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ABSTRACT
Autonomy requires adaptability and persistence in pursuing long-
term objectives within evolving contexts. While BDI agents can
cope with dynamic and uncertain environments, their adaptability
is typically constrained by static action repertoires, known a priori
by designers. Through Semantic Web and Web of Things technolo-
gies, machine-readable action descriptions can be discovered in
hypermedia environments, and updated dynamically to mirror the
evolving landscape of actions offered by real-world environments.
This paper proposes the integration of action-oriented BDI reason-
ing with signifiers that reveal information about action possibilities
that may appear, disappear, or be modified in a hypermedia envi-
ronment at any time. We extend the means-end reasoning of BDI
agents with a mechanism for resolving signifiers discovered at run
time into actions, which enables agents to adjust their decision-
making based on action possibilities advertised in the environment.
We evaluate our approach through experiments, where Jason agents
discover signifiers expressed with available Web ontologies. The re-
sults demonstrate that our signifier resolution mechanism enhances
action reasoning at run time towards effective goal achievement in
dynamic and unknown environments.
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1 INTRODUCTION
Autonomous agents have the ability to deliberate about goals and
to make decisions towards achieving their design objectives with-
out human intervention. However, the complexity of these tasks

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

increases when agents have to deal with dynamic, shared, and un-
certain environments. To address this challenge, BDI agents employ
a sense-reason-act cycle, which enables balancing between proactive
and reactive behavior. For example, an autonomous vacuum cleaner
can continuously strive to maintain a room clean through plans
that enable it to move around and clean dirt. Yet, this proactive
behavior is adapted in reaction to changes in the environment, such
as the accumulation of dirt in specific areas.

In open environments, and especially in Internet of Things or
Web of Things (WoT) [18] environments, agents may encounter
a plethora of sensors and actuators. These are often part of the
environment rather than an agent’s body (e.g., a robot’s body), and
not necessarily known at design time; hence, agents are required
to discover such devices at run time, and may then use them as
tools to achieve their goals. When an agent joins such an unknown
and possibly dynamic environment, challenges arise: Consider, for
example, a personal assistant agent deployed in a smart home envi-
ronment, where the agent is tasked to assist the user in maintaining
a comfortable environment. While the agent might have the pro-
cedural knowledge to increase room illuminance by turning on a
lamp, it might lack information regarding available lamps in the
environment, the type of inputs accepted by these lamps (numeric,
RGB, etc.), or whether lamp control conflicts with current user pref-
erences. Here, it would be beneficial if the agent could dynamically
acquire such interaction-related information—and if that informa-
tion then could inform the agent’s reasoning upon selecting or
resolving plans based on the current agent-environment situation.

To bridge this gap between agents’ reasoning and the intrica-
cies of modern environments, hypermedia formats can be used
to describe the action possibilities offered by the agents’ envi-
ronment [10]. Such descriptions can be discovered by agents at
run time in a hypermedia environment, and can signify to the
agents how to interact with previously unknown environmen-
tal entities through hypermedia controls [34]. Although this ap-
proach of “advertising” actions in hypermedia environments is in-
creasingly adopted for action discovery and exploitation by agents
(cf. [1, 9, 10, 22, 25, 30, 34, 35]), it has primarily been integrated
to facilitate classical planning (e.g., in [9, 26, 35]), or to fill in in-
teraction details after reasoning (i.e., during action execution; e.g.,
in [3, 10]). A challenge that remains is to integrate information
about available means discovered at run time with the flexible
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means-end reasoning methods of BDI agents. This entails incor-
porating interaction-related information into the decision-making
process before selecting an existing plan, for example, to ensure that
a plan for increasing room illuminance is used with available and
contextually-appropriate actions based on the run-time situation.

In this paper, we introduce a method for resolving abstract ac-
tions specified in pre-designed plans into concrete actions available
within the agent’s run-time environment and advertised through
interaction cues (i.e., signifiers [25]). Further, we integrate this res-
olution mechanism in the means-end reasoning process of BDI
agents, so that agents can determine whether their pre-defined
plans are applicable within the context of the dynamic environ-
ment they encounter; this allows agents to execute plans based on
action possibilities they discover in the environment at run time.
As BDI reasoning does not inherently involve reasoning directly
on actions, we explain how our resolution mechanism relates to
reasoning about intentions as well as to action reasoning processes
typically employed in a framework-specific scope (e.g., in 3APL,
Jason, etc.). We evaluate our approach through the deployment of
a system in which a Jason agent can discover and reason about
signifiers that reveal different information about possible actions
across a series of experiments. Our evaluation shows how incor-
porating interaction cues discovered at run time into the agents’
reasoning processes enables more informed decisions in dynamic
and unknown environments.

2 RELATEDWORK
In this section, we first examine related work on action reasoning
and execution in BDI agents to extract requirements for action
representation (Sect. 2.1). Next, we examine approaches to action
representation in hypermedia environments, which may provide in-
sight into how to design interaction cues that enable BDI reasoning
in dynamic environments (Sect. 2.2).

2.1 Reasoning Towards Action with Beliefs,
Desires, and Intentions

In Agent-Oriented Software Engineering, actions are defined as the
essential means by which agents can affect their environment [40].
In this context, agent programs use actions that are typically im-
plemented by invoking functions, embedded within more complex
constructs like plans. Consequently, within BDI frameworks, action
invocation can be minimally specified using a function identifier
representing the action type (e.g., move, toggle) and optionally
arguments, typically variables instantiated at run time (e.g., 100
and Y in move(100, Y)). To permit the effective invocation of an
action, an agent needs to know at least the action identifier together
with the data types of the action’s arguments; these aspects hence
constitute the minimal requirements when designing discoverable
interaction cues for agents. Ideally, the semantics of action and
argument identifiers should also reflect the action and argument
types enabling intuitive programming of action invocation.

