
Hyper Strategy Logic
Raven Beutner

CISPA Helmholtz Center for

Information Security

Germany

Bernd Finkbeiner

CISPA Helmholtz Center for

Information Security

Germany

ABSTRACT
Strategy logic (SL) is a powerful temporal logic that enables strategic

reasoning in multi-agent systems. SL supports explicit (first-order)

quantification over strategies and provides a logical framework to

express many important properties such as Nash equilibria, domi-

nant strategies, etc. While in SL the same strategy can be used in

multiple strategy profiles, each such profile is evaluated w.r.t. a path-

property, i.e., a property that considers the single path resulting

from a particular strategic interaction. In this paper, we present Hy-

per Strategy Logic (HyperSL), a strategy logic where the outcome

of multiple strategy profiles can be compared w.r.t. a hyperproperty,
i.e., a property that relates multiple paths. We show that HyperSL

can capture important properties that cannot be expressed in SL,

including non-interference, quantitative Nash equilibria, optimal

adversarial planning, and reasoning under imperfect information.

On the algorithmic side, we identify an expressive fragment of Hy-

perSL with decidable model checking and present a model-checking

algorithm. We contribute a prototype implementation of our algo-

rithm and report on encouraging experimental results.

KEYWORDS
Strategy Logic, Hyperproperties, Model Checking, Imperfect Infor-

mation, Nash Equilibrium, Information-Flow Cotrol

ACM Reference Format:
Raven Beutner and Bernd Finkbeiner. 2024. Hyper Strategy Logic. In Proc.
of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,

9 pages.

1 INTRODUCTION
Two important developments in the area of reactive systems con-

cern the study of strategic properties in multi-agent systems (MAS)

and the study of hyperproperties. Strategic properties analyze the
ability of agents to achieve a goal against (or in cooperation) with

other agents. Logics such as alternating-time temporal logic (ATL
∗
)

[2] and strategy logic (SL) [25, 45] reason about the temporal inter-

action of such agents and allow for rigorous correctness guarantees

using techniques such as model-checking. Hyperproperties [28] are
properties that relate multiple executions within a system. Hyper-

properties occur in many situations in computer science where

traditional path properties (that refer to individual system execu-

tion) are not sufficient. Typical examples include (1) optimality, e.g.,

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

one path reaching a goal faster than all other paths; (2) information-
flow policies, e.g., requiring that any two paths with identical low-

security input should produce the same low-security output [42];

and (3) robustness, i.e., stating that similar inputs should lead to

similar outputs [26].

Such hyperproperties are also of vital importance in MASs. For

example, we might ask if some agent has a strategy to achieve a

goal without leaking information (an information-flow property)

or can achieve a goal faster than some other agent (an optimality

requirement). Yet existing logics for strategic reasoning (such as

variants of SL [25, 45]) cannot express such hyper-requirements

(we discuss related approaches in Section 2). We illustrate this on

the example of Nash equilibria:

Assumewe are given aMASwith agents {1, . . . , 𝑛} and LTL prop-
erties𝜓1, . . . ,𝜓𝑛 that describe the objectives of the agents. Agent 𝑖

wants to make sure that F𝜓𝑖 holds, i.e., formula𝜓𝑖 eventually holds.

We want to check whether the system admits a Nash equilibrium,

i.e., there exists a strategy for each agent such that no agent has an

incentive to deviate in order to fulfill her objective [48]. In SL, we

can express the existence of a Nash equilibrium as follows:

∃𝑥1, . . . , 𝑥𝑛 .∀𝑦.
𝑛∧
𝑖=1

(
(F𝜓𝑖) (®𝑥 [𝑖 ↦→ 𝑦]) → (F𝜓𝑖) (®𝑥)

)
where we abbreviate the strategy profiles ®𝑥 = (𝑥1, . . . , 𝑥𝑛) and
®𝑥 [𝑖 ↦→ 𝑦] = (𝑥1, . . . , 𝑥𝑖−1, 𝑦, 𝑥𝑖+1, . . . , 𝑥𝑛). In the variant SL we

consider here (similar to the SL by Chatterjee et al. [25]), atomic

formulas have the form𝜓 (®𝑥) where𝜓 is an LTL formula, and ®𝑥 is

a strategy profile that assigns a strategy to each agent. Formula

𝜓 (®𝑥) holds if the unique path that results from the interaction of

the strategies in ®𝑥 satisfies𝜓 . The above formula thus states that if

some agent 𝑖 can achieve F𝜓𝑖 by playing some deviating strategy 𝑦

instead of 𝑥𝑖 , i.e., the unique play that results from strategy profile

®𝑥 [𝑖 ↦→ 𝑦] satisfies F𝜓𝑖 , then 𝑖 could stick with strategy 𝑥𝑖 , i.e., F𝜓𝑖
also holds under strategy profile ®𝑥 .

In the formula, we effectively compare two plays under strat-

egy profiles ®𝑥 and ®𝑥 [𝑖 ↦→ 𝑦]. However, SL limits the comparison

between multiple interactions to a boolean combination of LTL

properties on their outcomes (paths). In game-theoretic terms, the

above formula assumes that the reward for each agent is binary;

the reward of agent 𝑖 is maximal if F𝜓𝑖 holds and minimal if it does

not. This fails to capture quantitative reward, for example, in a set-

ting where agent 𝑖 receives a higher reward (and thus deviates) by

fulfilling𝜓𝑖 sooner. To express the existence of such a quantitative

equilibrium, a boolean formula over individual temporal properties

on strategy profiles ®𝑥 and ®𝑥 [𝑖 ↦→ 𝑦] is not sufficient. We need a

more powerful mechanism that can compare the temporal behavior

of multiple paths: a hyperproperty.

HyperSL. In this paper, we propose HyperSL – a new temporal

logic that combines first-order strategic reasoning (as in SL) with

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

189

https://orcid.org/0000-0001-6234-5651
https://orcid.org/0000-0002-4280-8441
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

the ability to compare multiple paths w.r.t. a hyperproperty. Syn-
tactically, we use path variables to refer to multiple paths at the

same time (similar to existing hyperlogics such as HyperCTL
∗
[27]

and HyperATL
∗
[14, 17]). In HyperSL, atomic formulas have the

form𝜓 [𝜋1 : ®𝑥1, . . . , 𝜋𝑚 : ®𝑥𝑚] where 𝜋1, . . . , 𝜋𝑚 are path variables,

®𝑥1, . . . , ®𝑥𝑚 are strategy profiles (assigning a strategy to each agent),

and𝜓 is an LTL formula where atomic propositions are indexed by

path variables from 𝜋1, . . . , 𝜋𝑚 . The formula states that the plays re-

sulting from strategy profiles ®𝑥1, . . . , ®𝑥𝑚 , when bound to 𝜋1, . . . , 𝜋𝑚 ,

(together) satisfy the hyperproperty expressed by𝜓 .

