 (𝑆 ∩𝑇 )

holds for every 𝑆,𝑇 ⊆ 𝑁 . It is well-known that every supermodular

game is exact, but the converse generally fails. The following ex-

ample shows that 𝑣G may not be an exact game and, consequently,

not supermodular.

Example 3.5. Let 𝑁 = {1, 2, 3} and G = (𝑁, 𝐸) be the trust graph
in Figure 1. The resulting trust game 𝑣G is defined by 𝑣G ({1}) = 0.1,

𝑣G ({2}) = 0.2, 𝑣G ({3}) = 0.3, 𝑣G ({1, 2}) = 1.5, 𝑣G ({1, 3}) = 1.3,

𝑣G ({2, 3}) = 1.6, and 𝑣G (𝑁 ) = 2.2. The typical core allocation (3)

is x∗ = (0.6, 0.9, 0.7).
The game is not exact. By contradiction, assume that for 𝑆 = {1}

there exists a core allocation x such that

𝑣G ({1}) = 0.1 = 𝑥1 .

1

2 3

0.2

0.1

0.3

0.5

0.4

0.7

Figure 1: The trust graph from Example 3.5

This implies that

𝑥1 + 𝑥2 ≥ 𝑣G ({1, 2}) = 1.5,

𝑥1 + 𝑥3 ≥ 𝑣G ({1, 3}) = 1.3,

therefore

𝑥2 ≥ 1.4,

𝑥3 ≥ 1.2.

In conclusion,

𝑥1 + 𝑥2 + 𝑥3 = 2.7 > 2.2 = 𝑣G (𝑁 ),

a contradiction.

3.1 Shapley Value
We identify the global trust values of peers with the Shapley values

of peers in the associated trust game. The vector of Shapley values

can be viewed as a fair allocation of trust to individual peers. Specif-

ically, the Shapley value of a coalitional game 𝑣 is the allocation

𝜙 (𝑣) ∈ R𝑛 with coordinates

𝜙𝑖 (𝑣) =
∑︁

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

· Δ𝑖𝑣 (𝑆), 𝑖 ∈ 𝑁, (4)

where

Δ𝑖𝑣 (𝑆) = 𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)
is the marginal contribution of player 𝑖 ∉ 𝑆 to coalition 𝑆 in game 𝑣 .

The Shapley value is a solution concept that has the null player

property, it is symmetric, efficient, and linear. By the last property,

we can split the trust game into two coalitional games 𝑢G and𝑤G
each of which corresponds to one summand in (1), so that the

Shapley value of

𝑣G = 𝑢G +𝑤G
becomes

𝜙 (𝑣G) = 𝜙 (𝑢G) + 𝜙 (𝑤G).
To this end, we define the internal trust game as

𝑢G (𝑆) =
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 , 𝑆 ⊆ 𝑁,

and the external trust game as

𝑤G (𝑆) =
∑︁
𝑗∈𝑆∗

min

𝑖∉𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 , 𝑆 ⊆ 𝑁 .

Observe that the internal trust game is analogous to an induced-

subgraph game studied in the case of undirected graphs [8].
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Proposition 3.6. Internal trust game 𝑢G is monotone, supermod-
ular, and the Shapley value of peer 𝑖 ∈ 𝑁 is

𝜙𝑖 (𝑢G) =
1

2

©­­­«
∑︁
𝑗∈𝑁

(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 +
∑︁
𝑗∈𝑁

( 𝑗,𝑖 ) ∈𝐸

𝑎 𝑗𝑖

ª®®®¬ .
Proof. Let 𝑆 ⊆ 𝑇 for 𝑆,𝑇 ∈ P(𝑁 ). Then

𝑢G (𝑆) =
∑︁
𝑖, 𝑗∈𝑆
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 ≤
∑︁
𝑖, 𝑗∈𝑇
(𝑖, 𝑗 ) ∈𝐸

𝑎𝑖 𝑗 = 𝑢G (𝑇 )

since each 𝑎𝑖 𝑗 ≥ 0 and

{(𝑖, 𝑗) ∈ 𝐸 | 𝑖, 𝑗 ∈ 𝑆} ⊆ {(𝑖, 𝑗) ∈ 𝐸 | 𝑖, 𝑗 ∈ 𝑇 }.
Assume now that 𝑆,𝑇 ∈ P(𝑁 ) are arbitrary. Then