Besides revealing information necessary for action invocation, in-
teraction cues should also enable BDI agents to reason about action
to ensure that acting is contextually appropriate based on run-time
conditions. In the BDI architecture, an agent’s actions stem from its
current intentions. Thus, the conditions governing action invocation

are subsumed by the conditions governing the agent’s decisions
to adopt or retain intentions, i.e., to start or continue working to-
wards specific goals through a specific course of action [42]. For
example, in Jason agents, intentions are represented as plans that
the agent has committed to perform [4, 5]. The selection of a plan
hinges on its applicability in the current system state, with appli-
cability conditions encapsulated in the plan’s application context.
Therefore, action invocation occurs when the application context
aligns with the agent’s beliefs. BDI frameworks facilitate reasoning
about action invocation based on the contextual relevance of com-
posite activities, e.g., through application contexts of Jason plans,
conditional operators of 3APL plans [15], guards of GWENDOLEN
plans [16], or contexts of GOAL modules [19]1.

Some BDI frameworks go beyond the basic requirements of a BDI
architecture [42], introducing additional conditions for advanced
reasoning about action invocation, action success, and belief revi-
sion. These conditions, typically defined within action descriptions
in terms of preconditions and postconditions (e.g., in [15, 19, 31]),
exhibit variations in semantics and utility across frameworks. For
example, both 3APL and GOAL formalize action preconditions to
assess action availability in the run-time environment, contingent
on alignment with agent beliefs. However, 3APL considers precon-
ditions for controlling the invocation of only a specific action type
(namely capabilities), and GOAL combines preconditions with other
conditions in action rules for action control. In GWENDOLEN, ac-
tion preconditions are not used for action control at all; instead,
they are used along with action postconditions for plan reconfigu-
ration via automated planning [33]. GWENDOLEN postconditions
also contribute to evaluating action success based on whether they
align with agent beliefs post-action. Action postconditions in 3APL
and GOAL are used to update agent beliefs for accurate reflection
of the expected system state after action execution.

Finally, action reasoning and invocation lead to the execution of
code that implements the action based on details of the deployment
context [38] (e.g., based the implementation of move(X,Y)). These
details typically exceed the scope of agent programming languages,
forming an integral part of the environment’s implementation. Ad-
ditionally, they are commonly considered to be known during design
time, and stable during run time. This design approach is reasonable
for many BDI applications that assume a static environment, one
that is expected to remain unaltered except for the actions per-
formed by agents [42]. The approach is further reinforced by the
guidance provided to agent designers, who “should know precisely
what the environment is like, and what are the things agents need
to perceive from it so as to act appropriately, as well as what are
the actions that agents will be able to perform so as to change the
environment” [5]. This is facilitated by the fact that agent designers
often take on the responsibility of designing and implementing the
environment themselves: “[O]nce [designers] have a stable imple-
mentation of the environment, [they] could then start implementing
the agents” [5]. However, this reasoning does not apply if artifacts
are dynamically deployed in open environments, especially when
artifact designers are independent from agent designers, as seen
in highly distributed setups like the Web. In such cases, which are

1This is also the case in GOAL action rules; however, an action rule is typically used
only for single actions, which is why we do not mention this in our list.
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gaining importance in the MAS literature [2, 6, 12, 29, 34, 36], it
becomes imperative for BDI agent design to be agnostic to specific
implementation details of artifacts in the environment.

In summary, acting in the environment requires access to infor-
mation that allows for action invocation, reasoning, and lower-level
execution. In dynamic environments, interactions cues should con-
vey all such necessary information at run time. Cues should be
generic to accommodate various BDI agents while also being adapt-
able to evolving framework-specific requirements.

2.2 Representing Actions in Hypermedia
Environments

Representing actions for BDI agents in open and dynamic environ-
ments can be informed by other research areas. An exemplary case
is the Web, where actions are provided to users by a hypermedia en-
vironment [37]. Hypermedia environments inherently support the
dynamic discovery and exploitation of actions, where actions are
represented via hypermedia formats to support invocation, reason-
ing, and execution. For example, actions represented inHTML pages
through hyperlinks and forms allow human users to invoke actions
(and provide input data) using dynamically rendered controls. The
controls typically convey semantic information (e.g., through labels,
instructions, or the context in which they are embedded), which
allows humans to reason about actions while navigating the Web.
Such action representations also contain metadata that allows Web
browsers to take care of lower-level implementation details, such
as executing HTTP requests based on the hypermedia controls.

To enable software agents to discover and exploit actions in hy-
permedia environments, various interaction models and machine-
readable hypermedia formats have been proposed [1, 13, 21, 24, 35].
For instance, Hydra [24] defines a vocabulary for representing hy-
permedia actions exposed by Web APIs, enabling the discovery
of implementation details required for interacting with Web re-
sources through hypermedia controls. Taking a step further, the
Web of Things (WoT) initiative [39] introduces action descriptions
that use a hypermedia control vocabulary, but also encompass con-
cepts for conveying action-related information at a higher level
of abstraction. Specifically, the W3C WoT Thing Description (TD)
Recommendation [21] employs the HCTL vocabulary [7] for de-
scribing hypermedia controls, and provides a minimal vocabulary
for higher-level action types that carry semantics for interactions
with WoT Things, namely actions, properties, and events. For exam-
ple, a TD Action Affordance defines metadata about how to affect the
state of a WoT Thing, including references to input schemas. The
Recommendation also gives examples of how such metadata can be
enriched with semantics stemming from third-party vocabularies
to allow for informed interactions within specific domains (e.g., in
manufacturing, smart home applications etc.). As a result, Action
Affordances become valuable interaction cues that can be dynami-
cally discovered to inform agents about how to act on physical or
virtual entities that are described through the W3C WoT TD.

