Full Research Paper

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Solution-oriented Agent-based Models Generation with
Verifier-assisted Iterative In-context Learning

Tong Niu
Center for Brain-Inspired Computing
Research, Tsinghua University
Beijing, China
nt20@mails.tsinghua.edu.cn

ABSTRACT

Agent-based models (ABMs) stand as an essential paradigm for
proposing and validating hypothetical solutions or policies aimed
at addressing challenges posed by complex systems and achiev-
ing various objectives. This process demands labor-intensive en-
deavors and multidisciplinary expertise. Large language models
(LLMs) encapsulating cross-domain knowledge and programming
proficiency could potentially alleviate the difficulty of this process.
However, LLMs excel in handling sequential information, making
it challenging for analyzing the intricate interactions and nonlin-
ear dynamics inherent in ABMs. Additionally, due to the lack of
self-evaluation capability of LLMs, relying solely on LLMs is in-
sufficient to effectively accomplish this process. In this paper, we
present SAGE, a general solution-oriented ABM generation frame-
work designed for automatic modeling and generating solutions for
targeted problems. Unlike approaches reliant on expert handcraft-
ing or resource-intensive neural network training, SAGE establishes
a verifier-assisted iterative in-context learning process employing
large language models (LLMs) to leverages their inherent cross-
domain knowledge for tackling intricate demands from diverse
domain scenarios. In SAGE, we introduce an semi-structured con-
ceptual representation expliciting the intricate structures of ABMs
and an objective representation to guide LLMs in modeling sce-
narios and proposing hypothetical solutions through in-context
learning. To ensure the model executability and solution feasibility,
SAGE devises a two-level verifier with chain-of-thought prompting
tailored to the complex interactions and non-linear dynamics of
ABMs, driving the iterative generation optimization. Moreover, we
construct an evaluation dataset of solution-oriented ABMs from
open sources. It contains practical models across various domains,
completed with scenario descriptions and executable agent-based
solutions. Evaluations by various LLMs demonstrate that SAGE
leads to an average improvement of 18.7% in modeling quality and
38.1% in solution generation effectiveness. This work advances
our understanding and ability in tackling complex real-world chal-
lenges across diverse domains through the application of ABM
methodologies.
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1 INTRODUCTION

Agent-based models (ABMs) provide a bottom-up perspective for ex-
ploring complex systems [17], such as societies [27], ecosystems [7]
and financial markets [38]. By modeling and simulating actions and
interactions of autonomous agents within an artificial environment,
ABMs can replicate real-world phenomena, validate hypotheses,
uncover emergent behaviors, and formulate solutions or policies
for specific problems. In the process of formulating solutions using
ABMs, practitioners typically begin by modeling problem scenarios
and subsequently simulating the hypothetical solutions proposed
by experts to verify their effectiveness [22, 41]. This process poses
significant challenges for practitioners [43], including the need for
proficiency in abstract modeling to capture essential elements, struc-
tures and dynamics of the system to simplify real-world scenarios
into an agent-based model. It also requires exceptional program-
ming skills to translate the model into computational code. Most
importantly, it demands a solid foundation of domain knowledge
that entails a deep understanding of the problem context.
Leveraging advancements in computing methods [20, 21], sub-
stantial efforts are dedicated to automating the aforementioned
modeling and solution generation process. Some initiatives apply
intelligent algorithms, such as reinforcement learning [34], to auto-
matically generate strategies [18, 46]. However, these approaches
demand a prolonged learning processes reliant on explicit reward
design or vast amounts of data. Some works make innovations by
proposing domain-specific languages [37] or abstracting modeling
principles [29] to simplify the programming complexity of models.
Recently, large language models (LLMs) have shown significant
progress in various tasks [16, 36], such as code generation [31]
and question answering [3]. Through extensive pre-training on
diverse and abundant data, LLMs acquire the ability to general-
ize knowledge and apply it across various domains, positioning
them as potentially valuable tools for the automated generation
of solution-oriented ABMs. However, since LLMs are primarily


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Full Research Paper

designed to model natural languages, they excel in processing se-
quential information and linear causality [8]. When applied directly
to generate, analyze, and enhance ABMs, LLMs may encounter lim-
itations due to their inherent design constraints in dealing with
non-linear dynamics and intricate relationships among heteroge-
neous agents and the environment of ABMs. Besides, LLMs lack
the self-checking and self-correction abilities for generated content.
Therefore, ABMs generated by LLMs may contain factual inaccura-
cies, logical inconsistencies, and oversimplified intricacies of the
real-world systems they aim to represent. Balancing the desire to
streamline the solving process using LLMs with the need to ensure
the executability and efficacy of the solution-oriented ABMs poses
a formidable challenge.