Coming back to the Nash equilibrium example from before, we

can use HyperSL to express the existence of a Nash equilibrium in

a quantitative reward setting as follows:

∃𝑥1, . . . , 𝑥𝑛 .∀𝑦.
𝑛∧
𝑖=1

((
¬𝜓𝑖𝜋1

W𝜓𝑖𝜋2

) [𝜋1 : ®𝑥 [𝑖 ↦→ 𝑦]
𝜋2 : ®𝑥

])
Here, we write 𝜓𝑖𝜋1

(resp. 𝜓𝑖𝜋2

) to state that 𝜓𝑖 holds on path

𝜋1 (resp. 𝜋2). In the formula, we again quantify over a deviating

strategy 𝑦, but can compare the two paths resulting from strat-

egy profiles ®𝑥 [𝑖 ↦→ 𝑦] and ®𝑥 within the same temporal formula.

This formula states that path 𝜋1 (constructed using strategy profile

®𝑥 [𝑖 ↦→ 𝑦]) does not satisfy 𝜓𝑖 strictly before 𝜓𝑖 holds on path 𝜋2
(constructed using strategy profile ®𝑥).1 If the above formula holds, ®𝑥
thus constitutes a strategy profile such that no agent could achieve

its goal strictly sooner (if at all).

Note that we can express any Nash equilibrium as long as “agent

𝑖 (strictly) prefers the outcome on path 𝜋1 over that on path 𝜋2” is

expressible using an LTL formula over 𝜋1, 𝜋2. Likewise, HyperSL

can, e.g., express that some strategy (1) reaches a goal without

leaking information, (2) is at least as fast as any other strategy, or

(3) is robust w.r.t. the behavior of other agents.

Expressiveness of HyperSL. After we introduce HyperSL (in Sec-

tion 4), we study its relation to existing logics (in Section 5). We

show that HyperSL subsumes many non-hyper strategy logics as

well as hyperlogics such as HyperCTL
∗
[27], HyperATL

∗
[14, 17],

and HyperATL
∗
𝑆
[19] (see Section 2). Moreover, HyperSL also admits

reasoning under imperfect information despite having a seman-

tics defined under complete information. The key observation here

is that “acting under imperfect information” is a hyperproperty: a
strategy acts under imperfect information if, on any pair of paths
with the same observation, the strategy chooses the same action.

Formally, we show that HyperSL subsumes SLii [12, 13], a strategy

logic centered around imperfect information.

Model Checking. HyperSL’s ability to compare multiple strategic

interactions renders model-checking (MC) undecidable. In Section 6,

we identify a fragment of our logic – called HyperSL[SPE] – for

which MC is possible. Intuitively, in HyperSL[SPE], the quantifier

prefix should be such that we can group it into individual “blocks”

where the strategy variables from each block are used on indepen-

dent path variables. HyperSL[SPE] subsumes SL[1G] (the single-

goal fragment of SL) [46], HyperLTL [27], HyperATL
∗
[14, 17],

and HyperATL
∗
𝑆
[19], but also captures properties that cannot be

expressed in existing logics. We argue that HyperSL[SPE] is the

1
We make use of LTL’s weak until operator W. Formula 𝜓1 W𝜓2 holds if 𝜓1 holds

until𝜓2 holds eventually or 𝜓1 holds at all times.

largest fragment with a decidable model-checking problem that is

defined purely in terms of the quantification structure.

Implementation and Experiments. We implement our MC algo-

rithm for HyperSL[SPE] in the HyMASMC tool [19] and experiment

with various MAS models (in Section 7). Our experiments show

that HyMASMC performs well on many non-hyper strategy logic spec-
ifications and can verify complex hyperproperties that cannot be

expressed in any existing logic.

2 RELATEDWORK
SL has been extended along multiple dimensions, including agent-

unbinding [37], reasoning about probabilities [4], epistemic proper-

ties [7, 10, 41], and quantitative properties [21]. We refer to [45, 49]

for a more in-depth discussion. The common thread in all the pre-

vious extensions is a focus on the temporal behavior on individual
paths. HyperSL generalizes SL and is the first to compare multi-
ple paths. Even quantitative extensions like SL[F] [21] evaluate

an LTL[F]-formula on a per-path basis. In contrast, HyperSL can

express complex relationships between paths.

Studying logics that can express strategic properties under im-
perfect information has attracted much attention and led to various

extensions of ATL
∗
[10, 11, 23, 30, 38] and SL [12, 36]. Berthon et

al. [12] showed that their logic, SLii , subsumes most existing ap-

proaches. We show that HyperSL can also reason about imperfect

information (and subsumes SLii) despite having a semantics that is

defined under full information.

Logics for expressing hyperproperties in non-agent-based sys-

tems (e.g., labeled transition systems) have been obtained by ex-

tending existing temporal or first-order logics with explicit path

quantification over path/trace variables or an equal-level pred-

icate [15, 27, 29, 34, 35]. As strategic reasoning is significantly

more powerful than pure path quantification, HyperSL subsumes

HyperCTL
∗
(when interpreting transition systems as single-agent

MASs). HyperATL
∗
[14, 17] andHyperATL

∗
𝑆
[19] extend alternating-

time temporal logic (ATL
∗
) [2] with path variables and strategy-

sharing constraints, leading to a strategic hyperlogic that can ex-

press important security properties such as non-deducibility of

strategies [54] and simulation security [51]. Similar to ATL
∗
, the

strategic reasoning in HyperATL
∗
and HyperATL

∗
𝑆
is limited to

implicit reasoning about the strategic ability of coalitions of agents

and cannot explicitly reason about strategies as, e.g., needed to

express the existence of a Nash equilibrium.

Our model-checking algorithm for HyperSL[SPE] is based on an

iterative elimination of path (variables) in an automaton, similar to

existing algorithms for HyperCTL
∗
[33] and HyperATL

∗
[17, 19].

Compared to HyperATL
∗
, we need to eliminate paths by simulat-

ing an arbitrary prefix of strategy quantifiers, leading to a more

involved construction and more complex correctness proof.