In this work, we aim to leverage the insights derived from repre-
senting actions in hypermedia environments. Our goal is to trans-
fer such insights to the design of interaction cues for hypermedia
actions, while ensuring that these cues remain aligned to the re-
quirements of BDI reasoning. This necessitates the development of

a generalized approach to the representation of hypermedia actions
that subsumes the scope of the WoT. Additionally, the approach
should allow for extensibility when required to specialize action
metadata to heterogeneous abilities of agents, such as variations
in the reasoning skills of BDI agents. We argue that achieving a
general approach to this extensibility and specialization requires for-
mally representing the tailoring of interaction cues to autonomous
agents with (similar yet) different abilities, so as to support the
effective discovery and interpretation of action possibilities even
in larger-scale, open, and dynamic multi-agent systems.

3 RESOLVING SIGNIFIERS IN BDI REASONING
In this section, we introduce a method for resolving interaction cues
(i.e., signifiers), to possible actions during means-end reasoning.
Our aim is to support BDI agents to effectively reason about and
take action in unknown, dynamic environments. In Sect. 3.1, we first
examine how signifiers allow agents to perceive action possibilities in
hypermedia environments. In Sect. 3.2, we then propose a method
that uses signifiers to resolve abstract actions programmed at design
time to concrete actions available in the environment at run time.

3.1 Action Perception in Dynamic Hypermedia
Environments

Action perception is the ability of autonomous agents to sense and
interpret percepts that relate to action possibilities offered by envi-
ronmental artifacts. Such percepts serve as interaction cues that can
provide agents with information about the available actions—for ex-
ample, their parameters, contextual relevance, and implementation
specifics (see Sect. 2.1). To facilitate action perception of BDI agents
in dynamic hypermedia environments, we use signifiers to model
and represent interaction cues, as introduced in [34]. The term em-
phasizes the fulfillment of a set of requirements, which align with
the primary properties and role of our interaction cues: being easily
discoverable and meaningful to agents, and revealing information
about behaviors that can be performed in the environment. Specif-
ically, signifiers should reveal all necessary information to meet
the requirements of BDI-based action invocation, reasoning, and
execution (see Sect. 2.1). Furthermore, they should conform to the
modeling and formatting standards governing the representation
of hypermedia actions (see Sect. 2.2) to enable their dynamic pub-
lication, discovery, and usage. In the following, we progressively
examine the design of signifiers for BDI agents.

3.1.1 Describing Actions and Action Parameters. Our objective is
to facilitate the provisioning of actions by both physical and virtual
artifacts (such as devices, digital services, knowledge repositories,
Web pages, etc.), where artifacts and their offered actions may
become available or unavailable at run time. To permit this, we
design signifiers as machine-readable information resources (here,
in RDF [41]). This approach enables two key functionalities: Firstly,
the independent publication and modification of signifiers by dif-
ferent designers, and potentially, software agents; secondly, the
discovery and exploitation of signifiers by autonomous agents at
run time, e.g., by crawling the hypermedia environment, accessing
relevant repositories, sharing signifiers, or using hypermedia search
engines (cf. [3]). To support this approach, we employ the signi-
fier model presented in [34] and represent them using an ontology
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Listing 1: An interaction cue in a resource profile, signifying
a specification of toggling a lamp as a WoT TD Affordance.
1 @base <http ://ex.org/wksp /1/ arts/1> .
2 ...
7 <> a hmas:ResourceProfile ;
8 hmas:isProfileOf <#artifact > ;
9 hmas:exposesSignifier <#togglable -signifier >.
10
11 <#artifact > a td:Thing , saref:Lamp ;
12 td:title "lamp" ;
13 td:hasSecurityConfiguration [
14 a wotsec:NoSecurityScheme ] ;
15 td:hasActionAffordance <#toggle -spec> .
16
17 <#togglable -signifier > a hmas:Signifier ;
18 hmas:signifies <#toggle -spec> .
19
20 <#toggle -spec> a td:ActionAffordance ,
21 saref:ToggleCommand ;
22 td:name "toggle";
23 td:hasInputSchema <#input -constraints > .
24
25 <#input -constraints > a js:ObjectSchema ,
26 saref:OnOffState ;
27 js:required "lampState" ;
28 js:properties [ a js:IntegerSchema ;
29 js:enum 0 ;
30 js:propertyName "lampState" ] .
31
32 <#toggle -spec> td:hasForm <#form> .
33
34 <#form> a hctl:Form ;
35 hctl:hasTarget <https :// lamp.example.org/state> ;
36 htv:methodName "PUT" .

for Hypermedia Multi-Agent Systems (hMAS) [10, 11]. Our goal
is to reuse the concepts introduced with that model as a means to
generalize descriptions of action possibilities in hypermedia envi-
ronments, and specifically consider such descriptions for enabling
the representation, discovery, and use of signifiers for BDI agents.