𝑢G (𝑆) + 𝑢G (𝑇 ) ≤ 𝑢G (𝑆 ∪𝑇 ) + 𝑢G (𝑆 ∩𝑇 )
since the two terms on the right-hand side contain the same terms

as those on the left-hand side, and in addition also the sum of local

trust values 𝑎𝑖 𝑗 with 𝑖 ∈ 𝑆 \𝑇, 𝑗 ∈ 𝑇 \ 𝑆 or 𝑗 ∈ 𝑆 \𝑇, 𝑖 ∈ 𝑇 \ 𝑆 .
The formula for Shapley value can be derived by following

the proof of [8, Theorem 1] for undirected graphs. □

The Shapley value in the internal trust game has a simple inter-

pretation — each peer is assigned the average of its “outgoing” and

“incoming” local trust values.

The analysis of external trust game is more complicated. This

is due to the fact that a nonzero coalitional game 𝑤G is neither

monotone nor superadditive. Indeed, it follows from the defini-

tion that 𝑤G (𝑁 ) = 0 and 𝑤G (𝑆) > 0 for some coalition 𝑆 ≠ ∅.
Moreover, a nonzero game𝑤G is not balanced since any allocation

x ∈ C(𝑤G) must have nonnegative coordinates, which means that

the efficiency

∑
𝑖∈𝑁 𝑥𝑖 = 𝑤G (𝑁 ) = 0 yields 𝑥𝑖 = 0 for each 𝑖 ∈ 𝑁 .

By a similar argument, the Shapley value of a peer in𝑤G may be

negative. The closed-form formula for 𝜙 (𝑤G) would not be as di-

rectly interpretable as the one for 𝜙 (𝑢G), since the definition of𝑤G
involves non-monotonic operator

∗
.

We will briefly comment on the Shapley value-based global trust

from the perspective of two properties of EigenTrust, transitivity

and conflation [2, 11]. Transitivity asserts that 𝑖’s trust in 𝑘 can

be computed from 𝑖’s level of trust in 𝑗 , and 𝑗 ’s trust in 𝑘 . In our

setting, we cannot formulate transitivity directly since our model

does not require computing 𝑖’s trust in 𝑘 ; see the following example

with 𝑖 = 1, 𝑗 = 2, and 𝑘 = 3.

Example 3.7. Let the set of peers be 𝑁 = {1, 2, 3} and the trust

graph G be as in Figure 2. The corresponding trust game 𝑣G is given

by 𝑣G ({1}) = 0, 𝑣G ({2}) = 𝑎12, 𝑣G ({3}) = 𝑎23, 𝑣G ({1, 2}) = 𝑎12,

𝑣G ({2, 3}) = 𝑎12 + 𝑎23, 𝑣G ({1, 3}) = 𝑎23, and 𝑣G (𝑁 ) = 𝑎12 + 𝑎23.

The Shapley value determines the global trust value of each peer,

𝜙1 (𝑣G) = 0, 𝜙2 (𝑣G) = 𝑎12, and 𝜙3 (𝑣G) = 𝑎23. Note that neither

the coalitional trust value 𝑣G ({1, 3}) = 𝑎23 nor the Shapley value

𝜙3 (𝑣G) = 𝑎23 indicates the influence of peer 1 on the trust in peer 3.

It may seem from the global trust value 𝜙1 (𝑣G) = 0 in Exam-

ple 3.7 that our method exhibits the conflation of zero local trust

and non-existing evaluation of a peer, which is one of the features

1 2 3

𝑎12 𝑎23

Figure 2: The trust graph from Example 3.7

of EigenTrust. However, this is not always the case, as Example 3.8

demonstrates.

Example 3.8. Consider the setting of Example 3.5 with (a) local

trust 𝑎32 = 0 and (b) with no edge from peer 3 to peer 2. Then (a)

and (b) yield different ratios of the Shapley values, cca 5:3:7 and

5:4:7, respectively.