3 PRELIMINARIES
We let AP be a fixed finite set of atomic propositions and fix a fixed

finite set of agents Agts = {1, . . . , 𝑛}. Given a set 𝑋 , we write 𝑋+

(resp. 𝑋𝜔
) for the set of non-empty finite (resp. infinite) sequences

over 𝑋 . For 𝑢 ∈ 𝑋𝜔
and 𝑗 ∈ N, we write 𝑥 (𝑗) for the 𝑖th element,

𝑢 [0, 𝑗] for the finite prefix up to position 𝑗 (of length 𝑗 + 1), and

𝑢 [𝑗,∞] for the infinite suffix starting at position 𝑗 .

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

190

Concurrent Game Structures. As the underlying model of MASs,

we use concurrent game structures (CGS) [2]. A CGS is a tuple

G = (𝑆, 𝑠0,A, 𝜅, 𝐿) where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is an initial

state, A is a finite set of actions, 𝜅 : 𝑆 × (Agts → A) → 𝑆 is a

transition function, and 𝐿 : 𝑆 → 2
AP

is a labeling function. The

transition function takes a state 𝑠 and an action profile ®𝑎 : Agts → A
(mapping each agent an action) and returns a unique successor state

𝜅 (𝑠, ®𝑎). We write

∏
𝑖∈Agts 𝑎𝑖 for the action profile where each agent

𝑖 is assigned action 𝑎𝑖 .

A strategy in G is a function 𝑓 : 𝑆+ → A, mapping finite

plays to actions. We denote the set of all strategies in G with

Str (G). A strategy profile
∏

𝑖∈Agts 𝑓𝑖 assigns each agent 𝑖 a strat-

egy 𝑓𝑖 ∈ Str (G). Given strategy profile

∏
𝑖∈Agts 𝑓𝑖 and state 𝑠 ∈ 𝑆 ,

we can define the unique path resulting from the interaction be-

tween the agents: We define PlayG (𝑠,
∏

𝑖∈Agts 𝑓𝑖) as the unique

path 𝑝 ∈ 𝑆𝜔 such that 𝑝 (0) = 𝑠 and for every 𝑗 ∈ N we have

𝑝 (𝑗 + 1) = 𝜅
(
𝑝 (𝑗),∏𝑖∈Agts 𝑓𝑖 (𝑝 [0, 𝑗])

)
. That is, in every step, we

construct the action profile

∏
𝑖∈Agts 𝑓𝑖 (𝑝 [0, 𝑗]) in which each agent

𝑖 plays the action determined by 𝑓𝑖 on the current prefix 𝑝 [0, 𝑗].

Alternating Automata. Our model-checking algorithm is based

on alternating automata over infinite words. These automata gener-

alize nondeterministic automata by alternating between nondeter-

ministic and universal transitions [53]. For transitions of the former

kind, we can choose some successor state; for transitions of the lat-
ter type, we need to consider all possible successor states. Formally,

an alternating parity automaton (APA) over alphabet Σ is a tuple

A = (𝑄,𝑞0, 𝛿, 𝑐) where𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is an initial

state, 𝑐 : 𝑄 → N is a color assignment, and 𝛿 : 𝑄 × Σ → B+ (𝑄)
is a transition function that maps each state-letter pair to a posi-

tive boolean formula over 𝑄 (denoted with B+ (𝑄)). For example, if

𝛿 (𝑞, 𝑙) = 𝑞1∨ (𝑞2∧𝑞3), we can – from state 𝑞 ∈ 𝑄 and upon reading

letter 𝑙 ∈ Σ – either move to state 𝑞1 or move to both 𝑞2 and 𝑞3 (i.e.,
we spawn two copies of our automaton, one starting in state 𝑞2 and

one in 𝑞3). We write L(A) ⊆ Σ𝜔 for the set of all infinite words

for which we can construct a run tree that respects the transition

formulas such that the minimal color that occurs infinitely many

times (as given by 𝑐) is even. For space reasons, we cannot give a
formal semantics of APA runs and instead refer the reader to the

full version [18]. No specific knowledge about APAs is required to

understand the high-level idea of our algorithm.

A special kind of APAs are deterministic parity automata (DPA)
in which 𝛿 is a function 𝑄 × Σ → 𝑄 assigning a unique successor

state to each state-letter pair. We can always determinize APAs:

Proposition 1 ([44, 50]). For any APA A with 𝑛 states, we can
effectively compute a DPA A′ with at most 22

O(𝑛)
states such that

L(A) = L(A′).

4 HYPER STRATEGY LOGIC
Our new logic HyperSL is centered around the idea of combining

strategic reasoning (as possible in strategy logic [25, 45]) with the

ability to express hyperproperties (as possible in logics such as

HyperCTL
∗
[27]). To accomplish this, we combine the ideas from

both disciples. On the strategy-logic-side, we use strategy variables

to quantify over strategies. On the hyper-side, we use path variables

to compare multiple paths within a temporal formula.

Let X be a set of strategy variables and V a set of path variables.
We typically use lowercase letters (𝑥,𝑦, 𝑧, 𝑥1, . . .) for strategy vari-

ables and variations of 𝜋 (𝜋, 𝜋 ′, 𝜋1, . . .) for path variables. Path and

state formulas in HyperSL are generated by the following grammar:

𝜓 := 𝑎𝜋 | 𝜑𝜋 | 𝜓 ∧𝜓 | ¬𝜓 | X𝜓 | 𝜓 U𝜓

𝜑 := ∀𝑥 .𝜑 | ∃𝑥 .𝜑 | 𝜓
[
𝜋1 : ®𝑥1, . . . , 𝜋𝑚 : ®𝑥𝑚

]
where 𝑎 ∈ AP is an atomic proposition, 𝜋, 𝜋1, . . . , 𝜋𝑚 ∈ V are path

variables, 𝑥 ∈ X is a strategy variable, and ®𝑥1, . . . , ®𝑥𝑚 : Agts → X
are strategy profiles that assign a strategy variable to each agent.

We often write𝜓 [𝜋𝑘 : ®𝑥𝑘]𝑚𝑘=1 as a shorthand for𝜓 [𝜋1 : ®𝑥1, . . . , 𝜋𝑚 :

®𝑥𝑚]. We use Q as a placeholder for either ∀ or ∃. We use the

standard Boolean connectives ∨,→,↔, and constants ⊤,⊥, as well
as the derived LTL operators eventually F𝜓 := ⊤U𝜓 and globally
G𝜓 := ¬ F¬𝜓 . For each formula 𝜓 [𝜋𝑘 : ®𝑥𝑘]𝑚𝑘=1, we assume that

all path variables that are free in𝜓 belong to {𝜋1, . . . , 𝜋𝑚}, i.e., all
used path variables are bound to some strategy profile. We further

assume that all nested state formulas are closed.

