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ABSTRACT
We investigate two decentralized methods for leveraging assets:

Firstly, investors recurrently commit their target assets as collateral

to secure loans, subsequently reinvesting the borrowed funds in

the same assets. Secondly, investors pledge their assets once but are

required to promptly borrow from a lender and repay the borrowed

amount. This model is exemplified by recent Ethereum investment

strategies, where investors must weigh the trade-off between gas

fees associated with multiple pledging processes and fees charged

by the lender, known as the Flash Loan project. Our comprehensive

analysis encompasses game theory dynamics, determining optimal

strategies for self-interested investors and deriving a unique non-

linear optimal fee structure for Flash Loans. This structure remains

incentive-compatible, guarding against Sybil attacks and other devi-

ations. Empirical results, under varying environmental parameters,

consistently demonstrate the superior revenue performance of our

optimal fee structure compared to the commonly used linear fee

model within the Flash Loan project.
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1 INTRODUCTION
1.1 Motivation and Our Contributions
In the financial field, venture capitalists often use leverage trading

to multiply their capital by entering positions larger than their own

capital through borrowing funds. The provider of leverage trading,

such as a securities exchange, charges a fee known as financing

fees as the cost of providing the leverage trading service. In recent

years, the rise of decentralized finance (DeFi) [21, 35, 42] has also
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facilitated leveraged trading through Flash Loan [16, 33, 40], which

involves borrowing a capital amount and requiring repayment

within a single transaction [38]. Similarly, these Flash Loan projects

(FP) that offer leveraged trading also charge financing fees.

Typically, traditional finance providers charge financing fees

that are linearly related to the amount of investment funds con-

tributed by investors [28–30]. Likewise, DeFi projects also apply

linear financing fees [6, 9] in proportion to the investment amount.

For instance, AAVE charges 0.09%, while Uniswap imposes a fee

of 0.3%. But using a linear function to charge financing fees is not

always optimal for maximizing the project owner’s profit [12, 15].

Specifically, Chernenk et al. [15] provide evidence that different

lending techniques are employed for various types of borrowers

in the commercial loan market. Berg et al. [12] identify the pri-

mary objectives behind fees and introduce a novel metric, known

as total-cost-of-borrowing, which encompasses the fees imposed

by lenders.

On the other hand, in contrast to traditional finance, fee charg-

ing in DeFi should also consider situations where investors engage

leveraged trading without involving Flash Loan projects due to its

decentralized nature. Investors can multiply their capital by utiliz-

ing various lending protocols offered by DeFi, including AAVE [4],

MakerDAO [1], Compound [2], and more. However, this imple-

mentation method incurs operational costs, such as the repetitive

invocation of smart contracts, resulting in gas fees [23]. Therefore,

investors face a trade-off between the gas fees associated with re-

peated invocation smart contracts and the financing fees imposed

by Flash Loan projects. Rational investors will consistently opt for

the approach with lower costs. Flash Loan projects must establish

appropriate financing fees to optimize their profits and incentivize

rational investors to prefer their leveraged trading services over

alternative methods.

In this paper, we present an optimal Flash Loan fee function

designed to maximize the profits of Flash Loan project owners while

incentivizing self-interested investors. We begin by formalizing two

approaches to leverage in DeFi. Using this formalization, we analyze

the feasible area for each method and propose a fee function that is

optimal for a specific capital value. Furthermore, we demonstrate

that this fee function remains optimal across all possible capital

values. The induced game, which determines the optimal strategy

for self-interested investors, and the corresponding Flash Loan
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fee function for project owners, is commonly referred to as the

Stackelberg equilibrium [37].

The main contributions of this paper are summarized as follows.

• We calculate the optimal fee function commitment of Flash

Loan projects, taking into account self-interested investors.

• We analysis and reveal a unique global optimal solution that

optimizes Flash Loan projects’ revenue for investors with

any initial asset. This solution is different from the commonly

used linear function and is resistant to Sybil attacks [17].

• We conduct an experiment to demonstrate the superior per-

formance of our solution compared to the currently used fee

functions of well-known projects.

1.2 Related Works
A collection of literature has explored fee-charging strategies in

traditional finance. For instance, [30] investigates the optimal trans-

action fees for intermediaries in thin markets, where each seller pos-

sesses a unique item and faces only a few buyers in each round. On

the other hand, [27] analyzes the fee setting mechanism for a seller,

buyer, and intermediary in a multi-round game. Additionally, [14]

studies fees for stock exchanges and demonstrates that discrete

pricing fragments the market and disperses fees. Meanwhile, [22]

examines the optimal fee strategy for online sale platforms and

proposes that a linear fee function with respect to the reserve price

or the final trading price is nearly optimal. Moreover, [24] provides

five pieces of advice on fees for investment management. However,

to the best of our knowledge, no study has specifically focused on

leverage strategies in fee setting.

The concept of investing with leverage in the DeFi ecosystem

arose when the AAVE community proposed integrating stETH

as collateral in September 2021 [11, 19]. After the proposal was

officially launched in February 2022, there was extensive discussion

on the specific implementation involving Flash Loan [26], which

several DeFi projects on Ethereum mainnet later realized [8, 20].

It’s worth noting that our strategy differs from the extensively

researched MEV (Maximal Extractable Value) [25, 31, 32, 41], where

the latter employs Flash Loan for one-shot arbitrage while the

former doesn’t necessarily lead to immediate profit but rather a

leveraged investment portfolio.

2 BACKGROUND
2.1 Preliminary
In traditional finance, leverage is a fundamental tool that allows

investors to increase their potential returns by investing multiples

of their principal. While it is commonly believed that leverage can

only be achieved through centralized contracts provided by banks

or exchanges [18, 36], there is a more accessible way to implement

it without their assistance. Suppose Alice is bullish on gold and

wishes to make a leveraged investment. To achieve this, she requires

only two things: a gold market to purchase gold and a pawnshop

that allows her to pledge her gold as collateral and borrow funds.