To address these challenges, we present SAGE (Solution-oriented
Agent-based models GEneration), a framework designed to leverage
the in-context learning ability of LLMs for generating executable
and verifiable agent-based solutions. SAGE comprises two stages:
"Modeling" stage that uses a conceptual representation coupled
with few-shot prompting techniques [32] to help LLMs compre-
hend the holistic structure and dynamics of the problem, ultimately
facilitating the generation of executable ABMs that replicate the
given problem scenario. "Solving" stage that employs iterative
chain-of-thought (CoT) [42] prompting with a two-level verifier
that incorporates an objective representation to automatically gen-
erate and optimize effective solutions based on the above executable
ABM:s.

In SAGE, verifier-levell identifies "compilation errors" and "lack-
ing details" to ensure the executability and integrity of the ABM
program. Meanwhile, verifier-level2 guide the iterative generation
of CoT prompts, optimizing solutions by comparing objective cri-
teria and simulation results. The CoT prompting breaks down the
solution generation process into three steps: relations extraction,
cause analysis, and solution proposal, enabling LLMs to formulate
targeted solutions by comprehensively understanding the prob-
lem and the model. Both the conceptual representation (describing
the problem scenario) and the objective representation (specify-
ing the desired solution effects) serve as inputs to the LLM. These
representations strike a balance between being semi-natural lan-
guage (NL) for expression-diverse and user-friendly interface, and
semi-structured for program accuracy and in-context learnability.
By employing this approach, SAGE empowers LLMs to effectively
organize intricate interactions within ABMs and leverage their
inherent domain knowledge to propose efficient solutions. Fur-
thermore, we have constructed an evaluation dataset comprising
solution-oriented ABMs from open-source projects. Unlike existing
code generation evaluation datasets, which primarily consist of
partial code fragments accompanied by NL descriptions [25, 40],
our dataset offers comprehensive scenario descriptions along with
their ABM implementations. It encompasses real-world problem
instances from various fields and their corresponding ABM-based
solutions. The evaluation results of using SAGE with various state-
of-the-art LLMs on this dataset demonstrate a massive improve-
ment on generated ABMs’ quality and problem-solving effective-
ness, when compared to approaches that do not utilize the SAGE
framework. The main contributions of our work are as follows:
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(1) SAGE: a framework that enables the automatic generation of
executable and verifiable agent-based solutions through "Design-
ing" and "Solving" stages. (2) The semi-structured conceptual and
objective representations to formalize the ABM initialization and
targets while maintaining the NL’s expressivity. (3) A two-level
verifier and CoT prompting method to streamline LLMs in generat-
ing effective solutions through iterative in-context learning. (4) A
solution-oriented ABMs dataset to evaluate the quality of modeling
and solution generation across multiple domains.

2 RELATED WORK
2.1 Automatic Design and Generation of ABM

The field of data and computational science has witnessed remark-
able progress over the past decade, leading to a shift in the design
and construction of ABMs from manual to automated approaches.
This transition has empowered better exploration of data and ex-
pression of models. In terms of model structure generation, [30] pro-
poses the MAGIC algorithm, which converts the raw observational
data to a sequential compressed Markov decision process as agents’
behavior and decision structures. Through a meta-programming
system, [43] can automatically generate executable ABM codes from
an "Overview, Design concepts, and Details" (ODD) [11] descrip-
tion. [10] provides an evolvable approach to generate interpretable
agent logic from scratch through program synthesis [12] and ge-
netic programming [19], which endow users with transparency.
Regarding the generation of agents’ decisions, [46] proposes a two
level deep multi-agent reinforcement learning framework for au-
tomatic design of taxation policy. [18] proposes a democratic Al
capable of designing social mechanisms based on the majority
preferences of humans through a human-in-loop reinforcement
learning pipeline. These automatic generation methods often re-
quire extensive domain knowledge or long-term learning process
based on massive data. Besides, some methods primarily focus on
certain scenarios, lacking generality. Our approach overcomes these
limitations with the ability of LLMs in efficiently handling multi-
domain generation tasks, which is acquired during the large-scale
pre-training phase.