Note that our syntax does not support boolean combinations

of state formulas as is usual in SL [45]. As we can evaluate a path

formula on multiple paths, we can move boolean combinations

within the path formulas.

Example 1. Consider the SL formula ∃𝑥 . (∃𝑦.(F𝑎) (𝑥,𝑦)) ∧ (∀𝑧.
(G𝑏) (𝑧, 𝑥)), which can be expressed in HyperSL as follows:∃𝑥 . ∃𝑦.∀𝑦.
(F𝑎𝜋1

∧ G𝑏𝜋2
) [𝜋1 : (𝑥,𝑦), 𝜋2 : (𝑧, 𝑥)]. △

Semantics. We fix a game structure G = (𝑆, 𝑠0,A, 𝜅, 𝐿). A strategy
assignment is a partial mapping Δ : X ⇀ Str (G). We write {} for
the unique strategy assignment with an empty domain. In HyperSL,

a path formula𝜓 refers to propositions on multiple path variables.

We evaluate it in the context of a path assignment Π : V ⇀ 𝑆𝜔 map-

ping path variables to paths (similar to the semantics of HyperCTL
∗

[27]). Given 𝑗 ∈ N, we define Π[𝑗,∞] as the shifted assignment

defined by Π[𝑗,∞](𝜋) := Π(𝜋) [𝑗,∞]. For a path formula 𝜓 , we

then define the semantics in the context of path assignment Π:

Π |=G 𝑎𝜋 iff 𝑎 ∈ 𝐿
(
Π(𝜋) (0)

)
Π |=G 𝜑𝜋 iff Π(𝜋) (0), {} |=G 𝜑

Π |=G 𝜓1 ∧𝜓2 iff Π |=G 𝜓1 and Π |=G 𝜓2

Π |=G ¬𝜓 iff Π ̸ |=G 𝜓

Π |=G X𝜓 iff Π[1,∞] |=G 𝜓

Π |=G 𝜓1 U𝜓2 iff ∃ 𝑗 ∈ N.Π[𝑗,∞] |=G 𝜓2 and

∀0 ≤ 𝑘 < 𝑗 .Π[𝑘,∞] |=G 𝜓1

The semantics for path formulas synchronously steps through all

paths in Π and evaluate 𝑎𝜋 on the path bound to 𝜋 . State formulas

are evaluated in a state 𝑠 ∈ 𝑆 and strategy assignment Δ as follows:

𝑠,Δ |=G ∀𝑥 . 𝜑 iff ∀𝑓 ∈ Str (G) . 𝑠,Δ[𝑥 ↦→ 𝑓] |=G 𝜑

𝑠,Δ |=G ∃𝑥 . 𝜑 iff ∃𝑓 ∈ Str (G) . 𝑠,Δ[𝑥 ↦→ 𝑓] |=G 𝜑

𝑠,Δ |=G 𝜓
[
𝜋𝑘 : ®𝑥𝑘

]𝑚
𝑘=1

iff[
𝜋𝑘 ↦→PlayG

(
𝑠,

∏
𝑖∈Agts

Δ(®𝑥𝑘 (𝑖))
)]𝑚

𝑘=1
|=G 𝜓

To resolve a formula𝜓
[
𝜋𝑘 : ®𝑥𝑘

]𝑚
𝑘=1

, we construct𝑚 paths (bound

to 𝜋1, . . . , 𝜋𝑚), and evaluate𝜓 in the resulting path assignment. The

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

191

𝑘th path (bound to 𝜋𝑘) is the play where each agent 𝑖 plays strategy

Δ(®𝑥𝑘 (𝑖)), i.e., the strategy currently bound to the strategy variable

®𝑥𝑘 (𝑖). We write G |= 𝜑 if 𝑠0, {} |=G 𝜑 , i.e., the initial state satisfies

state formula 𝜑 .

5 EXPRESSIVENESS OF HYPERSL
The ability to compare multiple paths within a temporal formula

makes HyperSL a powerful formalism that subsumes many existing

logics. We only briefly mention some connections to existing logics.

More details can be found in the full version [18].

5.1 SL and HyperSL
HyperSL naturally subsumes many (non-hyper) strategy logics

[25, 45], which evaluate temporal properties on individual paths.
We consider SL formulas defined by the following grammar:

𝜓 := 𝑎 | 𝜑 | ¬𝜓 | 𝜓 ∧𝜓 | X𝜓 | 𝜓 U𝜓

𝜑 := 𝜓 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∀𝑥 . 𝜑 | ∃𝑥 . 𝜑 | (𝑖, 𝑥)𝜑
where 𝑎 ∈ AP , 𝑥 ∈ X, and 𝑖 ∈ Agts. We assume that nested state

formulas are closed. In this SL, we can quantify over strategies and

bind a strategy 𝑥 to agent 𝑖 using (𝑖, 𝑥); see the full version [18] for

the full semantics. We can show the following:

Lemma 1. For any SL formula 𝜑 there exists a HyperSL formula
𝜑 ′ such that for any CGS G, G |=SL 𝜑 iff G |= 𝜑 ′.

Proof Sketch. We use a unique path variable ¤𝜋 . During trans-

lation, we track the current strategy (variable) for each agent and

construct ¤𝜋 using the resulting strategy profile. □

Example 2. Consider the formula ∃𝑥 .∀𝑦. (1, 𝑥) (2, 𝑦) (3, 𝑦) GF𝑎.
We can express this formula in HyperSL as ∃𝑥 . ∃𝑦.