1

2 3

0.2

0.1

0.3

0.5

0.4

0

Figure 3: The trust graph from Example 3.8 (a)
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0.3

0.5
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Figure 4: The trust graph from Example 3.8 (b)

3.2 Local Trust Estimation
The computation of coalitional trust according to Definition 3.1 is

based on the trust graph with local trust values along its edges. It

is common for peers to rate each other post-transaction in decen-

tralized environments. A transaction [14] refers to a query posed

by peer 𝑖 to peer 𝑗 . Adopting the rating mechanism [11], our trans-

action rating is set to 1 if the information provided by peer 𝑗 in re-

sponse to the query posed by 𝑖 is authentic (satisfactory). Conversely,
a −1 rating is assigned to inauthentic (unsatisfactory) information.

Let 𝑠𝑎𝑡𝑖 𝑗 and 𝑢𝑛𝑠𝑎𝑡𝑖 𝑗 represent the total number of satisfactory

and unsatisfactory transactions from peer 𝑖 to 𝑗 , respectively. We

consider the non-normalized local trust defined by

𝑠𝑖 𝑗 = 𝑠𝑎𝑡𝑖 𝑗 − 𝑢𝑛𝑠𝑎𝑡𝑖 𝑗 .

The quantity 𝑠𝑖 𝑗 is further normalized to limit the variability in

trust values resulting from disparate transaction frequencies. Nor-

malization ensures that no peer disproportionately influences the

trust values and that it lies within a consistent range eliminating

the risk of skewed representation of trustworthiness in the net-

work, especially in the presence of adversarial peers. We apply the
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EigenTrust normalization methodology to obtain the normalized

local trust value

𝑐𝑖 𝑗 =
max{𝑠𝑖 𝑗 , 0}∑

𝑘∈𝑁
max{𝑠𝑖𝑘 , 0}

.

In case that ∑︁
𝑘∈𝑁

max{𝑠𝑖𝑘 , 0} = 0,

we set 𝑐𝑖 𝑗 = 0. This convention not only guarantees that the defini-

tion of 𝑐𝑖 𝑗 is mathematically sound, but also acknowledges that the

concerning peer had no satisfactory transactions, thereby being

conservatively allocated the lowest trust value. These normalized

trust values form the edge weights of our trust graph and are used

to compute the worth of each coalition. By leveraging these edge

weights, we compute the Shapley value, which represents the global

trust of each peer under different scenarios in our numerical exper-

iments.

4 DESCRIPTION OF EXPERIMENTS
The following experiments were conducted, each designed to cap-

ture peer behavior under a distinct range of satisfactory and un-

satisfactory transactions. The key focus of these experiments is

to evaluate how accurately the Shapely-based trust computation

captures the peer interactions in the network. We are testing the

model’s ability to grasp the true dynamics of peer interactions

within a peer-to-peer network. In all the experimental scenarios

the data were generated in such a way that every peer had at least

one interaction with any other peer, which implies that the trust

graph is a complete directed graph.

In the first scenario, the Ideal Scenario, we evaluate the model’s

performance under optimal conditions. Here, each peer’s behavior

is characterized by a uniform presence of satisfactory transactions.

All the peers are benign and do not generate any unsatisfactory

transactions. As an ideal setting, this scenario assesses the behavior

of the model in global trust allocation when all the peers generate

the same number of transactions. It serves as a reference point and

provides a benchmark for analyzing peer behavior in subsequent

scenarios.

The second scenario provides a more practical view of the net-

work operations regarding transaction generation. Termed as the

Baseline Scenario, the network generates a mix of satisfactory and

unsatisfactory transactions. It simulates a more realistic network

environment reflecting the irregularities and fluctuations in trans-

actional interactions, depicting a setting where the existence of

any adversarial peer within the network is unknown. Evaluating

the model’s performance in an uncertain environment with mixed

transactional interaction offers a perspective on the model’s re-

sponses to varying levels of discrepancies in transactions. This

allows for a detailed analysis of the model’s reliability and pre-

cision in differentiating between the nature of transactions. It is

a preliminary step in evaluating the model’s adaptability before

introducing explicit adversarial peers in the next scenario.

In the third scenario, Adversarial Scenario, adversarial peers are
intentionally incorporated into the network. Peers classified as

adversarial generate more unsatisfactory transactions than non-

adversarial peers. The influx of unsatisfactory transactions from

adversarial peers necessitates evaluating the model’s precision in

trust value calculations. This scenario is important because it lets

us test how well the trust computation can hold under extreme

adversarial conditions.