2.2 LLM:s for Code generation

LLMs have achieved striking performance in a wide range of fields,
including code generation tasks. Typically, these programming
LLMs are developed by conducting self-supervised language mod-
eling tasks on large unlabelled program language corpora followed
by simple modifications and affordable fine-tuning. Specifically,
three transformer architectures are widely developed: BERT [4],
BART, and GPT [33]. As for BERT, CodeBERT [6] is pre-trained on
millions of program functions across six programming languages.
GraphCodeBERT [13], ContraBERT [24] are improved models that
concern the inherent structure of code and enhance the robust-
ness of CodeBERT. In terms of BART, PLBART [1] undergoes pre-
training using a vast dataset comprising Java and Python functions
along with their corresponding NL text, through denoising auto-
encoding techniques. CommitBART [23] pre-trains BART using
data collected from GitHub commits. Regarding GPT, CodeGPT [25]
performs pre-training on Python and Java datasets sourced from
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the CodeSearchNet [15]. CodeX [2] conducts fine-tuning of GPT-
3, which automatically fixed 28.8% of programming problems in
HumanEval datasets and is underlying technology behind GitHub
Copilot [9]. These works have performed well on code snippet gen-
eration tasks. However, their efficacy tends to diminish in tasks like
ABM programming that involve heterogeneous agents and intri-
cate interaction patterns. To address this limitation, we augment
LLMs’ in-context learning by incorporating logically coherent and
semi-structured representations.

2.3 In-context Learning

LLMs are capable of in-context learning (ICL) to learn tasks and gen-
erate desired output given only a few demonstration examples [5].
ICL utilizes the analogy ability of the LLM and augments their task-
specific working memory within the context, thereby influencing
the likelihood of generating appropriate responses. Therefore, ICL
can be applied during the inference procedure of a well-trained
LLM, obviating the need for additional training. The organization
of demonstrations within prompts, including their order and format
significantly impacts ICL performance [26, 45]. Many prompting
methods have been proposed. [14] and [47] adopt manual con-
struction such as providing template-based prompts and few-shot
prompting. [48] and [44] leverage LLMs for automatic prompt gen-
eration. The CoT approach introduces intermediate reasoning steps
to guide LLMs in mastering complex reasoning[42]. CoT has been
widely used and developed since it was proposed [32]. Some re-
searchers employ multi-stage ICL for CoT prompting and design
CoT demonstrations for each step [39, 47]. [28] and [35] introduce
an optimizer or verifier to calibrate the generation result through
iterative generation and optimization procedures. ICL has found ap-
plications in various domains, including visual tasks [14], language
reasoning [32], and task planning [35]. However, there is limited
research on utilizing ICL to guide LLMs to generate high quality
ABM:s.

3 SAGE

Architecture and Workflow SAGE divides the solution genera-
tion process into two stages, as shown in Figure 1. The initial stage,
termed the "Modeling" stage, aims to generate an executable ABM
to simulate a given problem scenario. During this stage, the LLM
creates the ABM program based on the conceptual representation
of the scenario provided by users. This semi-structured representa-
tion explicitly depicts the intricate interactions and dynamic events
within ABMs through its structured components, facilitating analy-
sis by LLMs. Besides, it enables users to describe scenarios using
more expressive natural language. The generated ABM then un-
dergoes automatic verification for both executability and integrity
by the verifier-levell. The LLM iteratively rectifies the program
based on the verification results until a correct ABM is obtained.
Such verifier-assisted iteration compensates for the self-checking
deficiencies in LLMs, avoiding execution errors and oversimplifica-
tions.

Subsequently, the process transitions to the "Solving" stage that
focuses on generating effective solutions for given problems. In
this stage, users specify the target problem and desired effects or
constraints of the solution using objective representations. (Both
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Figure 1: The workflow of SAGE.

conceptual and objective representations are concatenated with
examples to form input prompts for ICL.) Then, verifier-level2 is
designed to utilize LLMs to generate verification functions based
on the objective representations. These functions are used to ver-
ify whether simulation results meet the specific objectives, which
drives the optimization of solutions and compensates for the self-
evaluation deficiencies in LLMs. Based on the verification results,
verifier-level2 provides CoT instructions that guide LLMs in gen-
erating solutions step by step, which include relations extraction,
cause analysis, and solution proposal. This CoT design guides LLMs
in recognizing the holistic structure of the current ABM and sub-
sequently formulating more specific solutions based on relevant
elements, thereby mitigating the limitations of LLMs in deducing
the complex interaction dynamics of ABMs solely from static sim-
ulation results. The generated solutions are integrated back into
the existing ABM and undergo further iterative rectification using
verifier-levell until the ABM with new solutions is executable and
comprehensive. This process continues iteratively between verifier-
levell and verifier-level2 until the desired objectives are met. It is
worth noting that these two stages can be decoupled and indepen-
dently utilized depending on research purposes, allowing flexibility
in applications. The pseudocode outlining the "Modeling" stage and
"Solving" stage can be found in Algorithm 1 and Algorithm 2.