For example, suppose Alice has $100 and wants to invest in

gold with leverage. She spends all her money buying gold in the

market, then pledges her gold (worth $100) at a pawnshop to borrow

some money. Typically, there is a discount of, say, 50%, so she can

borrow a maximum of $50. She returns to the gold market and

uses the borrowed $50 to buy more gold, then repeats the process.

After repeating this process sufficiently, Alice will have almost

100 + 50 + 25 + ... = 200 dollars worth of gold, serving as collateral

in the pawnshop, with a total debt of 50+ 25+ ... = 100 dollars. This

allows her to establish almost double leverage without the need for

any centralized leverage contracts.

However, Alice may be reluctant to follow this process as it

is laborious and costly to repeatedly commute between the gold

market and the pawnshop. Therefore, she devises another process:

borrowing $100 from a lender, she spends all $200 (including her

principal) to buy gold. Then, she goes to the pawnshop, pledges

all $200 worth of gold, and borrows $100. Finally, she repays the

$100 to the lender. This allows Alice to implement exact double

leverage without any repeated operations, and since she repays the

debt almost instantly, she usually does not need to pay too much

interest to the lender. As investors like Alice become more popular,

lenders may seek to take advantage by implementing a fee function

for these short-term loans.

This example abstracts a series of realistic situations, including

money multiplier, second mortgage, and refinancing. A second

mortgage is a type of mortgage that is subordinate to the primary

(first) mortgage on a property. Refinancing involves replacing an

existing mortgage with a new one, typically to secure better terms,

such as a lower interest rate or different loan duration. One of the

most concrete scenarios is a common situation on Ethereum [13]

that features two key elements:

• The cost of each invest-pledge-borrow process is a constant.

• The fee charged by the lender is a function to the loan

amount.

2.2 Leverage Strategies in Ethereum
In Ethereum’s ecosystem, implementing traditional leverage is chal-

lenging due to the limitations of decentralization and the delivery

risk stemming from anonymity. Currently, high-quality decentral-

ized exchanges (DEXes) like Uniswap and Curve do not offer lever-

age products, and although a few small DEXes have introduced the

idea, liquidity and availability are limited. Recently, DeFi projects

have proposed strategies that involve multiple projects, which al-

low for decentralized leverage implementation as we have shown

above, and have attracted significant attention. To be specific, sup-

pose Alice wants to exchange her original asset, such as ETH, to

a target asset, such as stETH, with leverage. The following smart

contracts [3, 5, 7] are involved:

• AAVE [5] serves as the pawnshop, allowing users to pledge

stETH and borrow ETH with a specified ratio known as

Loan-to-Value (LTV).

• Lido [3] functions as the gold market, enabling users to

exchange ETH for stETH.

• Balancer [7] serves as the lender or FP, lending ETH to the

user and requiring prompt repayment.

Alice can leverage her investment in two ways: 1) She can repeat

the process of exchanging ETH to stETH via Lido, pledging stETH,

and borrowing ETH via AAVE. 2) She can loan ETH from Balancer,

execute the process in 1) only once, and then repay the borrowed

ETH to Balancer.
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When deciding between the two strategies, Alice must consider

the trade-offs involved. In the first strategy, Alice must bear the cost

of each pledge-borrow-exchange process, known as the gas fee [23].

This cost is similar to the travel expense from the gold market to

the pawnshop and is independent of the amount involved in the

process. Repeated processes will stop being rational for investors if

the marginal utility is less than the cost, which will also prevent

maximizing leverage. On the other hand, in the second strategy, the

FP usually charges a fee, which is an additional cost that users must

repay. This fee directly reduces Alice’s utility. As a self-interested

investor, Alice will always choose the strategy that maximizes her

utility.

3 MODEL
For the rest of this paper, all values are evaluated in ETH, and we

will not explicitly state “value in ETH”.

We define the following notations throughout this paper:

• 𝑥 denotes the amount of ETH held by the investor, which is

the original asset.

• 𝑚 represents the LTV of the (ETH, stETH) pair in AAVE,

where𝑚 < 1. This means that if an investor pledges 𝑥 worth

of stETH, they can borrow up to𝑚𝑥 worth of ETH.

• 𝐴 and 𝐵 are constants, where 𝐴 > 1 is the common valua-

tion of one stETH. Note that the actual value of stETH may

increase over time if it is an interest-earning asset, but we

use 𝐴 to represent its long-term value. Similarly, the owned

ETH debt to AAVE is also increasing over time, and 𝐵 > 1 is

used to denote the common evaluation of one ETH debt.

• 𝛼 represents the gas fee for one pledge-borrow-exchange

process. This refers to the process where an investor pledges

some stETH to AAVE, borrows some ETH, and then ex-

changes the borrowed ETH to stETH via Lido. The gas fee is

independent of all amounts involved in the process, but may

fluctuate unpredictably. For simplicity, we take 𝛼 to be the

average cost of the above process.

Next, we will introduce the two strategies mentioned earlier in

detail: Multiple Leverage Deposit (MLD) and Full Leverage Deposit

(FLD).

3.1 Multiple Leverage Deposit
As demonstrated in the introduction, when disregarding the Flash

Loan strategy, a rational investor always adheres to the following

rules:

• (MLD1) When an investor holds ETH, she will exchange it

for stETH, as the latter’s value can be increased by a factor

of 𝐴.

• (MLD2) An investor will follow the pledge-borrow-exchange

process if the cost of the process is less than its marginal

utility. This can be expressed as

(𝐴 − 𝐵)𝑡 ≥ 𝛼,

where 𝑡 represents the maximum amount of ETH that the

investor can borrow.

By following the rules mentioned above, an investor’s utility can

be calculated as the difference between the total collateral and total

debts, both of which can be expressed as the sum of a geometric se-

ries, and then subtracting the costs. The formal formula is presented

in the following definition.