(
GF𝑎 ¤𝜋

)
[¤𝜋 :

(𝑥,𝑦,𝑦)] where (𝑥,𝑦,𝑦) denotes the strategy profile mapping agent 1
to 𝑥 , and agents 2 and 3 to 𝑦. △

5.2 HyperATL∗ and HyperSL
Compared to SL, ATL

∗
[2] offers aweaker (implicit) form of strategic

reasoning. TheATL
∗
formula⎷𝐴⌄𝜓 expresses that the agents in𝐴 ⊆

Agts have a joint strategy to ensure path formula𝜓 [2]. HyperATL
∗

[14, 17] is an extension of ATL
∗
that can express hyperproperties,

generated by the following grammar:

𝜓 := 𝑎𝜋 | ¬𝜓 | 𝜓 ∧𝜓 | X𝜓 | 𝜓 U𝜓

𝜑 := ⎷𝐴⌄𝜋. 𝜑 | J𝐴K𝜋. 𝜑 | 𝜓

where 𝑎 ∈ AP , 𝜋 ∈ V , and 𝐴 ⊆ Agts. Formula ⎷𝐴⌄𝜋. 𝜑 states

that the agents in 𝐴 have a strategy such that any path under that

strategy, when bound to path variable 𝜋 , satisfies the remaining

formula𝜑 . Likewise, J𝐴K𝜋. 𝜑 states that, nomatter what strategy the

agents in 𝐴 play, some compatible path, when bound to 𝜋 , satisfies

𝜑 . See the full version [18] for the full HyperATL
∗
semantics. We

can show the following:

Lemma 2. For any HyperATL∗ formula 𝜑 there exists a HyperSL
formula 𝜑 ′ such that for any CGS G, G |=HyperATL∗ 𝜑 iff G |= 𝜑 ′.

Proof Sketch. Similar to the translation of ATL
∗
to SL [25, 45],

we translate each HyperATL
∗
quantifier ⎷𝐴⌄𝜋 (resp. J𝐴K𝜋) using

existential (resp. universal) quantification over fresh strategies for

all agents in 𝐴, followed by universal (resp. existential) quantifica-

tion over strategies for agents in Agts \𝐴 and use these strategies

to construct path 𝜋 . □

Example 3. Consider the HyperATL∗ formula ⎷{1, 2}⌄𝜋1 . ⎷{3}⌄
𝜋2 . (𝑎𝜋1

U𝑏𝜋2
). We can express this in HyperSL as ∃𝑥1, 𝑥2 .∀𝑥3 . ∃𝑦3 .

∀𝑦1, 𝑦2 . (𝑎𝜋1
U𝑏𝜋2

)
[
𝜋1 : (𝑥1, 𝑥2, 𝑥3), 𝜋2 : (𝑦1, 𝑦2, 𝑦3)

]
. △

By Lemma 2, HyperSL thus captures the various security hyper-

properties (such as non-deducibility of strategies [54] and simula-

tion security [51]) that can be expressed in HyperATL
∗
[14]. We

can extend Lemma 2 further to also capture the strategy sharing

constraints found in HyperATL
∗
𝑆
[19].

Lemma 3. For any HyperATL∗
𝑆
formula 𝜑 there exists a HyperSL

formula 𝜑 ′ such that for any CGS G, G |=HyperATL∗
𝑆
𝜑 iff G |= 𝜑 ′.

Moreover, HyperSL can express properties that go well beyond

the strict ∃∀ and ∀∃ quantifier alternation found in HyperATL
∗
and

HyperATL
∗
𝑆
(as, e.g., needed for Nash equilibria).

5.3 Imperfect Information and HyperSL
In recent years, much effort has been made to study strategic be-

havior under imperfect information [9–12, 30, 36]. In such a setting,

an agent acts strategically (i.e., decides on an action based on its

past experience) but only observes parts of the overall system. Per-

haps surprisingly, HyperSL is expressive enough to allow reasoning

under imperfect information despite having a semantics with com-

plete information (cf. Section 4). Concretely, we consider strategy

logic under imperfect information (SLii), an extension of SL with

imperfect information [12, 13] defined as follows:

𝜓 := 𝑎 | 𝜑 | ¬𝜓 | 𝜓 ∧𝜓 | X𝜓 | 𝜓 U𝜓

𝜑 := 𝜓 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∀𝑥𝑜 . 𝜑 | ∃𝑥𝑜 . 𝜑 | (𝑖, 𝑥)𝜑
where 𝑎 ∈ AP , 𝑥 ∈ X, 𝑖 ∈ Agts, and 𝑜 ∈ Obs is an observation
that gets attached to each strategy. SLii is evaluated on CGSs under
partial observation, which are pairs (G, {∼𝑜 }𝑜∈Obs) consisting of

a CGS G = (𝑆, 𝑠0,A, 𝜅, 𝐿) and an observation relation ∼𝑜⊆ 𝑆 × 𝑆

for each observation 𝑜 ∈ Obs. If 𝑠 ∼𝑜 𝑠′, then 𝑠 and 𝑠′ appear
indistinguishable for a strategy with observation 𝑜 . See the full

version [18] for the full semantics.

We can effectively encode each MC instance of SLii into an

equisatisfiable HyperSL instance (Note that the MAS models of

SLii and HyperSL are different, so we cannot translate the formula

directly but translate both the formula and the model).

Theorem 1. For any SLii MC instance
(
(G, {∼𝑜 }𝑜∈Obs), 𝜑

)
, we

can effectively compute a HyperSL MC instance
(
G′, 𝜑′

)
, such that

(G, {∼𝑜 }𝑜∈Obs) |=SLii 𝜑 iff G′ |= 𝜑 ′.

Proof Sketch. The key observation is that a strategy acting

under imperfect information is a hyperproperty [20, 22]: A strat-

egy 𝑓 acts under observation 𝑜 ∈ Obs iff on any two finite paths

under 𝑓 the action chosen by 𝑓 is the same, provided the two paths

are indistinguishable w.r.t. ∼𝑜 . We can extend the CGS G so that

the above is easily expressible in HyperSL. We can then restrict

quantification to strategies under an arbitrary observation and use

a similar translation to the one used in Lemma 1. □

As model checking of SLii is undecidable [12], we get:

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

192

Corollary 2. Model checking of HyperSL is undecidable.

6 MODEL CHECKING OF HYPERSL
While HyperSL MC is undecidable in general (cf. Corollary 2), we

can identify fragments for which MC is possible. For this, we cannot

follow the approach of existing MC algorithms for (variants of) non-

hyper SL, which use tree automata to summarize strategies [25, 45].

For example, given an atomic state formula 𝜓 [𝜋𝑘 : ®𝑥𝑘]𝑚𝑘=1, we
cannot construct a tree automaton that accepts all strategies that

fulfill𝜓 . This automaton would need to compare (and thus traverse)
multiple paths in a tree at the same time. Instead – given the “hyper”

origins of our logic – we approach the MC problem by focusing

on the interactions of its path variables and use word automata to

summarize satisfying path assignments.