3.1 "Modeling" Stage

ABM Conceptual Representation. ABM involves intricate ele-
ments such as agents, environments, and their interactions. These
elements typically can be instantiated as object states, activities com-
prising conditions and algorithms for state updating, as well as the
scheduling of these activities. However, translating these concepts
into practical ABMs requires significant efforts and domain exper-
tise, often proving to be abstract and daunting for non-programmers.
To bridge this gap, we design a semi-structured, semi-natural lan-
guage conceptual representation that serves as a user-friendly guide,
allowing users to provide detailed scenario descriptions essential
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Virus spread distance| Default for other_p in people: random.shuffle(people)
T Default if other_p.infected and \ for p in people:
SpIeal self.cal_distance(p, other_p) \ p.move()
<= self.spread_distance: for p in people:
Govern- p.get_infection() if p.infected:
ment class Government: p.go_to_hospital()
\_ ) J U --- # other activities )

Figure 2: Conceptual representation for ABM description and the generated ABM program.

for developing ABM models. Meanwhile, leveraging the power of
few-shot prompting, LLMs can learn to transform and expand the
information encapsulated in the conceptual representation into
executable ABM programs.

Figure 2 illustrates a conceptual representation and a generated
ABM program. According to the above ABM necessities, the repre-
sentation consists of two structured components. The first compo-
nent, "object definition", corresponds to the states and activities of
agents and environment objects. The second component, known
as "scheduling”, corresponds to the execution sequence or trigger
conditions of activities. In the object definition, "states" define the
descriptive attributes of an object at a specific time step, while
"activities" define the dynamic interactions involving the object.
For instance, when defining a person in the scenario of epidemic
transmission, the states may include "age", "infected", and "immune",
while the activities may include "get_infected", "get_immune" and
so on. The specific meanings of each state and activity are pre-
sented by natural language (NL). Guided by the few-shot prompt
(shown in supplementary material), the LLM formalizes the NL
descriptions and generalizes the omitted descriptions by utilizing
its inherent knowledge and contextual information. In the current
implementation, conceptual representations are presented in JSON
format.

The simulation process of an ABM involves the flexible schedul-
ing of different agents, each executing their internal functions in a
specific order and under certain conditions. To simplify the descrip-
tion of the scheduling of the aforementioned object definition, we
abstract and structure them as schedule primitives: Do(Object_name,
Activity_name) means that all instances of this object perform
this activity in the default order; Random_Do(Object_name, Ac-
tivity_name) means that all instances of this object perform this
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Algorithm 1: Scenario-specific ABM generation in "Mod-
eling" stage

Input:Conceptual representation of scenario £, max
number of iterations i ;

Output:ABM program A;

P4 = Prompt_gen_abm(XL);

A = LLM_generator(Py);

defects = Verifier_level1(A);

while len(defects)>0 and i>0 do
Pp = Prompt_defects(A, defects);
A = LLM_generator(Pp);
defects = Verifier_level1(A);
i=i-1

end

activity in a random order; Conditional_Do(Object_name, Activ-
ity_name, conditions) means that instances satisfying the condi-
tions of this object perform this activity in the default order; Ran-
dom_Conditional_Do( Object_name, Activity_name, conditions) means
that all instances satisfying the conditions of this object perform this
activity in a random order. Figure 2 shows an example illustrating
the corresponding ABM program with schedule primitives.
Verifier-levell: Program correctness verification. In light
of the challenges posed by the lack of self-checking capabilities in
LLMs, we devise an automatic ABM program verifier to identify
defects in generated programs, ensuring their executability and in-
tegrity. These defects are then filled in a prompt template for LLM
to further rectify the ABM program, enabling iterative rectification
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Original Program

Rectified Program )

class Virus:
def __init__ (self, recovery_day):
self.recovery_day = recovery_day
self.spread_distance = spread_distance

def spread(self, people):

pass I
Compilation errors prompt

The error is in line 8:
"self.spread_rate =
spread_distance", which isin
the Class Virus. The error
reason is "NameError-name
‘'spread_distance' is not
defined". Please correct this
error.