Definition 3.1. An investor is considered MLD if she satisfies

rules MLD1 and MLD2. Additionally, the utility of an MLD investor

with an initial asset of 𝑥 is given by:

𝑈𝑀𝐿𝐷 = 𝐴(𝑥 +𝑚𝑥 +𝑚2𝑥 + ... +𝑚𝑘𝑥)−

𝐵(𝑚𝑥 +𝑚2𝑥 + ... +𝑚𝑘𝑥) − 𝑘𝛼,

where 𝑘 = ⌊log𝑚 𝛼
(𝐴−𝐵)𝑥 ⌋

The MLD investor stops at the 𝑘-th pledge-borrow-exchange

process when the marginal utility is less than the cost, which can

be expressed as (𝐴 − 𝐵)𝑚𝑘+1𝑥 < 𝛼 .

One could argue that the actual gas fee might differ from 𝑘𝛼 due

to the specific contract used. However, in reality, 𝛼 is significantly

smaller compared to 𝑥 . Therefore, we make the straightforward

assumption that 𝑘 is much larger than any constant, including 𝛼 ,

1/𝑚, 1/(1 −𝑚), any fixed gas fee consumption when executing

smart contracts, and any constant appearing in any utility formula.

Based on this assumption, we can simplify the expression by letting

𝛼 = (𝐴 − 𝐵)𝑚𝑘+1𝑥 , since the difference caused is at most 𝛼 , which

can be ignored.

With this assumption, we can rewrite the utility of a MLD in-

vestor as

𝑈𝑀𝐿𝐷 =
𝐴𝑥 (1 −𝑚𝑘+1)

1 −𝑚
− 𝐵𝑥𝑚 − 𝐵𝑥𝑚𝑘+1

1 −𝑚
− 𝑘𝛼

=
𝑥 (𝐴 − 𝐵𝑚)

1 −𝑚
− 𝛼 (𝑘 + 1

1 −𝑚
) .

The above value can be denoted by 𝑈𝑀𝐿𝐷 (𝑥) since it is a function
of 𝑥 .

𝑈𝑀𝐿𝐷 serves as the lower bound for the utility of any FLD in-

vestor, which we will introduce in the next subsection.

3.2 Full Leverage Deposit
As previously mentioned, a FLD investor effectively utilizes the

Flash Loan by borrowing ETH from it and immediately repaying

the loan. To be self-interested, she chooses the optimal amount of

borrowed ETH, denoted by 𝑦, to maximize her utility. However, if

the resulting utility is less than𝑈𝑀𝐿𝐷 , the investor would instead

choose the MLD strategy, thus the FP would earn nothing from the

transaction. To prevent this, we impose a constraint that the utility

of a FLD investor, denoted by 𝑈𝐹𝐿𝐷 , must not be less than 𝑈𝑀𝐿𝐷 .

It is worth noting that while the curve 𝑈𝑀𝐿𝐷 (𝑥) provides a
straightforward lower bound for the investor’s utility, and therefore

maximizes the FP’s revenue to some extent, it is not guaranteed

that there is a fee function, which takes the loan amount rather

than the principal 𝑥 as its argument, can produce this curve.

Definition 3.2. A rational investor with an initial asset of 𝑥 is

considered to be a FLD investor if she follows the below process:

• Loan 𝑦∗ ETH from the Flash Loan project;

• Exchange 𝑥 + 𝑦∗ ETH to stETH via Lido;

• Pledge 𝑥 + 𝑦∗ (value) stETH into AAVE and borrow 𝑓 (𝑦∗)
ETH from AAVE;

• Repay 𝑓 (𝑦∗) to the Flash Loan project,
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where 𝑦∗ is the solution to the following optimization problem:

𝑦∗ = argmax{𝐴(𝑥 + 𝑦) − 𝐵(𝑓 (𝑦))} (1)

𝑠 .𝑡 . 𝐴(𝑥 + 𝑦) − 𝐵(𝑓 (𝑦)) ≥ 𝑈𝑀𝐿𝐷 (𝑥)
𝑓 (𝑦) ≤ 𝑚(𝑥 + 𝑦)

The FLD investor’s utility can be expressed as:

𝑈𝐹𝐿𝐷 (𝑥) = 𝐴(𝑥 + 𝑦∗) − 𝐵(𝑓 (𝑦∗))

The first constraint ensures that the FLD investor does not de-

viate to the MLD strategy. The second constraint ensures that the

borrowed ETH is limited to no more than the LTV rate, which is𝑚,

times the total collateral.

It’s worth noting that it’s suboptimal for the user to have any

remaining ETH after implementing the FLD strategy. This is be-

cause the user can convert the remaining ETH into stETH and

deposit the entire amount into AAVE. This not only preserves the

user’s profits but also expands their strategic options. Therefore,

we should exclusively focus on the scenario in which the user has

no ETH on hand, effectively utilizing the borrowed ETH to repay

the debt.

Building on the FLD strategy as the optimal choice for self-

interested investors, the next challenge is to identify the optimal

function 𝑓 (·) that maximizes the Flash Loan project’s revenue from

FLD investors.

3.3 Optimal Fee Function
Given an FLD investor’s initial asset 𝑥 , the objective of the FP is to

solve the following optimization problem:

𝑅𝐸𝑉 (𝑥) = max 𝑓 (𝑦∗) − 𝑦∗ (2)

𝑦∗ = argmax{𝐴(𝑥 + 𝑦) − 𝐵(𝑓 (𝑦))}
𝑠 .𝑡 . 𝐴(𝑥 + 𝑦) − 𝐵(𝑓 (𝑦)) ≥ 𝑈𝑀𝐿𝐷 (𝑥)

𝑓 (𝑦) ≤ 𝑚(𝑥 + 𝑦)

It should be noted that finding an optimal function 𝑓 (·) for a specific
variable 𝑥 does not guarantee that 𝑓 (·) will optimize all values of 𝑥 .

The objective is to find a solution that optimizes the above objective

for all possible values of 𝑥 , which is referred to as the global optimal

solution.