Throughout this section, we assume that all strategy variables

are 𝛼-renamed such that no variable is quantified more than once.

6.1 HyperSL[SPE]
We call the fragment of HyperSL we study in this section Hy-

perSL[SPE] – short for HyperSL with Single Path Elimination.

Definition 1. A HyperSL[SPE] formula has the form

𝜑 = ♭1 . . . ♭𝑚 .𝜓
[
𝜋𝑘 : ®𝑥𝑘

]𝑚
𝑘=1

,

where ♭1, . . . , ♭𝑚 are blocks of strategy quantifiers and for each 1 ≤
𝑘 ≤ 𝑚 and 𝑖 ∈ Agts, strategy variable ®𝑥𝑘 (𝑖) is quantified in ♭𝑘 . We
refer to𝑚 as the block-rank of 𝜑 .

Intuitively, the definition states that we can partition the quan-

tifier prefix into smaller blocks where the variables quantified in

each block ♭𝑘 can be used to eliminate (construct) the (unique) path

variable 𝜋𝑘 . We will exploit this restriction during model-checking:

we can eliminate each block of quantifiers incrementally: as all

strategies quantified in block ♭𝑘 are only needed for path 𝜋𝑘 , we

can “construct” 𝜋𝑘 , and afterward forget about the strategies we

have used. Note that the definition of HyperSL[SPE] only depends

on the quantifier prefix and the path each strategy variable is used

on; it does not make any assumption on the structure of𝜓 .

Example 4. Consider the following (abstract) HyperSL formula,
where𝜓 is an arbitrary LTL formula over 𝜋1, 𝜋2.

∃𝑐.︸︷︷︸
♭1

∃𝑧.∀𝑤. ∃𝑣 .︸ ︷︷ ︸
♭2

𝜓

[
𝜋1 : (𝑐, 𝑐, 𝑐, 𝑐)
𝜋2 : (𝑤, 𝑧, 𝑣, 𝑣)

]
This formula is a HyperSL[SPE] formula: The first block ♭1 consists
of strategy variable 𝑐 and constructs 𝜋1, and the second block ♭2
constructs 𝜋2. The block-rank of this formula is 2. △

6.2 Expressiveness Of HyperSL[SPE]
Before we outline our model-checking algorithm for HyperSL[SPE]

formulas, we point to some (fragments of) other logics that fall

within HyperSL[SPE].

HyperATL∗ and HyperSL[SPE]. When translating HyperATL
∗
(or

HyperATL
∗
𝑆
) formulas into HyperSL (cf. Lemmas 2 and 3), each

quantifier ⎷𝐴⌄𝜋 (resp. J𝐴K𝜋) is replaced by a ∃∗∀∗ (resp. ∀∗∃∗)
block of strategy quantifiers that are used to construct 𝜋 (and only

𝜋). The resulting formula is thus a HyperSL[SPE] formula.

SL[1G] and HyperSL[SPE]. SL[1G] is a fragment of SL that allows

a prefix of strategy quantifier and agent bindings followed by a

single path formula (with no nested agent binding) [24, 45–47].

When translating SL[1G] into HyperSL, we obtain a formula of

the form Q1𝑥1 . . .Q𝑚𝑥𝑚 .𝜓 [𝜋 : ®𝑥] (cf. Lemma 1), which is trivially

HyperSL[SPE] as there is a single path variable (with block-rank 1).

Beyond HyperATL∗
𝑆
and SL[1G]. Additionally, HyperSL[SPE] cap-

tures interesting hyperproperties that could not be captured in

existing logics:

Example 5. Assume a MAS with Agts = {𝑟, 𝑎, ndet} describing a
planning task between a robot 𝑟 that wants to reach a state where AP
goal ∈ AP holds, and an adversary 𝑎 that wants to prevent the robot
from reaching the goal. In each step, agent 𝑟 can select a direction to
move in, and𝑎 can choose a direction it wants to push the robot to. Each
combination of actions of 𝑟 and 𝑎 results in a set of potential successor
locations, and the nondeterminism agent ndet decides which of those
locations the robot actually moves to. We want to check if agent 𝑟
has a winning strategy that can reach the goal against all possible
behaviors of agent 𝑎, i.e., 𝑟 needs to reach the goal under favorable
non-deterministic outcomes. We can express this (non-hyper) property
in HyperSL[SPE] as

∃𝑥 .∀𝑦. ∃𝑧.
(
F goal𝜋

) [
𝜋 : (𝑥,𝑦, 𝑧)

]
,

where we write (𝑥,𝑦, 𝑧) for the strategy profile that assigns agent
𝑟 to 𝑥 , agent 𝑎 to 𝑦, and agent ndet to 𝑧. In HyperSL[SPE], we can
additionally state that 𝑟 should reach the goal as fast as possible, i.e.,
at least as fast as any path in the MAS:

∃𝑥 .∀𝑦. ∃𝑧.∀𝑎.∀𝑏.∀𝑐. (¬goal𝜋 ′) U goal𝜋

[
𝜋 : (𝑥,𝑦, 𝑧)
𝜋 ′ : (𝑎, 𝑏, 𝑐)

]
Here, we quantify over any potential different path 𝜋 ′ and state that
𝜋 is at least as fast as 𝜋 ′. Such requirements cannot be expressed in SL
(even in quantitative versions like SL[F]), nor can they be expressed
in HyperATL∗ or HyperATL∗

𝑆
. △

6.3 Summarizing Path Assignments
In the remainder of this section, we prove the following:

Theorem 3. Model checking for HyperSL[SPE] is decidable.

We fix a CGS G = (𝑆, 𝑠0,A, 𝜅, 𝐿) and state ¤𝑠 ∈ 𝑆 , and let 𝜑 =

♭1 . . . ♭𝑚 .𝜓
[
𝜋𝑘 : ®𝑥𝑘

]𝑚
𝑘=1

be a HyperSL[SPE] formula. We want to

check if ¤𝑠, {} |=G 𝜑 , i.e., 𝜑 holds in state ¤𝑠 .

Zipping Path Assignments. The main idea of our algorithm is to

summarize path assignments that satisfy subformulas of 𝜑 , simi-

lar to MC algorithms for HyperLTL, HyperCTL
∗
, and HyperATL

∗

[16, 17, 19, 33]. To enable automata-based reasoning about path

assignments, i.e., mappings Π : 𝑉 → 𝑆𝜔 for some 𝑉 ⊆ V , we

zip such an assignment into an infinite word. Concretely, given

Π : 𝑉 → 𝑆𝜔 we define zip(Π) ∈ (𝑉 → 𝑆)𝜔 as the infinite word of

functions where zip(Π) (𝑗) (𝜋) := Π(𝜋) (𝑗) for every 𝑗 ∈ N, i.e., the
function in the 𝑗th step maps each path variable 𝜋 ∈ 𝑉 to the 𝑗th

state on the path bound to 𝜋 .