Lacking details prompt
Modify the original agent-based
model by providing the specific
code of the following methods in
the requirements.
Requirements:[{"class":"Virus","m
ethod":"spread","description":"The
spread process among persons" },]

Verifier-

levell +

J

class Virus:
def __init__ (self, recovery_day, spread_distance):
self.recovery_day = recovery_day
self.spread_distance = spread_distance

def spread(self, people):
for p in people:
for other_p in people:
if other_p.infected and \
self.cal_distance(p, other_p) \
<= self.spread_distance:
p.get_infection()

def cal_distance(self, pl, p2):
return ((pl.x - p2.x) ** 2 + \
(pl.y - p2.y) ** 2) ** 9.5

N

Figure 3: The rectification prompts generated by verifier-levell and the rectified ABM program.

until an executable ABM with complete details is obtained. De-
fects are classified into two types: "compilation errors" and "lacking
details". "Compilation errors" hinder proper model execution. For
Python programs, they indicate interpretation errors and certain
runtime errors. To rectify these errors, verifier-levell invokes the
default compiler or interpreter to compile or run the ABM program,
analyzing the returned error messages to assemble the "compilation
errors" rectification prompts for LLMs. Each error message is struc-
tured in the prompt as [error_line, error_code, error_reasons]. On
the other hand, defects falling under "lacking details" refer to empty
classes or functions that lack substantive implementation details.
These defects are often caused by using placeholders instead of
detailed code, leaving specific interaction behaviors and updated
variable values unaddressed. Verifier-levell tackles these issues
systematically. First, it identifies these defects through text anal-
ysis, linking activity names to object classes. This information is
then merged with the corresponding activity descriptions from the
aforementioned conceptual representation, providing structured
guidance for prompt-based rectification. An example of the verify-
ing and rectifying process is shown in Figure 3.

3.2 "Solving" Stage

Objective representation. Under the specific ABM generated by
the "Modeling" stage, users may seek solutions or formulate poli-
cies addressing distinct problems, such as decreasing the spread
rate of a virus in an epidemic model. We design an objective rep-
resentation, which is also a semi-structured and semi-NL repre-
sentation, to effectively convey these requirements. The represen-
tation comprises two parts: the description of the target problem
(e.g. "decrease the spread rate of the virus") and the criteria for
judgment. The judgment criteria encompass not only the intended
outcomes of the solutions (e.g. "The spread rate of virus is re-
duced to below 0.1") but also any restrictions (e.g. "The ground
truth, like spread distance, should not change"). The target prob-
lem is expressed in NL, providing a clear understanding of the
specific issue at hand. On the other hand, the criteria typically
involve variables that can be quantitatively or qualitatively com-
pared within the described problem scenario. Each criterion is
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structured as [variablepame, variablecyample, requirement], where

variablegyample specifies the data type of the variable, and requirement

described in NL.

s

Verification Function Generation Prompt 4

LLM Answer

Examples: #Few-shot examples (Criteria-
LLM Answer) are omitted here.
Objectives Representation:

def verification(variables):
[max_spread_rate, spread_distance]

= variables
Criteria results = [|
if max_spread_rate <= 0.1:
. results.append(True
Vﬁralfnbele Example Requirements else: ppend(riue)
results.append(False)
max Value should not st allis =

results.append(True)
else:

This value should results.append(False)

2 o
maintain 4 return results
RN

spread rate be bigger than 0.1

spread
distance

J

Figure 4: Objective representation for desired solution effects
and the generated verification program.