First, we consider that signifiers can be published and discovered
within a resource profile [34] associated with the artifact offering
the represented actions. For example, we conceive of the W3CWoT
Thing Description (TD) as a type of resource profile. Then, if an
artifact can be modeled as a WoT Thing, its related signifiers can
be exposed in a resource profile modeled as a WoT TD document
(see Sect. 2.2). There, TD Action Affordances describe how agents
can change the artifact’s state. This metadata serves as an action
specification that conveys all essential information for defining the
invocation of an action when programming an agent’s plan. As an
example, Lst. 1 represents the profile of a lamp artifact modeled as a
WoT Thing. This profile provides an action specification of toggling
the lamp as a TDAction Affordance (Lines 20-30). Lines 25-30 define
constraints imposed on the input required for invoking this action.
These constraints are represented in JSON Schema [8], which can
be used to automatically validate action invocation parameters. The
schema in Lst. 1 specifies that the input should correspond to a
JSON object with a field “lampState” of value 0.

The generalization of WoT TDs to hMAS resource profiles al-
lows for the alternative representation of input constraints through
SHACL shapes [23]. SHACL shapes permit representing and validat-
ing constraints applied to RDF graphs, while remaining agnostic to
specific serialization formats. As a result, SHACL emerges as a natu-
ral choice for expressing constraints in RDF—including constraints
that are related to required input parameters within signified action

Listing 2: An interaction cue in a resource profile, signifying
a specification of toggling a lamp as a SHACL shape.
1 @base <http ://ex.org/wksp /1/ arts/1> .
2 ...
7 <> a hmas:ResourceProfile ;
8 hmas:isProfileOf <#artifact > ;
9 hmas:exposesSignifier <#togglable -signifier > .
10
11 <#artifact > a hmas:Artifact , saref:Lamp .
12
13 <#togglable -signifier > a hmas:Signifier ;
14 hmas:signifies <#toggle -spec> .
15
16 <#toggle -spec> a sh:NodeShape ;
17 sh:class hmas:ActionExecution , saref:ToggleCommand ;
18 sh:property [ sh:path hmas:hasInput ;
19 sh:qualifiedValueShape <#input -constraints > ;
20 sh:qualifiedMinCount 1 ;
21 sh:qualifiedMaxCount 1 ] .
22
23 <#input -constraints > a sh:NodeShape ;
24 sh:class saref:OnOffState ;
25 sh:property [ sh:path saref:hasValue ;
26 sh:minCount 1 ;
27 sh:maxCount 1 ;
28 sh:hasValue 0 ;
29 sh:name "lampState" ] .
30
31 <#toggle -spec> sh:property [ sh:path prov:used ;
32 sh:minCount 1 ;
33 sh:maxCount 1 ;
34 sh:hasValue <#form> ] .
35
36 <#form> a hctl:Form ;
37 hctl:hasTarget <https :// lamp.example.org/state> ;
38 htv:methodName "PUT" .

specifications. Lst. 2 represents the profile of the same lamp artifact
as Lst. 1, but constraints on action invocation are now captured in
an action specification as a SHACL shape [23] (Lines 16-29).

Finally, in both Listings 1 and 2, action specifications are an-
notated with domain-specific semantics that convey the semantic
type of the action and the semantic types of the action’s expected
parameters. Specifically, the two listings reveal information about
the ToggleCommand action that affects the OnOffState of a Lamp,
using the Smart Applications Reference (SAREF) vocabulary [14].

3.1.2 Describing the Contextual Relevance of Actions. Some BDI
frameworks use more descriptive representations that go beyond
enabling action invocation, and rather enable performing reason-
ing about action in context. Action representations with contextual
information aim to explicitly establish the relationship between
actions and specific system states, including both the state of the act-
ing agent and of its environment. To accommodate BDI approaches
that explicitly consider action descriptions (see Sect. 2.1), we can
follow the WoT TD approach and make use of framework-specific
vocabularies to represent contextual information along with their
framework-specific semantics. As an illustration, we can extend
both Listings 1 and 2 with the metadata in Lst. 3 to employ a vo-
cabulary specific to a BDI framework such as 3APL. The extended
signifier reveals information about a 3APL agent’s capability to
toggle (Lines 47-49): toggling necessitates that the room is empty
of other agents (indicated by the 3APL precondition room(empty)),
and results in decreasing the illuminance in the room (indicated by
the 3APL postcondition room(decreased_illuminance)).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1859



Listing 3: Interaction cue extension that reveals the contex-
tual relevance of toggling a lamp with a 3APL vocabulary.
1 ...
44 <#togglable -signifier > hmas:recommendsAbility [
45 a apl3:ThreeAPLReasoner ] .
46
47 <#toggle -spec> sh:class apl3:Capability ;
48 apl3:hasPrecondition "room(empty)" ;
49 apl3:hasPostcondition "room(decreased_illuminance)" .

Although signifiers that use third-party vocabularies (e.g., vo-
cabularies for 3APL, Jason, GOAL, and GWENDOLEN agents) can
be effectively interpreted by their intended agents, they do not
formally establish their relevance to a specific agent type. Conse-
quently, such signifiers do not facilitate their intuitive discovery by
the intended agents, or their exclusion by agents for whom the sig-
nifiers are inappropriate and should remain out of scope. We hence
consider that signifiers may explicitly refer to abilities [34] that
agents are recommended to have for effectively using the signified
interaction metadata. An example of such recommended abilities is
illustrated in Lst. 3, where it is explicitly stated that the represented
signifier is recommended for use by 3APL agents (Lines 44-45).