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

193

Algorithm 1 Simulation construction for block elimination.

1 def simulate(G = (𝑆, 𝑠0,A, 𝜅, 𝐿),¤𝑠,𝜋,®𝑥,♭ = Q1𝑥1 . . .Q𝑛𝑥𝑛,A):
2 Adet = (𝑄,𝑞0, 𝛿, 𝑐) = toDPA(A) // Using Proposition 1

3 B = (𝑄 × 𝑆, (𝑞0, ¤𝑠), 𝛿 ′, 𝑐′
)
where

4 𝑐′ (𝑞, 𝑠) := 𝑐 (𝑞)

5 𝛿 ′
(
(𝑞, 𝑠), ®𝑡

)
:=

Q1∨∧
𝑎𝑥

1
∈A
· · ·

Q𝑛∨∧
𝑎𝑥𝑛 ∈A

(
𝛿
(
𝑞, ®𝑡 [𝜋 ↦→ 𝑠]

)
, 𝜅

(
𝑠,

∏
𝑖∈Agts

𝑎 ®𝑥 (𝑖)
))

6 return B

SummaryAutomaton. Given a quantifier block ♭ = Q1𝑥1 . . .Q𝑛𝑥𝑛

over strategy variables 𝑥1, . . . , 𝑥𝑛 , we define ♭̃ as the analogous

block of quantification of strategies 𝑓𝑥1 , . . . , 𝑓𝑥𝑛 , i.e., ♭̃ := Q1 𝑓𝑥1 ∈
Str (G) . . .Q𝑛 𝑓𝑥𝑛 ∈ Str (G). At the core of our model-checking al-

gorithm, we construct automata that accept (zippings of) partial

satisfying path assignments. Formally:

Definition 2. For 1 ≤ 𝑘 ≤ 𝑚 + 1, we say an automaton A over
alphabet ({𝜋1, . . . , 𝜋𝑘−1} → 𝑆) is a (G, ¤𝑠, 𝑘)-summary if for every
path assignment Π : {𝜋1, . . . , 𝜋𝑘−1} → 𝑆𝜔 we have zip(Π) ∈ L(A)
if and only if

♭̃𝑘 · · · ♭̃𝑚 .Π
[
𝜋 𝑗 ↦→ PlayG (¤𝑠,

∏
𝑖∈Agts

𝑓®𝑥 𝑗 (𝑖))
]𝑚
𝑗=𝑘

|=G 𝜓 .

That is, a (G, ¤𝑠, 𝑘)-summary accepts (the zipping of) a path as-

signment Π over paths 𝜋1, . . . , 𝜋𝑘−1 if – when simulating the quan-

tification over strategies needed to construct paths 𝜋𝑘 , . . . , 𝜋𝑚 and

adding them to Π – the body𝜓 of the formula is satisfied.

Example 6. We illustrate the concept using the abstract formula
from Example 4. A (G, ¤𝑠, 3)-summary is an automatonA3 over alpha-
bet ({𝜋1, 𝜋2} → 𝑆) such that for every Π : {𝜋1, 𝜋2} → 𝑆𝜔 we have
zip(Π) ∈ L(A3) iff Π |=G 𝜓 . A (G, ¤𝑠, 2)-summary is an automaton
A2 over alphabet ({𝜋1} → 𝑆) such that for every Π : {𝜋1} → 𝑆𝜔

we have zip(Π) ∈ L(A2) iff
∃𝑓𝑧 .∀𝑓𝑤 . ∃𝑓𝑣 .Π

[
𝜋2 ↦→ PlayG (¤𝑠, (𝑓𝑤 , 𝑓𝑧 , 𝑓𝑣, 𝑓𝑣))

]
|=G 𝜓,

i.e., we mimic the quantification of block ♭2 to construct path 𝜋2 (using
the quantified strategies 𝑓𝑧 , 𝑓𝑤 , 𝑓𝑣 ∈ Str (G)) and add this path to Π
(which already contains 𝜋1). △

6.4 Constructing (G, ¤𝑠, 𝑘)-Summaries
We write ∨∧Q for a conjunction (

∧
) if Q = ∀ and a disjunction

(

∨
) if Q = ∃. The backbone of our model-checking algorithm

(which we present in Section 6.5) is an effective construction of a

(G, ¤𝑠, 𝑘)-summary A𝑘 for each 1 ≤ 𝑘 ≤ 𝑚 + 1. To construct these

summaries, we simulate quantification over strategies. We describe

this simulation construction in Algorithm 1. Before explaining the

construction, we state the result of Algorithm 1 as follows:

Proposition 2. Given ¤𝑠 ∈ 𝑆 , 𝜋 ∈ V , a strategy profile ®𝑥 : Agts →
X, a quantifier block ♭ such that for every 𝑖 ∈ Agts, ®𝑥 (𝑖) is quantified
in ♭, and an APA A over alphabet (𝑉 ⊎ {𝜋} → 𝑆). Let B be the
results of simulate(G,¤𝑠,𝜋,®𝑥,♭,A). Then for any path assignment
Π : 𝑉 → 𝑆𝜔 , we have zip(Π) ∈ L(B) iff

♭̃. zip
(
Π
[
𝜋 ↦→ PlayG

(
¤𝑠,

∏
𝑖∈Agts

𝑓®𝑥 (𝑖)
)])

∈ L(A). (1)

That is, the automaton B accepts the zipping of an assignment

Π : 𝑉 → 𝑆𝜔 iff by simulating the quantifier prefix in ♭, we construct

a path for 𝜋 that, when added to Π, is accepted by A. Note the

similarity to Definition 2: In Definition 2 we simulate multiple

quantifier blocks to construct paths 𝜋𝑘 , . . . , 𝜋𝑚 that, when added to

Π, should satisfy the body𝜓 . In Proposition 2, we simulate a single

path that, when added to Π, should be accepted by automaton A.

We will later use Proposition 2 to simulate one quantifier block at a

time, eventually reaching an automaton required by Definition 2.