Verifier-level2: Solution effectiveness verification. Verifier-
level2 is designed to assess the efficacy of solutions. Using a few-
shot prompt, the LLM converts the problem and criteria in the objec-
tive representation into verification functions. These functions are
crucial as they assess whether the variables extracted from simula-
tion results meet the verification criteria. If all criteria are satisfied,
verifier-level2 acknowledges these solutions as successfully verified.
Consequently, the executable ABM embedded with these solutions
is regarded as the final output of SAGE. Figure 4 showcases a criteria
prompt and the corresponding verification function answer for the
problem "decrease the spread rate of the virus". Please note that the
template of the verification function, including the format of input
and output, is provided in the examples within the prompt (omitted
in Figure 4). This semi-structured representation combines the flex-
ibility of natural language for describing criteria with the clarity
provided by a list structure, allowing for the precise expressions of
different criteria. These expressions can be any attribute or complex
function (including functions over time series), provided that you
record them during simulation and can return the records to the
verification function after simulation completion. Moreover, the
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CoT-Prompt ( LLM Answer: Enhanced Program h
Examples: #Few-shot examples (Task-LLM Answer) are omitted here. # ABM that simulates the spread of virus
Task: class Person:
There is an agent-based model that simulates the spread of virus. The problem we defsal)r(nt:_x(s#e;gsﬁighlnfected—FaIse, immune=False):
want to address is “decrease the virus spread rate”, and the desired value of the self:y =y #position
variable “max_sriread_rate“ is less than 0.1. However, the simulation results show self.infected = infected
that the value of “max_spread_rate" is 0.5. self.immune = immune
Please first find relevant methods and variables corresponding to the Se”'quar?ntme = False
m 0 , - . e self.vaccinated = False
max_spread_rate". Then analysis reasons and provide some new solutions utilizing #other attributes
inherent knowledge to _“dgcrease the virus spread rate”, and do not remove existing def move(self):
\methods or change existing parameters. ) if not self.quarantine:
self.x += random.randint(-2, 2)
@ self.y += random.randint(-2, 2)
def get_infection(self):
4 . . ) if not self.immune and not self.infected and not self.vaccinated:
LLM Answer of Relevant Relations & Reasons & Solutions self.infected = Ture
Relevant Relations: self.quarantine = True
1.Variable “spread_distance”, in the Virus class. def update_state(self): ) )
2.Method “get_infection" in the Person class. # add codes that change quarantine after recovering.
3.Method "spread" in the Virus class. class Virus:
Reasons:
1. The model does not have any constraints or checks to limit the spread of the virus. class Government:
Solutions:
1. Enforce Quarantine for Infected Individuals def implement_vaccination(self, People):
« Introduce a new attribute called "quarantine” in the "Person" class that isolates for p in people:
infected individuals from the general population. if not p.immune and not p.vaccinated and not p.infected:
+ Modify the “move" method in the “Person" class to check if an infected person is \ p.vaccinated = random.choice([True, False]) )
in quarantine and avoid them from moving.
« Modify the “get_infection” and “update_state” methods to change the “quarantine”. ﬁ
2. Promote Vaccination
« Introduce a new method called “implement_vaccination” in the “Government”
class that vaccinate people. Prompt
« Introduce a new attribute in the “Person” class called "vaccinated" to track There are modifying solutions. Please modify the original program
vaccination status. C:> according to these solutions.
« Modify the “get_infection" method in the "Person" class to consider vaccination Requirements: ... #Solutions from LLM answer.
L status. Vaccinated individuals will not be infected. ) L Original Program: ... #Omitted here. )

Figure 5: The CoT workflow and the generated solutions with enhanced ABM program.

verification functions generated by the LLM are written in general-
purpose programming languages, enhancing their versatility and
comprehensiveness in comparison to combinatorial arrangements
of pre-defined criteria implementation.

Solution generation with CoT prompt. Verifier-level2 utilizes
the simulation results that fail to meet the evaluation criteria to
generate a prompt for the next-stage LLM to enhance the ABM
program. Because ABMs involve non-linear dynamics and complex
spatiotemporal interactions, it is challenging for LLMs to determine
how to modify a model to meet the criteria based solely on a static
experimental result. The CoT prompt guides the model through a
series of logically connected thinking steps, enabling coherent rea-
soning and logical thinking. Therefore, we apply the CoT prompt
technique to enhance the solution generation of LLMs. Given that
the individual state changes in an ABM are fundamentally driven
by interactions with the current states of other individuals, our
CoT is designed with three steps: relations extraction, which guides
LLMs in extracting the operations within the ABM program that in-
fluence the evaluated variables; cause analysis, which guides LLMs
in analyzing the extracted operations to identify the reasons for
unsatisfied criteria; and solution proposal, which guides LLM in
leveraging domain knowledge to propose solutions based on the
identified causes. Figure 5 illustrates an example on seeking solu-
tions of "decrease spread rate of virus". Following the guidance of
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the CoT, the LLM first extracts the relevant functions and variables
that impact the spread rate, such as variables "spread_distance" and
the function "spread". Then, the LLM provides an analysis of the
reasons, e.g. lack of constraints or checks contributes to the uncon-
trolled spread of the virus. Lastly, the LLM proposes two solutions:
"enforce quarantine" and "promote vaccination" accompanied by
instructions on how to implement them within the original ABM.

4 DATASET AND EVALUATION
4.1 Solution-oriented ABMs Dataset

While several code datasets are available for training or testing
LLMs’ programming abilities, the majority of them typically consist
of isolated code snippets without sufficient contextual information
or background knowledge. In particular, there is a lack of evaluation
datasets tailored to the generation of ABMs for problem-solving
assistance. In this work, we introduce a solution-oriented ABMs
dataset aimed at evaluating the utility and effectiveness of the gen-
erated ABMs in problem-solving scenarios. This will also promote
research and advancements in the fields of natural language pro-
cessing and programming.