The explicit recommendation of abilities does not impose re-
strictions on other types of BDI agents, since other agents may use
action descriptions while disregarding those semantic annotations
that they cannot interpret. However, such recommendation can as-
sist agents in directing their action perception towards signifiers that
might be more meaningful to them. This is particularly beneficial in
large-scale environments that feature a large number of available
signifiers and heterogeneous agents. Furthermore, recommended
abilities induce opportunities for driving agent evolution as well as
agent-to-agent collaboration: When agents encounter a signifier
that does not align with their abilities, they may seek for a means
to exhibit such abilities using external services and tooling (e.g., for
vocabulary alignment [17]), or they may interact with other agents
that possess the recommended abilities to request the performance
of the signified action or to delegate relevant goals to these agents.

Lastly, we introduce an additional option that allows for the
representation of actions’ contextual relevance that is more general
than the one supported by WoT TDs. To achieve this, we employ
the concept of recommended context [34] which offers a uniform
means for conveying contextual metadata. In the case of BDI agents,
such action metadata can facilitate the reasoning about action based
on common abstractions such as beliefs, desires, and intentions.
As an example, Lst. 4 represents metadata for the toggling action
and specifies the constraints that must be satisfied in the run-time
situation for the reasoned invocation of toggling. The metadata
can be used to extend Listings 1 and 2; however, contrary to Lst. 3,
it avoids using any framework-specific concepts. Instead, the ex-
tended signifier recommends that toggling should be performed by
an agent if the agent believes that the room is empty of other agents
and desires to decrease the illuminance in the room. In this case,
agents require no additional abilities for meaningfully interpreting
the signifier other than being capable of logic-based BDI reasoning2,
as indicated by the recommended ability in Lines 44-45 of Lst. 4.

2The representation for BDI concepts in Lst. 4 is relevant to logic-based BDI agents.
SHACL and additional ontologies could be used to support other types of agents, such
as Jadex agents [27] whose beliefs are represented using common Java data types.

Listing 4: Interaction cue extension that reveals the contex-
tual relevance of toggling a lamp with a generic BDI vocabu-
lary.
1 ...
44 <#togglable -signifier > hmas:recommendsAbility [
45 a bdi:LogicBDIReasoner ] ;
46 hmas:recommendsContext <#empty -room -constraints > .
47
48 <#empty -room -constraints > a sh:NodeShape ;
49 sh:class hmas:ResourceProfile ;
50 sh:property [ sh:path hmas:isProfileOf ;
51 sh:qualifiedValueShape <#agent -constraints > ;
52 sh:qualifiedMinCount "1"^^xs:int ] .
53
54 <#agent -constraints > a sh:NodeShape ;
55 sh:class hmas:Agent ;
56 sh:property [ sh:path bdi:hasBelief ;
57 sh:minCount "1"^^xs:int;
58 sh:hasValue "room(empty)" ] ;
59 sh:property [ sh:path bdi:hasDesire ;
60 sh:minCount "1"^^xs:int;
61 sh:hasValue "room(decreased_illuminance)" ] .

Adopting a uniform way for capturing the contextual relevance
of actions promotes the interoperability of agents over action pos-
sibilities, and the reusability of interaction cues. Even if agents are
designed based on different methodologies, they can effectively
interact in an open environment, and exchange information about
action in a shared vocabulary. Importantly, they still maintain the
freedom to exploit the advertised information according to their
individual approaches during action reasoning. For instance, upon
encountering the signifier extended by Lst. 4, a Jason agent could
use the recommended belief (Lines 56-58) to resolve the application
context of a plan that involves toggling, a 3APL or GOAL agent
could employ it to control the invocation of toggling, and a GWEN-
DOLEN agent might consider it during plan patching (cf. [32]). All
agents could also choose to ignore the contextual metadata, since
recommendation is used here to provide interaction guidance but
without regimenting behavior or limiting autonomy.

In summary, our approach allows designers of BDI agents to
uniformly capture contextual metadata at their preferred abstrac-
tion level. This level is realized through the distribution of used
metadata across shared or more specialized vocabularies, which in
turn affects the balance between interoperability and performance
in action reasoning. In all cases, the relevance of signifiers to their
target agents is explicitly captured through recommended abilities
to permit the intuitive discovery and interpretation of signifiers.

3.1.3 Describing Action Implementation Details. For enabling the
execution of signified actions, that follows action reasoning and
invocation (see Sect. 2.1), signifiers should convey information
about implementation details. In our approach, we make use of the
HCTL vocabulary [7] for representing hypermedia controls, which
is used by the WoT TD and is aligned with the Hydra model3. All
discussed listings feature the same hypermedia controls as an HCTL
Form (see Lines 32-36 and 31-38 in Listings 1 and 2, respectively).
This form can be used to construct an HTTP request to execute
the toggling of the lamp. Hypermedia controls serve as low-level
interaction instructions, which can be left outside the scope of
agent programs and agents’ reasoning cycles. Instead, these controls

3Details about the alignment of HCTL, WoT TD, and Hydra are available in [7].
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Listing 5: A plan that represents the knowledge about an
abstract action provided at design time.

1 +!room(decreased_illuminance) : true
2 <- invokeAction("saref:ToggleCommand", ["saref:OnOffState"], [0]) ;
3 ?room(decreased_illuminance) .

can be handled by external entities responsible for implementing
the actions invoked by agents. For instance, in MAS that follow
the Agents & Artifacts meta-model [4], implementation details
can be managed by a local artifact tasked with executing action
implementations on behalf of agents (e.g., as demonstrated in [10]),
similar to how a Web browser functions for human agents.