4 OVERVIEW
We propose a fee function that is optimal with respect to a specific

value of 𝑥 , the investor’s initial asset. We then proceed to demon-

strate that this fee function is also globally optimal for all possible

values of 𝑥 .

Let 𝑓 (·) be the fee function to be determined. We define a corre-

sponding curve ℎ(·) as follows:

ℎ(𝑦) = 𝐴𝑦 − 𝐵𝑓 (𝑦) (3)

for all 𝑦 in 𝑓 (·)’s domain. Note that it matches the objective of

problem (1) with the constant term 𝐴𝑥 subtracted.

Theorem 4.1. The optimal curve for ℎ(·) that maximizes FP’s
revenue is given by:

𝑦 =
𝑚𝑥

1 −𝑚
− 𝛼𝑘

𝐴 − 𝐵𝑚
− 𝛼

(1 −𝑚) (𝐴 − 𝐵𝑚) ,

ℎ =
(𝐴 − 𝐵)𝑚𝑥

1 −𝑚
− 𝛼 (𝑘 + 1

1 −𝑚
),

where 𝑦 is the argument and ℎ is the corresponding function

value. Note that 𝑘 is also a function of 𝑥 .

We refer to the curve in Theorem 4.1 as the revenue optimal
(RO) curve, which is a parametric equation with respect to 𝑥 .

5 ANALYSIS
To facilitate understanding, we will first consider two extreme cases

and ignore the MLD constraint:

• 𝑓 (𝑦) = 𝑦

In this case, the FP does not charge additional fee and earns

nothing, like Balancer. The FLD investor always wants to

maximize the loan amount 𝑦∗ since𝑈𝐹𝐿𝐷 = 𝐴𝑥 + (𝐴 − 𝐵)𝑦∗.
Therefore, the optimal value for 𝑦 is 𝑦 = 𝑚𝑥

1−𝑚 due to the

second constraint in problem (1), which results in leverage

with a multiple of 1/(1−𝑚). This corresponds to the example

given in the introduction with𝑚 = 0.5, where loaning $100

is optimal.

• 𝑓 (𝑦) = 𝐴𝑦/𝐵
In this case, the objective function in problem (1) becomes

𝐴𝑥 , which means that the investor’s choice of loan amount

is irrelevant to her utility. In particular, the investor may

choose 𝑦 = 0, which does not use the Flash Loan. The FP

earns nothing either.

The two extreme cases discussed correspond to ℎ(𝑦) = (𝐴 − 𝐵)𝑦
and ℎ(𝑦) = 0, which represent the trivial upper bound and lower

bound respectively for ℎ(𝑦).
Suppose that the fee function 𝑓 (·) is given, which means that

the corresponding curve ℎ(·) is given. Now, based on (1) and (3),

the problem of the investor can be expressed as follows:

maxℎ(𝑦) (4)

𝑠 .𝑡 . ℎ(𝑦) ≥ 𝑈𝑀𝐿𝐷 (𝑥) −𝐴𝑥

ℎ(𝑦) ≥ −𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦
Suppose 𝑦∗ is the optimal solution for the above problem, the ob-

jective of the FP is to maximize the following based on (2) and

(3):

𝐵 · 𝑅𝐸𝑉 (𝑥) = −ℎ(𝑦∗) + (𝐴 − 𝐵)𝑦∗

We first analyze the solution of problem 4. When taking 𝑥 as con-

stant and 𝑦,ℎ(𝑦) as two variables. We create a coordinate system

with 𝑦,ℎ(𝑦) as coordinates. It is a linear programming problem at
the first step, where we ignore the constraint that the point (𝑦,ℎ(𝑦))
must lie on the given curve ℎ(·).

The optimization problem’s solution is depicted in Figure 1, and

it can be broken down into the following steps:

• The feasible area of problem (4) is the shadow area enclosed

by the horizontal line ℎ(𝑦) = 𝑈𝑀𝐿𝐷 (𝑥) − 𝐴𝑥 and the line

ℎ(𝑦) = −𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦.
• Then, given the feasible area, which point will the investor

choose? Note that the point must also land on the curve ℎ(·).
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O

𝑦

ℎ (𝑦)

𝑈𝑀𝐿𝐷 (𝑥 ) −𝐴𝑥

−𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦

(0, −𝐵𝑚𝑥 )

𝑃 (𝑦∗,ℎ (𝑦∗ ) )

−ℎ (𝑦) + (𝐴 − 𝐵)𝑦

Figure 1: Optimization Problem for ℎ(𝑦).

If the curveℎ(·) intersects with the shadow area, the solution

of problem (4) is the intersection point with the maximum

ordinate, among all intersection points.

• Base on the investor’s strategy, we can further analyze the

optimal ℎ(·) which the FP will choose. Since the objective is

𝐵 · 𝑅𝐸𝑉 (𝑥) − ℎ(𝑦∗) + (𝐴 − 𝐵)𝑦∗ (𝑦∗ is the investor’s choice),
which is inversely proportional to the height of the red

line, the line passes through the point (𝑦∗, ℎ(𝑦∗)) with slope

𝐴 − 𝐵. So, it is the FP’s preference to let the red line as low

as possible.

Note that the slope of the red line is less than the slope of the line

ℎ(𝑦) = −𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦. The point 𝑃 , which is the intersection

of the horizontal line ℎ(𝑦) = 𝑈𝑀𝐿𝐷 (𝑥) − 𝐴𝑥 and the line ℎ(𝑦) =
−𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦, plays a crucial role in maximizing 𝑅𝐸𝑉 (𝑥). It
is not hard to see that the red line that passes through the point 𝑃

gives the minimum height among all the points in the shadow area.