In addition to our primary experiments, we also compared our

model’s trust computation with the basic variant of EigenTrust.

In this variant, there are no pre-trusted peers. The comparison

was conducted within our model’s context of Adversarial Scenario.
Comparing this scenario, in particular, underscores the model’s

capability to compute global trust values accurately in the presence

of adversarial peers. This comparison was not only for identifying

the same good and adversarial peers but also for exploring how our

model aligns with or diverges from EigenTrust.

In summary, our goal is to show how our model performs in

different scenarios—from the ideal to the challenging—and, in partic-

ular, how it measures against established methods like EigenTrust.

5 RESULTS OF EXPERIMENTS
The results of our experiments highlight the fairness and accuracy

of computing the global trust values in different scenarios. Without

unsatisfactory transactions, the Shapley value in the Ideal Scenario
is equal for all the peers, which follows from the symmetry of

Shapley value and Definition 3.1. This states that the global trust

is uniform across the network in the presence of balanced trans-

action counts per peer. We conducted the experiments with three

different peer groups, and the results were identical across each

group, as illustrated in Table 1. This uniformity across the network

reflects the model’s fairness in trust allocation, showing that no

peer receives undue advantage or disadvantage. It emphasizes that

when the number of transactions is equal among peers, the quality

of interactions takes precedence. The results establish a baseline

for the model’s ability to represent peer behavior in a uniformly

positive transactional environment accurately.

Table 1: Results for the Ideal Scenario

Peers Transactions Global Trust

5 10 1

10 100 1

20 1000 1

The objective of the Baseline Scenario was to provide a practical

viewpoint of the transaction generation in a network by incor-

porating unsatisfactory transactions. In this scenario, each peer

generated satisfactory and unsatisfactory transactions within a

given range uniformly at random. We experimented with three dif-

ferent peer groups in this scenario, and the transaction generation

range per peer group is shown in Table 2. The randomness in trans-

action generation introduced an element of unpredictability, similar

to interactions in a real-world P2P network, thereby highlighting

the model’s ability to adapt to varied transactional behavior.

As anticipated, the Shapley values in this scenario showed varia-

tions due to the randomness in the transaction generation. More-

over, the subsequent ranking of the peers based on their global

trust values correlates with the number and nature of the transac-

tions. For a 5-peer network, peer 5 is the most trusted and has the

highest Shapley value of 1.32 while peer 4 is deemed least trusted
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Table 2: The ranges for random generation of satisfactory
and unsatisfactory transactions in the Baseline Scenario

Peers Transactions

5 range(100,500)

10 range(500,1000)

20 range(500,1000)

as illustrated in Figure 5. For the 10-peer and 20-peer networks,

a similar pattern was observed in the results based on the nature

and number of transactions. The results in this scenario depict the

model’s ability to adapt and calculate global trust across transac-

tions of varied numbers and nature. This difference in the global

trust values can be seen in Figure 5, which compares trust values

for a 5-peer network in the Ideal Scenario and Baseline Scenario.
Another noteworthy observation in this scenario was that the

ranking of Shapley values of the peers and their typical core allo-

cation (3) are identical. Therefore, peers with a higher number of

satisfactory interactions receive a higher local trust value, leading

to a higher Shapley value and, thereby, a higher global trust value.

Figure 5: The comparison of global trust values between Ideal
Scenario and Baseline Scenario in a 5-peer network

In the third scenario, Adversarial Scenario, we introduced ad-

versarial peers into the network. These peers are characterized by

generating a higher number of unsatisfactory transactions when

compared to normal peers, challenging the model’s ability to com-

pute the global trust values accurately. Normal peers here refer to
those not explicitly categorized as adversarial even though they

generate unsatisfactory transactions. The process of transaction

generation for normal peers in this scenario mirrored the approach

of Baseline Scenario. As for adversarial peers, unsatisfactory transac-
tions were generated within the notably high range of 1000− 10000.

This range was set exceptionally high to see the model’s response

in extreme adversarial conditions. As in the previous scenarios, we

experimented with three different peer groups, and the number of

adversarial peers differed in each group. The number of adversarial

peers for each group is represented in Table 3.