3.2 Action Resolution Through Signifiers
We next examine how agents that dynamically perceive signifiers,
such as the ones in Sect. 3.1, can exploit signified information for
action. To this end, we introduce a Signifier Resolution Mechanism
(SRM): An SRM is the mechanism of an agent that resolves the
agent’s knowledge about abstract actions to possibilities of concrete
actions at run time. For BDI agents, the SRM is part of the agents’
means-end reasoning process, that resolves abstract actions in plans
(or action rules and other similar structures) to concrete actions
available for invocation, reasoning, and execution at run time.

Given the diversity of frameworks for BDI agents, SRMs may
vary: The variationmay stem from framework-specific sub-processes
for means-end reasoning, their formalization using specialized con-
cepts or other factors. In what follows, we introduce SRM function-
ality based on concepts inspired by Jason and AgentSpeak [5], but
this does not restrict the generality of our approach—and, where
applicable, we draw parallels to concepts with similar semantics
and utility in other BDI models and frameworks.

We consider that abstract actions are defined within plans, which
represent means that enable agents to execute a simple or complex
series of actions. In Lst. 5, we use a simple plan structure to show
how signifiers can be used for resolution, considering that this
structure is expressive enough to capture the details of action meta-
data discussed in Sect. 3.1. Plans, alongside analogous concepts like
action rules or activities, play a fundamental role in reasoning about
the best approach to pursue an intention. The intention relevant to
the plan presented in Lst. 5 is to decrease room illuminance (see Line
1, where +! denotes the addition of this achievement goal event in
AgentSpeak [28]). This is a single-action plan whose application
context subsumes any conditions that must hold at run time to in-
voke the action (see true in Line 1). These conditions may include
guards, preconditions, conventional programming conditionals, etc.
Finally, to address any conditions that are expected to hold post-
action, the plan is declaratively programmed by adding a test goal
after action invocation (see Line 3, denoted by the AgentSpeak
test operator ?). This caters to approaches where action postcon-
ditions should be verified against the agent’s beliefs to evaluate
action success (via the test goal addition) as well as approaches
where postconditions need to be added in the belief base by the
agent itself (via plan execution for addressing the test goal addition
such as +?room(decreased_illuminance) <- +room(decreased
_illuminance)). Finally, the plan involves the invocation of a com-
mand, that is compatible to ToggleCommand with an OnOffState
in the SAREF ontology, on a source of illumination (see Line 2).

At run time, the agent’s SRM is responsible for the resolution of
such knowledge about abstract actions captured in plans to possi-
bilities of concrete actions as revealed by discovered signifiers. For
example, the abstract action presented in Lst. 5 can be resolved to a
concrete action based on the signifier in Lst. 1 or Lst. 2. Resolution
by an SRM is achieved based on the following reasoning tasks:
• If a signifier signifies a specification of the action type that
appears in an action invocation of a plan, then the action
is considered available for execution through the hyperme-
dia controls defined in the specification. For example, upon
perception of the signifier in Lst. 1 or Lst. 2, the SAREF
ToggleCommand action in the plan of Lst. 5 is considered
available for execution based on the form in the signifier.
• If a signifier recommends an ability, then it is considered
relevant for perception by an agent that exhibits this ability.
For example, the signifier extension in Lst. 3 can be consid-
ered relevant to 3APL agents, while the signifier extension
in Lst. 4 can be considered relevant to all BDI agents.
• If a signifier recommends a context that applies constraints
on the agent’s beliefs, then the application context of the
plan is resolved to capture this recommended context, which
should additionally hold for considering that the action is
available. For example, upon perception of the signifier ex-
tended with Lst. 4, the application context of the plan in
Lst. 5 (true) is resolved to include the literal room(empty).
• If a signifier recommends a context that applies constraints
on the agent’s desires, then the evaluation conditions of
the plan are extended to capture this recommended con-
text. For example, upon perception of the signifier extended
with Lst. 4, the test goal ?room(decreased_illuminance)
in Lst. 5 could be achieved through the plan +?room(decreased
_illuminance) <- +room(decreased_illuminance).

These reasoning tasks can be implemented using an SRM that
integrates with the BDI reasoning cycle. Here, we use signifier
resolution to enhance agents’ means selection function [42], that
is the function that an agent uses to decide how to achieve its
intentions, such as by selecting a plan. Algorithm 1 presents the
functioning of an SRM, which serves as an extension of the means
selection function for BDI agents.4 It assumes access to the agent’s
native means selection function’s output, represented as a set of
plans 𝑃 , as well as access to the agent’s beliefs stored in the set 𝐵
and the agent’s abilities in the set 𝐴𝑏. Additionally, we assume that
the perceived signifiers are stored in the set 𝑆𝑖𝑔, from which we can
extract the signified actions of the set 𝐴𝑆𝑖𝑔 with their related set of
recommended abilities 𝐴𝑏𝑆𝑖𝑔 , and recommended context 𝐶𝑆𝑖𝑔 .5

The algorithm evaluates the run-time availability of means in
set 𝑃 by verifying if their abstract actions can be resolved using
signifiers in 𝑆𝑖𝑔. It iterates through each plan 𝜋 ∈ 𝑃 and, and checks
if, for all the abstract actions 𝐴𝜋 of 𝜋 , there exist signifiers with
matching signified actions (𝐴𝜋 ⊂ 𝐴𝑆𝑖𝑔), while excluding any signi-
fier whose recommended context does not align with the agent’s
beliefs (𝐵 ̸ |= 𝐶𝑆𝑖𝑔), or whose recommended abilities are not included