If the curve ℎ(·) intersects the shadow area only at point 𝑃 , then

𝑅𝐸𝑉 (𝑥) is maximized. Otherwise, it is the investor’s preference to

choose a point in the shadow area higher than 𝑃 , which leads a

higher height of the red line and makes 𝑅𝐸𝑉 (𝑥) sub-optimal. Thus,

we have the following lemma:

Lemma 5.1. Given 𝑥 , if the curve ℎ(·) intersects the area enclosed
by the horizontal line ℎ(𝑦) = 𝑈𝑀𝐿𝐷 (𝑥) − 𝐴𝑥 and the line ℎ(𝑦) =

−𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦 only at their intersection, then the FP’s revenue
is maximized at the intersection.

While constructing a curve that satisfies Lemma 5.1 is simple, our

aim is to find a global solution.We can observe that as 𝑥 changes, the

locus of point 𝑃 gives a curve. It is straight forward to consider the

feasibility and optimality of taking this curve as ℎ(·). Remarkably,

this is a viable option.

As described in Theorem 4.1, this curve is the revenue optimal

(RO) curve. Thismeans that for a given value of𝑥 , the corresponding

intersection point (𝑦,ℎ(𝑦)) described in Lemma 5.1 is obtained by

plugging 𝑥 into the RO curve equation. The calculation process of

the RO curve is omitted here.

In order to show the feasibility of the RO curve, we need to prove

that 𝑦 is an increasing function of 𝑥 .

Lemma 5.2. The function

𝑦 =
𝑚𝑥

1 −𝑚
− 𝛼𝑘

𝐴 − 𝐵𝑚
− 𝛼

(1 −𝑚) (𝐴 − 𝐵𝑚)

is increasing with 𝑥 .

Proof.

𝑑𝑦

𝑑𝑥
=

𝑚

1 −𝑚
− 𝛼

𝐴 − 𝐵𝑚
· 𝑑𝑘
𝑑𝑥

Also note that

𝑑𝑘/𝑑𝑥 = − 1

𝑥 ln𝑚
,

we have

𝑑𝑦

𝑑𝑥
> 0 ⇔ 𝑥 > − 𝛼 (1 −𝑚)

𝑚(𝐴 − 𝐵𝑚) ln𝑚 .

It is trivial to show that 𝑦 is increasing with 𝑥 based on the assump-

tion that 𝑥 is greater than any constant. □

We then show that the RO curve is increasing. Firstly, we can

show that the function 𝑈𝑀𝐿𝐷 (𝑥) −𝐴𝑥 is increasing with 𝑥 when

𝑥 is large. This is because the deviation of this function from 𝑥 is

given by (𝐴 −𝐵)𝑚/(1−𝑚) + 1/(𝑥 ln𝑚), which is positive for large

𝑥 . 1

Combining with Lemma 5.2, it is straightforward to see that the

RO curve is increasing. As 𝑥 increases, the line ℎ(𝑦) = −𝐵𝑚𝑥 + (𝐴−
𝐵𝑚)𝑦 shifts to the right, and the line ℎ(𝑦) = 𝑈𝑀𝐿𝐷 (𝑥) −𝐴𝑥 moves

up. Thus the ordinate of point 𝑃 increases.

We then demonstrate that for any 𝑥 , the RO curve intersects

the shadow area in Figure 1 only at one point. We already know

of the intersection point 𝑃 , but in order to prove that there is no

other intersection, we prove that the derivative of any point on

the RO curve is less than 𝐴 − 𝐵𝑚, which is the slope of the line

ℎ(𝑦) = −𝐵𝑚𝑥 + (𝐴 − 𝐵𝑚)𝑦. Therefore, the RO curve always grows

slower than the line, and they will never intersect.

We can prove the following lemma which is stronger than what

is required:

Lemma 5.3. The deviation of the revenue optimal curve is less than
𝐴 − 𝐵 at any point.

Proof. We have

𝑑𝑦

𝑑𝑥
=

𝑚

1 −𝑚
− 𝛼

𝐴 − 𝐵𝑚
· 𝑑𝑘
𝑑𝑥

,

𝑑ℎ

𝑑𝑥
=

(𝐴 − 𝐵)𝑚
1 −𝑚

− 𝛼 · 𝑑𝑘
𝑑𝑥

,

and
𝑑ℎ
𝑑𝑦

= 𝑑ℎ
𝑑𝑥

/𝑑𝑦
𝑑𝑥

.

To prove it is less than 𝐴 − 𝐵:

𝑑ℎ

𝑑𝑦
< 𝐴 − 𝐵 ⇔ −𝛼 (𝐴 − 𝐵)

𝐴 − 𝐵𝑚
· 𝑑𝑘
𝑑𝑥

> −𝛼 · 𝑑𝑘
𝑑𝑥

It obvious holds since
𝑑𝑘
𝑑𝑥

> 0 and 𝑚 < 1. Thus the lemma is

proved. □

The revenue optimal curve, described in Figure 2, has the line

ℎ(𝑦) = (𝐴 − 𝐵)𝑦 as its asymptote.

Proof of Theorem 4.1. Based on Lemma 5.2, we know that the

revenue optimal curve is a feasible and increasing function. More-

over, by Lemma 5.3, we know that for all 𝑥 , it satisfies the condition

of Lemma 5.1. Thus, according to Lemma 5.1, the revenue optimal

curve is globally optimal. □

1
The RO curve may potentially be decreasing when 𝑥 is small, but this does not

impact any of the results in this paper, given the assumption about the range of 𝑥 .
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O

𝑦

ℎ (𝑦)

RO curve

ℎ (𝑦) = (𝐴 − 𝐵)𝑦

Figure 2: Revenue Optimal Curve.

5.1 Incentive Compatibility
Next, we demonstrate that the revenue optimal curve is incentive

compatible by examining possible deviations from investors and

proving that they cannot increase utility.

Given that the Sybil attack [17, 39, 43] is the most prevalent and

distinctive form of attack in blockchain mechanisms, the ability

to resist such an attack stands as the paramount attribute of on-

chain mechanisms. Additionally, the four deviation scenarios we

consider encompass the majority of conceivable attacks, including

various strategy combinations, and showcase a broad anti-attack

effectiveness in practical implementation. Finally, while other po-

tential attacks do exist, they can typically be categorized as one

of these four attack types. Due to space constraints, providing a

detailed description of each is impractical.