The evaluation dataset is primarily divided into two sub-datasets.
The first is the "scenario-model" dataset, which mainly evaluates the
language model’s ability to generate corresponding ABM programs
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Algorithm 2: Scenario-specific solution generation in
"Solving" stage

Input:objective representation O, original executable ABM
A, max number of iterations i ;
Output: ABM program A, solutions;
R = Simulator(A) # real results ;
Py = Prompt_gen_Veri(O);
Veri_func = LLM_generator(Py);
satisfying_flag = Verifier_level2(Veri_func, R);
while satisfying_flag==False and i>0 do
P¢ = Prompt_CoT(R, O, A);
relations, reasons, solutions = LLM_generator(Pc);
Py = Prompt_modification(A, solutions);
A = LLM_generator(Pyy);
i=i-1;
defects = Verifier_level1(A);
while len(defects) > 0 do
Pp = Prompt_defects(A, defects);
A = LLM_generator(Pp);
defects = Verifier_level1(A);
end
R = Simulator(A) # real results ;
satisfying_flag = Verifier_level2(Veri_func, R);

if i == 0 then
‘ break;
end
end

based on the given scenario descriptions. It contains 50 samples,
each consisting of a natural language-based scenario description, a
conceptual representation-based scenario description as a task, and
an executable ABM that programs the scenario from the task de-
scription as a ground truth answer. The second part is the "problem-
solution" dataset, which primarily assesses the LLMs’ capability to
propose solutions based on the given ABM for specific problems.
This sub-dataset comprises 30 samples, each consisting of a prob-
lem description and an executable original ABM as a task, and an
executable ABM that comprises the proposed solutions as a ground
truth solution answer. In this sub-dataset, some samples contain
strict criteria (criteria-defined samples), while others without cri-
teria are open-ended samples. The dataset spans various domains
as shown in Table 1 and is primarily sourced from open-source
projects on GitHub. Descriptions of the scenarios and problems are
derived from project introductions and comments within the code,
which are subsequently supplemented and standardized through
manual efforts. The code segments in the dataset are extracted from
the code of corresponding projects, meticulously organized and
refined.

4.2 "Modeling" Evaluation

To evaluate the practical applicability of SAGE in modeling, we
conduct experiments using the "scenario-model" sub-dataset. Four
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Table 1: Dataset description

Domains
Public health: 22%; Society: 22%;
Ecology: 12%; Traffic: 10%;
Economics: 10%; Biology: 10%;
Education: 8%; Gaming: 6%;
Criteria-defined samples: 40%

scenario-model
dataset

problem-solution

dataset Open-ended samples: 60%
0.7 1
GPT-3.5-Turbo
061 Code-Llama-34b
Claude-instant
o 0.5 GPT-4
©
m 0.4 4
[%2]
K
go3
]
(2]
0.2 1
0.1
0.0 T T ; ;
1-3 4-6 7-9 >=10

lteration Times

Figure 6: Iterations times for ideal ABMs generation

state-of-the-art LLMs: GPT-3.5-Turbo, Code-Llama-34b, Claude-
instant, and GPT-4 are chosen as the generative models. These
LLMs generate ABMs according to different scenario descriptions
from the dataset under two conditions: one involving the genera-
tion process with SAGE, and the other without SAGE (No-SAGE).
Specifically, no-SAGE process refers to LLMs generating ABMs and
solutions solely based on natural language descriptions without
using SAGE’s semi-structured representation or two-level verifica-
tion optimization. The generated ABMs are then compared against
their corresponding ground truth models to evaluate the generation
quality. To ensure fairness, given SAGE’s iterative nature in the
generation process, each sample undergoes 10 times of modeling
in the No-SAGE condition. The best of these results is then used
for subsequent comparisons. The "10" is same with the maximum
number of iterations set in the SAGE-involved experiments.
Evaluation metrics Two metrics are employed to evaluate the
quality of the generated ABMs. The first metric involves measuring
the similarity between the generated model and the ground truth
answer using CodeBLEU[2], which weights the average of the lexi-
cal, abstract syntax tree (AST), and data flow match between the
generated code and the ground truth. We reduce the weight given
to lexical match and improve the weight given to AST and dataflow
match during the evaluation, since the sequence of object defini-
tions does not impact the ultimate simulation outcomes. The second
metric evaluates whether the generated ABMs are executable and
elaborate, which is conducted by the verifier-levell of SAGE.
Evaluation results The first two columns of Table 2 indicate
that ABMs produced using SAGE with LLMs consistently yield
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Table 2: Evaluation results on executable ABMs generation