4Therefore, Algorithm 1 is not concerned with action evaluation conditions as it is
only concerned with means-end reasoning, which precedes action invocation.
5The notation is slightly refined from the signifier model in [34] to emphasize the
utility of the elements in the context of an SRM.
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Algorithm 1 Algorithm for the Signifier Resolution Mechanism
that extends the BDI reasoning cycle’s means selection function.
𝑆𝑖𝑔← perceived signifiers, 𝑃 ← relevant plans, 𝐵 ← beliefs, 𝐴𝑏 ← set
of agent’s abilities, 𝐴𝑆𝑖𝑔 ← set of actions signified by 𝑆𝑖𝑔
for each 𝜋 ∈ 𝑃 do

𝐴𝜋 ← set of actions of 𝜋
if 𝐴𝜋 ⊂ 𝐴𝑆𝑖𝑔 then

𝑀𝑒𝑎𝑛𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← true
for each 𝛼 ∈ 𝐴𝜋 do

𝐶𝑆𝑖𝑔 ← recommended context of signifier signifying 𝛼
if 𝐵 ̸ |= 𝐶𝑆𝑖𝑔 then

𝑀𝑒𝑎𝑛𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← false
break

end if
𝐴𝑏𝑆𝑖𝑔 ← recommended abilities set of signifier signifying 𝛼
if 𝐴𝑏𝑆𝑖𝑔 ⊈ 𝐴𝑏 then

𝑀𝑒𝑎𝑛𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ← false
break

end if
end for
if 𝑀𝑒𝑎𝑛𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 then

return 𝜋

end if
end if

end for
return null

in the agent’s abilities (𝐴𝑏𝑆𝑖𝑔 ⊈ 𝐴𝑏). If there are relevant signifiers
for all abstract actions in a set𝐴𝜋 , then the plan 𝜋 is returned as the
output of the means selection function. If no such set is found, the
agent infers that it currently lacks the means to achieve its goals.

4 IMPLEMENTATION AND EVALUATION
To ground our approach, we implement and evaluate the use of
signifiers and an SRM as part of the Jason reasoning cycle [4, 5].6
Specifically, we implemented Algorithm 1 as an extension of the
means selection function of Jason agents. For creating and process-
ing signifiers, we developed a Java library7 that manages signifiers
based on the hMAS ontology. All agents used in our evaluation are
deployed within a JaCaMo application.8

In our evaluation, we test four BDI agents (A, B, C, and D) in
four different scenarios to assess signifier resolution effectiveness
in a variety of run-time situations. While Agent A relies solely on
the regular Jason reasoning cycle, Agents B, C, and D use different
variants of an SRM within their Jason reasoning cycle. The SRM
enables agents to consider different interaction metadata when
determining plan applicability and actions to invoke:
• Agent A: Lacking an SRM, it executes the first relevant plan,
potentially resulting in errors if actions are unavailable.
• Agent B: With a basic SRM, it prioritizes action availability,
opting for alternative plans when actions are unavailable.
• Agent C: Building on Agent B, it also considers context align-
ment, invoking actions that match the recommended context.

6Our implementation is available in https://github.com/danaivach/jacamo-
hypermedia-srm
7Our implementation uses the signifier library available in https://github.com/
danaivach/hmas-java
8The JaCaMO project is available in https://github.com/jacamo-lang/jacamo

Table 1: Features of the different SRM versions employed by
BDI agents in our evaluation.

SRM Features A B C D

Signified Actions ✗ ✓ ✓ ✓

Recommended Context ✗ ✗ ✓ ✓

Recommended Abilities ✗ ✗ ✗ ✓

• Agent D: This encompasses all prior SRM features and in-
vokes an action only if its abilities align with the abilities
recommended by the corresponding signifier.

Table 1 summarizes the evaluated SRM features and their usage
by agents in our scenarios. In all scenarios, the performance of
agents is assessed based on two distinct types of objectives: Agent
Objectives and Design Objectives. Agent Objectives are used to eval-
uate an agent’s ability to effectively behave rationally with respect
to its goals. Design Objectives are used to evaluate an agent’s abil-
ity to behave based on the designer’s intention for the agent role
within an environment. As an illustration, consider a laboratory
assistant agent entering an unfamiliar lab environment. The agent
is equipped with plans to perform tasks for achieving its (Agent)
Objectives, like adjusting the lighting and operating lab equipment.
However, the lab environment it enters may have been designed
with specific Design Objectives inmind, which could either coincide
with, overlap, or conflict with the agent’s objectives. For instance,
the agent’s primary goal may be to create a comfortable working
condition and it might hence increase room illuminance. However,
the lab’s designer may have intended that the lab conserves energy,
hence striving to keep the lights off in unoccupied areas. If the
agent increases the lighting while no people are present, it fulfills
its Agent Objective but fails to meet the Design Objective.

In our evaluation, the four agents are subjected to four scenarios
that incrementally increase in complexity. Each scenario takes place
in a room that contains environmental artifacts, including a lamp,
window blinds, and robotic arms, which deployed agents use to
achieve their overarching objective of conserving energy.

Scenario 1: Basic Plan Applicability. In this baseline scenario, the en-
vironment is static, providing agents with all the necessary artifacts
for their predefined plans. The performance of agents is evaluated
on the basis of achieving both an Agent Objective and a Design
Objective, both aimed at reducing room illuminance. Each agent
has two plans for achieving this: toggling the lamp or lowering the
window blinds. All agents achieve the objectives using either plan
because the required artifacts are always available.