(Deviation 1) Instead of loaning 𝑦 from FP, an investor loans

separate amounts of 𝑦1 and 𝑦2 (implying multiple identities) such

that 𝑦1 + 𝑦2 = 𝑦, with the expectation of a lower total fee.

In order for the optimal fee function to be resistant to Sybil

attacks, it must satisfy the condition 𝑓 (𝑦1 + 𝑦2) < 𝑓 (𝑦1) + 𝑓 (𝑦2).
This is equivalent to the condition that the revenue optimal curve,

ℎ(𝑦1 + 𝑦2) > ℎ(𝑦1) + ℎ(𝑦2). We provide the following lemma:

Lemma 5.4. For any 𝑦1, 𝑦2 > 0, the revenue optimal curve ℎ(·)
satisfies ℎ(𝑦1 + 𝑦2) > ℎ(𝑦1) + ℎ(𝑦2).

Proof. Define 𝑦3 = 𝑦1 + 𝑦2. Using the parametric function in

Theorem 4.1, let 𝑥𝑖 , 𝑖 = 1, 2, 3 be the parameters w.r.t. 𝑦𝑖 , so

𝑦𝑖 =
𝑚𝑥𝑖

1 −𝑚
− 𝛼𝑘𝑖

𝐴 − 𝐵𝑚
− 𝛼

(1 −𝑚) (𝐴 − 𝐵𝑚)

ℎ𝑖 =
(𝐴 − 𝐵)𝑚𝑥𝑖

1 −𝑚
− 𝛼 (𝑘𝑖 +

1

1 −𝑚
), 𝑖 = 1, 2, 3,

where 𝑘𝑖 satisfies 𝛼 = (𝐴 − 𝐵)𝑚𝑘𝑖+1𝑥𝑖 .
𝑦3 = 𝑦1 + 𝑦2 gives
𝑚(𝑥1 + 𝑥2 − 𝑥3)

1 −𝑚
− 𝛼 (𝑘1 + 𝑘2 − 𝑘3)

𝐴 − 𝐵𝑚
− 𝛼

(1 −𝑚) (𝐴 − 𝐵𝑚) = 0,

and ℎ(𝑦1 + 𝑦2) > ℎ(𝑦1) + ℎ(𝑦2) is equivalent to
(𝐴 − 𝐵)𝑚(𝑥1 + 𝑥2 − 𝑥3)

1 −𝑚
− 𝛼 (𝑘1 + 𝑘2 − 𝑘3) −

𝛼

1 −𝑚
< 0

By combining the above two formulas and canceling terms of 𝑘𝑖 ,

we only need to prove

( (𝐴 − 𝐵)𝑚
1 −𝑚

− (𝐴 − 𝐵𝑚)𝑚
1 −𝑚

) (𝑥1 + 𝑥2 − 𝑥3) < 0,

which is equivalent to prove 𝑥1 + 𝑥2 > 𝑥3.

We have shown that the function 𝑦 (𝑥) is monotonically increas-

ing, so

𝑥1 + 𝑥2 > 𝑥3 ⇔ 𝑦 (𝑥1 + 𝑥2) > 𝑦 (𝑥3) ⇔ 𝑦 (𝑥1 + 𝑥2) > 𝑦 (𝑥1) +𝑦 (𝑥2),
which is equivalent to prove

𝑘4 − 𝑘1 − 𝑘2 <
1

1 −𝑚
,

where 𝑘4 satisfies 𝛼 = (𝐴 − 𝐵)𝑚𝑘4+1 (𝑥1 + 𝑥2). The relation of 𝑘𝑖
gives

( 1
𝑚
)𝑘1 + ( 1

𝑚
)𝑘2 = ( 1

𝑚
)𝑘4 . (5)

Without loss of generality, we can assume that 𝑘1 < 𝑘2 < 𝑘4. Next,

we can fix 𝑘1 and determine the value of 𝑘4 − 𝑘2 that maximizes it.

Equation (5) gives

( 1
𝑚
)𝑘2 (( 1

𝑚
)𝑘4−𝑘2 − 1) = ( 1

𝑚
)𝑘1 .

It can be shown that 𝑘4−𝑘2 is a decreasing function of 𝑘2. Therefore,
𝑘4 − 𝑘2 is maximized when 𝑘2 = 𝑘1. We only need to prove this

particular case.

(5) now becomes 2( 1

𝑚 )𝑘1 = ( 1

𝑚 )𝑘4 , and what we need to prove

is 𝑘4 − 2𝑘1 < 1

1−𝑚
After taking the logarithm, the condition becomes log 1

𝑚
2 +𝑘1 =

𝑘4. Cancelling 𝑘4, we need to prove

𝑘1 > log 1

𝑚
2 − 1

1 −𝑚

Actually, it can be shown that the right side is negative, as demon-

strated in the following lemma. Thus, the lemma is proven. □

Lemma 5.5. For any 0 < 𝑚 < 1, log 1

𝑚
2 − 1

1−𝑚 < 0

Proof. Let 𝑡 = 1

𝑚 > 1, the inequality becomes

log𝑡 2 <
𝑡

𝑡 − 1

.

Since 𝑡 > 1, it is equivalent to

2 < 𝑡
𝑡

𝑡−1 .

If 𝑡 ≥ 2, it obviously holds since
𝑡

𝑡−1 > 1.

If 𝑡 < 2, then

𝑡
𝑡

𝑡−1 = (1 + 𝑡 − 1)
1

𝑡−1 · 𝑡 > (1 + 𝑡 − 1)
1

𝑡−1 > 2

The last inequality follows from the fact that the function (1 + 𝑥)
1

𝑥

is decreasing. Hence, the lemma is proven. □

The lemma we just proved implies that our mechanism is resis-

tant against another type of Sybil attack.