LLMs CodeBLEU CodeBLEU Executable Executable Elaborate Elaborate
No-SAGE SAGE No-SAGE SAGE No-SAGE SAGE
GPT-3.5-Turbo 42.47 52.18 64.00 90.00 68.00 90.00
Code-Llama-34b 44.94 53.36 64.00 86.00 78.00 88.00
Claude-instant 42.49 49.64 48.00 82.00 74.00 84.00
GPT-4 45.73 53.29 78.00 96.00 74.00 96.00

higher scores (four LLMs’ average improvement of 18.7%) compared
to those generated by No-SAGE, when applying CodeBLEU for
assessment.From the perspective of the executability and integrity
of the generated ABMs, the last four columns of Table 2 present the
ratios of the generated ABMs that exhibit these qualities among
all answers. These data underscore SAGE’s remarkable efficacy
in facilitating error correction and content enrichment of ABMs,
as evident across all four LLMs. Figure 6 illustrates the number of
iterations required for different LLMs to generate an executable and
elaborate ABM when utilizing SAGE (Generation failed samples are
also included in the category of 10 or more iterations). The results
show that with the incorporation of SAGE, over 70% of the samples
can be resolved within six iterations or fewer.

4.3

In the "Solving" evaluation experiments, we employ the "problem-
solution" dataset as the testing set and utilize two general-purpose
LLMs, GPT-3.5-Turbo and GPT-4, as the solution generation models.
The impact of SAGE on the successful resolution of the problem
is assessed by comparing the success rates of problem resolution
between the scenarios with and without the use of SAGE. Similar
to the "modeling" evaluation experiments, each sample undergoes
5 times of "solving process" in the No-SAGE condition, and the best
solution-oriented ABM is chosen. Besides, to assess the relative
importance of different verification levels in the "solving" process,
we analyze the failure reasons in all unsuccessful cases.

Evaluation metrics In addition to assessing the executability of
the generated solutions, for samples with pre-defined criteria, we
determine the success of problem resolution based on whether the
simulation results meet the evaluation criteria. For samples with-
out specific criteria, which are named as open-ended problems, we
manually evaluate solutions’ practical significance, which primar-
ily consist of two standards. Firstly, from the perspective of object
definitions, we examine whether there are meaningful additions or
deletions of states and activities of objects, rather than simple modi-
fications to the parameters involved in the existing ABMs. Secondly,
from the perspective of scheduling, we assess whether the added
or deleted states or activities truly affect the simulation process,
in other words, whether they are invoked during the execution
process. The solutions of one sample is confirmed only when all of
these standards are simultaneously fulfilled.

Evaluation results The evaluation results (Table 3) indicate the
problem-solving rates. It is evident that when comparing problem
solving rates with and without SAGE involvement, there is a notice-
able enhancement in problem-solving efficiency under the SAGE
involvement for both criteria-defined samples and open-ended sam-
ples (average improvement of 38.1% ). The verifier-levell proves

"Solving" Evaluation
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Table 3: Problem solving-rates on Criteria-defined(CD) sam-
ples and Open-ended(OE) samples

LLMs CD CD OE OE
No-SAGE SAGE No-SAGE SAGE
GPT-3.5-Turbo 58.33 91.67 38.89 88.89
GPT-4 41.67 100 66.67 77.78
Critic-Defined Critic-Defined Open-ended Open-ended
(GPT-4) (GPT-3.5-Turbo) (GPT-4) (GPT-3.5-Turbo)
not meet execution t t
criteria error TgnTeen? execution ncoonr:;et execution
execution not meet standards error standards ~ error

error criteria

Figure 7: Causes statistics for unsuccessful solutions

effective in preventing execution errors, while the verifier-level2
facilitates the generated solutions meet the pre-defined criteria and
content standards. Figure 7 shows that both types of above defects
cannot be overlooked. Therefore, in order to guarantee the genera-
tion of executable and effective solutions, both levels of verifiers
are indispensable.

5 CONCLUSIONS

In this paper, we propose a solution-oriented ABM generation
framework: SAGE. SAGE utilizes the powerful abilities of LLMs, in-
cluding in-context learning, natural language understanding, com-
positional generalization, and domain-knowledge retrieval. This
enables the development of a two-stage, iterative procedure for
automatic agent-based modeling and solution generation. Our re-
sults demonstrate a significant improvement in generation per-
formance compared to traditional No-SAGE approaches. Notably,
SAGE achieves this without requiring the extensive training pro-
cess of LLM and a large amount of data. Thus, SAGE has the ability
to significantly reduce the barriers to creating ABMs and utilizing
them for problem-solving, enhancing the productivity of complex
system research.
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