Scenario 2: Plan Applicability based on Action Availability. In this
scenario, all agents continue to have the (Agent and Design) ob-
jective to decrease room illuminance, and the same plan library
as in Scenario 1. However, now, the environment is dynamic: Ar-
tifacts may unexpectedly become unavailable, e.g. because they
are blocked by other agents, are being moved to other locations,
experience network issues, and more. Here, we implement a situa-
tion where the lamp becomes unavailable for toggling—a change
that is reflected by the absence of any signifiers exposed for the
lamp’s actions. Agents B, C, and D—which are all equipped with
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an SRM—achieve their objectives by reasoning that the only usable
plan is the one for lowering the blinds. On the other hand, agent A,
lacking an SRM, fails to achieve its objectives because it attempts
to toggle the lamp. This happens because, for all agent programs,
the definition of the plan to toggle the lamp precedes the definition
of the plan to lower the blinds.

Scenario 3: Plan Applicability based on Context Recommendation.
This scenario replicates Scenario 2, but introduces a Design Objec-
tive that deviates from the Agent objective of reducing illuminance.
Here, the environment’s designer suggests that reducing illumi-
nance should only occur when a room is unoccupied. This guideline
is conveyed as a recommended context in any signifiers related to
the desire of reducing illuminance, including those for toggling the
lamp and lowering the blinds. This illustrates the use of signifiers
commonly employed by environment designers to customize an
environment, similar to adding a sign that says “Please close the
door when leaving!” or “Don’t touch if in use!” in the physical
world. Human agents are able to reason about these signs while
retaining the autonomy to disregard them. In our scenario, agents
C and D are enabled by their SRMs to reason about recommended
contexts, and thereby decide to not decrease the illuminance if they
do not believe that the room is empty9—adhering to the Design
Objective. We assume that agents could redirect their efforts for
conserving energy by pursuing other Agent Objectives, such as
putting unused lab equipment into idle mode. Agent B lowers the
blinds, achieving its Agent Objective but not the Design Objective.
Agent A remains error-prone due to its inability to reason about
available signifiers, as demonstrated in Scenario 2.

Scenario 4: Plan Applicability based on Ability Recommendation.
In the final scenario, we examine signifiers for controlling robotic
arms within the room. These signifiers reveal actions for controlling
the position of these robotic arms, which are more complex than
toggling lamps or lowering blinds. All signifiers refer to the same
type of action to move the robot, and recommend moving only
when the robot isn’t in use by another agent to conform to the
Designer’s Objective. However, some arms are controlled through
an interface that accepts parameters in the Cartesian space, and
others through an interface defined in terms of the robot’s joints.
These input parameter specifics are represented in the signifiers
to support acting. Additionally, an agent’s ability to work within
a specific operational space (here, the Cartesian or joint space) is
denoted as a recommended ability to facilitate signifier discovery
and advanced action reasoning.

All deployed agents share the Agent Objective of moving the
robotic arms to their idle position, and each has a plan to achieve
this. Agent A remains error-prone when controlling unavailable
robots and fails to consider whether they are in use, missing all
objectives. Agent B also overlooks robot usage by others, missing
all objectives. Agent C has the potential to align with both Objec-
tives by reasoning about recommended context but fails because it
overlooks the specification of the parameter space, and enters the
parameters in Cartesian space while the robot expects joint space
parameters. Agent D can reason based on recommended abilities,

9For our deployment, we assume that agents infer whether the room is empty by
monitoring the activity status of the room’s robotic arms.

Table 2: Scenario results. The first mark represents the Agent
Objective, and the second mark the Design Objective.

Scenario A B C D

1 ✓✓ ✓✓ ✓✓ ✓✓

2 ✗✗ ✓✓ ✓✓ ✓✓

3 ✗✗ ✓✗ ✓✓ ✓✓

4 ✗✗ ✗✗ ✗✗ ✓✓

proceeding to control the robot only if it can handle the required
operational space. In cases where it lacks this ability, we assume
that it can request another capable agent to perform the desired
action. Agent D is the only agent whose SRM allows for effective
reasoning to achieve all objectives.

The performance of the agents across all four scenarios is shown
in Table 2, where check marks indicate success in achieving the
Agent Objective (first mark), and Design Objective (second mark).
As the scenarios introduced added layers of complexity—from ba-
sic plan applicability to contextual awareness and ability-based
relevance—it is evident that agents with a more complex SRM are
better equipped to both fulfill their goals and adhere to external
design objectives.

5 CONCLUSION
In this paper, we employ the signifier abstraction [34] to advertise
discoverable hypermedia actions for BDI agents. A signifier resolu-
tion mechanism (SRM) is introduced to enhance BDI agents that
perform means-end reasoning with the ability to resolve predefined
abstract actions in plans to available concrete actions at run time.
Our implementation shows how various SRM configurations pro-
vide differing levels of support during reasoning in dynamic and
unfamiliar environments.

Further research on SRMs could further improve the support
they offer to agents in such environments: Integration with a trust
and reputation model (e.g., [20]) could enable resolution based on
signifier provenance and trustworthiness to enhance interaction
transparency and accountability in unknown environments. Addi-
tionally, the trade-offs of SRMs should be examined, especially in
comparison to mechanisms where environmental entities pre-filter
signifiers advertised to agents [25, 34]. These mechanisms may
relieve agents from reasoning about signifiers but potentially affect
privacy (e.g., by requiring details about agents’ intentions) or auton-
omy (e.g., by hiding useful signifiers). Further investigation could
provide insights into effective strategies for flexibly combining and
alternating between SRMs and complementary mechanisms, aim-
ing to balance agent autonomy and performance when reasoning
about evolving action repertoires.
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