(Deviation 2) The investor divides her initial asset 𝑥 into two

parts, 𝑥1 and 𝑥2, and runs FLD separately on each part.

The proof is straightforward. Let 𝑦1 and 𝑦2 be the loan amounts

corresponding to 𝑥1 and 𝑥2, respectively. The investor pays a total

fee of 𝑓 (𝑦1) + 𝑓 (𝑦2) for these loans. We can compare this to the

intermediate operation, in which the investor loans 𝑦1 +𝑦2 together
and pays 𝑓 (𝑦1 + 𝑦2). This is feasible since ℎ(𝑦1 + 𝑦2) ≥ ℎ(𝑦1) +
ℎ(𝑦2) ≥ −𝐵𝑚(𝑥1 + 𝑥2) + (𝐴 − 𝐵𝑚) (𝑦1 + 𝑦2) and increases utility

since 𝑓 (𝑦1 + 𝑦2) < 𝑓 (𝑦1) + 𝑓 (𝑦2) and the deposited amount is the
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same. From Lemma 5.1, we know that the intermediate operation

is suboptimal compared to FLD with initial 𝑥1 + 𝑥2.

The following deviation is immediately implied by this.

(Deviation 3) The investor splits her initial asset 𝑥 into two

parts, 𝑥1 and 𝑥2. She then runs FLD with 𝑥1 and MLD with 𝑥2.

As the utility from the MLD part is no more than the utility from

the FLD part, the proof can be reduced to Deviation 2.

(Deviation 4) The investor runs MLD for one (which implies

several) step and then runs FLD for borrowed ETH.

The investor exchanges all of their ETH to stETH, pledges it

into AAVE, and borrows 𝑚𝑥 ETH. Then, she uses the borrowed

ETH as her initial asset and runs FLD. Therefore, the total utility

is 𝐴𝑥 − 𝐵𝑚𝑥 + 𝑈𝐹𝐿𝐷 (𝑚𝑥) + 𝛼 . Since 𝑈𝐹𝐿𝐷 (𝑥) = 𝑈𝑀𝐿𝐷 (𝑥), the
total utility can also be expressed as 𝐴𝑥 − 𝐵𝑚𝑥 +𝑈𝑀𝐿𝐷 (𝑚𝑥) + 𝛼 =

𝑈𝑀𝐿𝐷 (𝑥) = 𝑈𝐹𝐿𝐷 (𝑥), which is no better than FLD.

5.2 Linear Fee Function
In practice, many FPs prefer to use a linear fee function (with zero

bias) due to its simplicity for implementation. In this subsection,

we will investigate how to select an optimal linear fee function,

which can be represented as 𝑓 (𝑦) = 𝑡𝑦, where 𝑡 is a parameter.

From Lemma 5.1, we know that for a specific 𝑥 , a necessary

condition for optimality is that ℎ(𝑦) passes point 𝑃 , which implies

that the solution in Theorem 4.1 is unique. Based on this, we can

state the following theorem:

Theorem 5.6. There is no linear fee function that is globally opti-
mal.

In order to be second-best, we aim to find a linear fee function

that satisfies the constraints for some 𝑥 , where investors will choose

FLD over MLD and the FP can generate positive revenue. We note

that the range of 𝑦 has a maximum value of 𝑦𝑚𝑎𝑥 , which corre-

sponds to the total amount of ETH that the FP owns. We choose

the linear function ℎ(𝑦) to be the line that passes through (0, 0)
to (𝑦𝑚𝑎𝑥 , ℎ

∗ (𝑦𝑚𝑎𝑥 )), where ℎ∗ is the revenue optimal curve. We

then prove that this linear function is FLD-feasible for all 𝑦 < 𝑦𝑚𝑎𝑥 ,

meaning that the linear function intersects the shadow area in

Figure 1, but the intersection points may not be unique. To prove

this, we need to show that the revenue optimal curve is convex, as

illustrated in Figure 3.

O

𝑦

ℎ (𝑦)

RO curve

Linearℎ ( ·)
𝑃𝐹𝐿𝐷

𝑃∗ (𝑦∗,ℎ (𝑦∗ ) )

Figure 3: Linear Fee Function. 𝑃𝐹𝐿𝐷 denotes the intersection
point on the revenue-optimal curve ℎ(𝑦) determined by 𝑥 ,
which corresponds to point 𝑃 in Figure 1. 𝑃∗ (𝑦∗, ℎ(𝑦∗)) denotes
the optimal FLD-feasible choice of the investor.

Lemma 5.7. The revenue optimal curve is convex.

Proof. Recall that in the proof of Lemma 5.3:

𝑑𝑦

𝑑𝑥
=

𝑚

1 −𝑚
− 𝛼

𝐴 − 𝐵𝑚
· 𝑑𝑘
𝑑𝑥

,

𝑑ℎ

𝑑𝑥
=

(𝐴 − 𝐵)𝑚
1 −𝑚

− 𝛼 · 𝑑𝑘
𝑑𝑥

.

Note that
𝑑𝑘
𝑑𝑥

= − 1

𝑥 ln𝑚
, so

𝑑 (𝑑𝑘/𝑑𝑥 )
𝑑𝑥

< 0.

We also have

𝑑 (𝑑ℎ/𝑑𝑦)
𝑑 (𝑑𝑘/𝑑𝑥) < 0 ⇔ (𝐴 − 𝐵)𝑚𝛼

(1 −𝑚) (𝐴 − 𝐵𝑚) <
𝛼𝑚

1 −𝑚

holds, so
𝑑 (𝑑ℎ/𝑑𝑦)

𝑑𝑥
> 0, which also means

𝑑 (𝑑ℎ/𝑑𝑦)
𝑑𝑦

> 0 since

𝑑𝑦

𝑑𝑥
> 0.

The lemma is proved. □

Choosing a linear fee function entails a trade-off for the FP: a

lower slope results in higher average revenue but also imposes a

smaller threshold 𝑦𝑚𝑎𝑥 , which is the maximum value supported by

the fee function, beyond which the revenue is zero.