Table 3: Adversarial peers in the Adversarial Scenario

Peers Adversarial

5 1

10 2

20 5

The peers classified as adversarial received lower global trust

values than their normal counterparts. In the 5-peer network, peer

2 was deemed as the adversarial peer, generating a high number

of unsatisfactory transactions, and as evident from the line graph

in Figure 6, it had the lowest global trust value underlining the

impact of its adversarial behavior. This observation was similar for

the larger peer groups. The 10-peer network, where peers 2 and 5

were categorized as adversarial, also received lower trust values.

This pattern was consistent with the 20-peer network where peers

1,2,5,7,11 were marked as adversarial. The high variance in the

global trust values is due to the randomness in the transaction

generation.

Figure 6: Trust values of peers in the Adversarial Scenario,
where blue represents the 5-peer network with 1 adversarial
peer, orange represents the 10-peer network with 2 adver-
sarial peers, and green represents the 20-peer network with
5 adversarial peers

The global trust values from Adversarial Scenario were further
compared with the basic variant of EigenTrust, which does not

depend on pre-trusted peers. It initiates the iterative process with

uniform initial trust values for all peers. The comparative analysis

of the global trust values for a 10-peer network from our model with

the EigenTrust variant is presented in Figure 7. Peers 2 and 5 were

predefined as adversarial, and the global trust values assigned to

these peers were in relative concordance with both models. We note
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the difference in the magnitude of the global trust values provided

by both models, especially in the case of EigenTrust where the

global trust values of the adversarial peers are zero. This difference

in global trust values is attributed to the inherent variations in the

methodologies of the two models. This comparative analysis with

EigenTrust was instrumental in validating our model’s accuracy

in computing global trust values, particularly in scenarios involv-

ing adversarial peers. The consistency in ranking these adversarial

peers between our model and EigenTrust underscores its effective-

ness in accurately identifying and appropriately assigning lower

trust values to such peers. Importantly, this comparison highlights

our model’s alignment with established trust computation methods,

emphasizing its capability to distinguish and reflect the nuanced

differences in peer behaviors within the network.

Figure 7: The comparison with basic variant of EigenTrust,
where peers 2 and 5 were marked as adversarial

Our approach can also be extended to bigger peer groups. We

note that for bigger peer groups computing the Shapely value ef-

ficiently will become challenging due to its exponential nature,

nevertheless, this complexity can be solved with sampling algo-

rithms which give a close approximation. While many sampling

algorithms are available, we opted to experiment with the algorithm

from [6], which samples over different permutations of the coali-

tions. We compared the global trust values computed in a 10-peer

network from the Baseline Scenario with the sampling algorithm,

and the results are displayed in Figure 8. The global trust values

obtained from the sampling method using 1000 randomly generated

permutations closely align with the actual global trust values. This

suggests that the sampling method is effective in approximating

the global trust values in the case of a bigger peer network.

6 CONCLUSIONS AND FUTURE RESEARCH
This paper presents a transferable utility coalitional game for mod-

eling trust in a P2P network. Our concept of coalitional trust hinges

on evaluating trust through the direct experience of peers within

and outside coalitions rather than on transitive relationships, as

Figure 8: The comparison of global trust values in a 10-peer
network with the sampling algorithm

in EigenTrust. We proved the resulting trust game is monotone,

superadditive, and balanced. Further, we derived a peer’s global

trust value from the Shapley value of trust game. Our experimen-

tal results confirmed that this approach to calculating global trust

captures peer behavior in the simulated network based on the gen-

erated transactions. We experimented with three peer groups, the

largest group being the 20-peer network. Our approach can also

be applied to bigger peer groups using sampling algorithms for ap-

proximating the Shapley value. Future research could beneficially

extend beyond the scope of our investigation in several ways.

• Many important families of coalitional games are totally
balanced [16]. The open question is if every trust game is

totally balanced. Note that a two-player subgame of a trust

game is typically not a trust game since there may be no

trust graph associated with the subgame.

• The related problem is whether there are core allocations of

trust games other than those given by formula (3). Specif-

ically, the goal is to characterize the core of the trust game

in terms of vertices. This seems to be a nontrivial question

since trust games are not supermodular by Example 3.5.

• The effects of manipulation. Our future work also entails

analyzing the effects of the presence of peers whose local

trust values may not faithfully capture their reputation and

their subsequent impact on the coalition they are part of.
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