6 EXPERIMENTS
6.1 Statistics of FLD Market
We analyzed Ethereum transactions related to wETH (equivalent to

ETH) Flash Loan in 2022 from March 1st (block 14,297,758), when

AAVE integrated stETH as collateral, to July 1st (block 15,053,226),

for Balancer Vault Contract and AAVE Lending Pool V2 Contract.

Figure 4 presents a comparison between the total number of Flash

Loan transactions and FLD-related transactions, as well as their

total volume.

the-number-of-transaction flashloan-volume-in-thousand-ETH

527

1,073

5,651

3,863

FLD Total

Figure 4: Comparison of FLD and Total in Flash Loan Transactions
and Borrowing Volume in ETH.

We excluded Flash Loan transactions from other FPs such as

Uniswap and Dodo since they were extremely rare. We also ex-

cluded meaningless Flash Loan transactions that solely involved

wETH. Our findings indicate that FLD-related transactions ac-

counted for over 9.3% of total transactions, highlighting FLD’s

significant role in Flash Loan applications.

Out of the total FLD transactions, only 68 of them use AAVE

Flash Loan, with a maximum volume of only 698.13 ETH. This is
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mainly because the fee strategy of FLD is dominated by Balancer,

which charges zero fees. Furthermore, we will demonstrate that

even without the presence of Balancer, the fee strategy of FLD is

still suboptimal for rational users.

𝐴=1.2

𝐴=1.5

𝐴=2.0

𝐴=5.0

𝐴=10

(a)𝐴=1.2, 1.5, 2, 5, 10 and 𝛼=0.0557

𝛼=0.2227, gas price=200Gwei

𝛼=0.1114, gas price=100Gwei

𝛼=0.0557, gas price=50Gwei

𝛼=0.0223, gas price=20Gwei

𝛼=0.0111, gas price=10Gwei

(b) 𝛼=0.0111, 0.0223, 0.0557, 0.1114,
0.2227 and𝐴=1.2

Figure 5: 𝑓 ∗ (𝑦) −𝑦 with different values of𝐴 and 𝛼 , and fixed values
of 𝐵=1,𝑚=0.7.

6.2 Fee Function for RO Curve
In this experiment, we set 𝐵 = 1 and 𝑚 = 0.7. We denote the

fee function corresponding to the RO curve as 𝑓 ∗ (𝑦). Figure 5(a)
shows the revenue curves for RO with different values of 𝐴, while

Figure 5(b) shows the revenue curves for different values of 𝛼 .

6.3 Comparison Between RO and AAVE Curve
Figure 6 illustrates the fee function for RO and AAVE, with 𝐴 = 1.2.

In Figure 6, the fee function 𝑓 (𝑦) = 𝑓 ∗ (𝑦) − 𝑦 intersects with

AAVE fee function 𝑓 (𝑦) = 1.0009𝑦 at 𝑦 = 872.69. This means that a

rational user would choose theMLD strategy instead of AAVEwhen

𝑦 > 872.69, which matches the statistics that the maximum volume

of FLD transactions using AAVE is only 698.13 ETH. However, for

cases where 𝑦 < 872.69, it is still sub-optimal compared to the RO

curve.

𝑓 (𝑦) = 1.0009𝑦

𝑓 (𝑦) = 𝑓 ∗ (𝑦) − 𝑦

𝑦=872.69

Figure 6: 𝑓 (𝑦) = 𝑓 ∗ (𝑦)−𝑦 interacts with the line 𝑓 (𝑦) = 1.0009𝑦

at 𝑦=872.69.

It should be noted that as the parameter 𝐴 increases and 𝛼 de-

creases, the maximum supported value, represented by the inter-

section point at 𝑦 = 872.69, decreases. This implies that it becomes

increasingly difficult to attract high-value users to use AAVE Flash

Loan. Additionally, with the current average gas price at only 10

Gwei after ETH2.0 merge [10, 34]).

6.4 Advice about Choosing Linear Fee Functions
Referring to the information presented in Figure 6, an FP must

make a trade-off between a higher slope of the linear fee function

(i.e., a higher fee ratio) and the maximum supported value. A higher

slope leads to a lower maximum supported value, which means that

the FP becomes less attractive to high-value investors and earns

less revenue from them. For instance, if the slope is 1.0009, the

maximum supported value is 872.69 ETH. To illustrate this trade-

off, Figure 7(a) plots the curve of the maximum supported value

against the slope minus 1, which represents the Flash Loan fee ratio.

𝑃 (872.69, 0.0009)

(a) Maximum supported value for the
Flash Loan fee ratio

𝑃 (2626.24, 37.28)

(b) Flash Loan project profit

Figure 7: Flash Loan fee ratio and Flash Loan project profit.

We collected data on all 527 FLD transactions and their distri-

bution, with the maximum volume being 35,467.82 ETH. Based on

these statistics, we can plot the curve of the maximum supported

value against the FP’s revenue. For instance, if the FP selects the

maximum supported value as 872.69, then the corresponding Flash

Loan fee is 0.0009, and the FP earns 0.09% of the transaction volume

below 872.69 ETH. The result is presented in Figure 7(b), indicating

that it is optimal for the FP to set the maximum supported value to

be 2626.24 ETH, where the corresponding Flash Loan fee is 0.034%,

and the FP can earn a revenue of 37.3 ETH.

7 CONCLUSION
We analyze two decentralized methods for achieving leverage: Mul-

tiple Leverage Deposit (MLD) and Full Leverage Deposit (FLD). By

carefully examining the trade-off between gas fees incurred byMLD

and the fees charged by FLD, we determine the optimal strategy for

self-interested investors and the optimal Flash Loan fee function

for the Flash Loan owner with respect to these investors. We prove

that there exists a unique optimal fee function that is not linear

but is incentive-compatible against Sybil attacks and other possible

deviations. Experimental results show that our optimal fee function

outperforms the commonly used linear fee function.
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