Before proving Proposition 2, let us explain the automaton con-

struction in simulate (Algorithm 1). In Eq. (1), ♭̃ quantifies over

strategies in G, which are infinite objects (function 𝑆+ → A). The
crucial point that we will exploit is that the underlying game the

strategies operate on is positionally determined. The automaton

we construct can, therefore, simulate the path 𝜋 in G and select

fresh actions in each step (instead of fixing strategies globally)

[14, 17, 19]. To do this, we first translate the APA A to a DPA

Adet = (𝑄,𝑞0, 𝛿, 𝑐) (in line 2). The new automaton B then simu-

lates path 𝜋 by tracking its current state in G and simultaneously

tracks the current state of Adet , thus operating on states in 𝑄 × 𝑆 .

We start in state (𝑞0, ¤𝑠), i.e., the initial state of Adet and the de-

signed state ¤𝑠 from which we want to start the simulation of 𝜋 .

The color of each state is simply the color of the automaton we

are tracking, i.e., 𝑐′ (𝑞, 𝑠) = 𝑐 (𝑞) (line 4). During each transition, we

then update the current state ofAdet and the state of the simulation

(defined in line 5). Concretely, when in state (𝑞, 𝑠), we read a letter

®𝑡 : 𝑉 → 𝑆 that assigns states to all path variables in 𝑉 (recall that

the alphabet of A is𝑉 ∪ {𝜋} → 𝑆 and the alphabet of B is𝑉 → 𝑆).

We update the state of Adet to 𝛿 (𝑞, ®𝑡 [𝜋 ↦→ 𝑠]), i.e., we extend the

input letter ®𝑡 with the current state 𝑠 of the simulation of path 𝜋

(note that ®𝑡 [𝜋 ↦→ 𝑠] : 𝑉 ∪ {𝜋} → 𝑆). To update the simulation

state 𝑠 , we make use of the positional determinacy of the game:

Instead of quantifying over strategies (as in Eq. (1)), we can quantify

over actions in each step of the automaton. Concretely, for each

universally quantified strategy variable in ♭, we pick an action con-

junctively, and for each existentially quantified variable, we pick

an action disjunctively. After we have picked actions 𝑎𝑥1 , . . . , 𝑎𝑥𝑛
for all strategies quantified in ♭, we can update the state of the

𝜋-simulation by constructing the action assignment

∏
𝑖∈Agts 𝑎 ®𝑥 (𝑖) ,

i.e., assign each agent the corresponding action, and obtain the next

state using G’s transition function 𝜅.

Example 7. Let us use Example 4 to illustrate the construction
in Algorithm 1. Assume we are given an (G, ¤𝑠, 3)-summary A3 over
alphabet ({𝜋1, 𝜋2} → 𝑆), i.e., for every Π : {𝜋1, 𝜋2} → 𝑆𝜔 , we
have zip(Π) ∈ L(A3) iff Π |=G 𝜓 (cf. Example 6). We invoke
simulate(G,¤𝑠,𝜋2,®𝑥,♭2,A3)where ®𝑥 = (𝑤, 𝑧, 𝑣, 𝑣) and ♭2 = ∃𝑧∀𝑤∃𝑣 ,
and let (𝑄,𝑞0, 𝛿, 𝑐) be the DPA equivalent to A3 (computed in line 2).
In this case, simulate computes the APA B = (𝑄 × 𝑆, (𝑞0, ¤𝑠), 𝛿 ′, 𝑐′)
over alphabet {𝜋1} → 𝑆 where 𝛿 ′

(
(𝑞, 𝑠), ®𝑡

)
is defined as∨

𝑎𝑧 ∈A

∧
𝑎𝑤 ∈A

∨
𝑎𝑣 ∈A

(
𝛿 (𝑞, ®𝑡 [𝜋2 ↦→ 𝑠]), 𝜅

(
𝑠, (𝑎𝑤 , 𝑎𝑧 , 𝑎𝑣, 𝑎𝑣)

))
.

That is, in each step, we disjunctively choose an action 𝑎𝑧 (corre-
sponding to the action selected by existentially quantified strategy 𝑧),
conjunctively pick an action 𝑎𝑤 (corresponding to the action selected
by universally quantified strategy𝑤), and finally disjunctively select

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

194

Algorithm 2 Model-checking algorithm for HyperSL[SPE].

1 def modelCheck(G,¤𝑠,𝜑 = ♭1 · · · ♭𝑚 .𝜓
[
𝜋𝑘 : ®𝑥𝑘

]𝑚
𝑘=1

):
2 // Assume 𝜓 contains no nested state formulas

3 A𝑚+1 = LTLtoAPA(𝜓)

4 // A𝑚+1 is a (G, ¤𝑠,𝑚 + 1)-summary
5 for 𝑘 from 𝑚 to 1:
6 A𝑘 = simulate(G,¤𝑠,𝜋𝑘,®𝑥𝑘,♭𝑘,A𝑘+1)
7 // A𝑘 is a (G, ¤𝑠, 𝑘)-summary
8 if L(A1) ≠ ∅ then

9 return SAT // ¤𝑠, {} |=G 𝜑

10 else

11 return UNSAT // ¤𝑠, {} ̸ |=G 𝜑

action 𝑎𝑣 . After we have fixed actions 𝑎𝑧 , 𝑎𝑤 and 𝑎𝑣 , we take a step in
G by letting each agent 𝑖 play action 𝑎 ®𝑥 (𝑖) , i.e., agent 1 chooses action
𝑎𝑤 , agent 2 chooses 𝑎𝑧 , and agents 3 and 4 pick 𝑎𝑣 . By Proposition 2,
every Π : {𝜋1} → 𝑆𝜔 satisfies zip(Π) ∈ L(B) iff
∃𝑓𝑧 .∀𝑓𝑤 . ∃𝑓𝑣 . zip

(
Π[𝜋2 ↦→ PlayG (¤𝑠, (𝑓𝑤 , 𝑓𝑧 , 𝑓𝑣, 𝑓𝑣))]

)
∈ L(A3)

which (by assumption on A3) holds iff

∃𝑓𝑧 .∀𝑓𝑤 . ∃𝑓𝑣 .Π[𝜋2 ↦→ PlayG (¤𝑠, (𝑓𝑤 , 𝑓𝑧 , 𝑓𝑣, 𝑓𝑣))] |=G 𝜓 .

We have thus used simulate (Algorithm 1) to compute a (G, ¤𝑠, 2)-
summary from a (G, ¤𝑠, 3)-summary (cf. Example 6). △

We can now formally prove Proposition 2:

Proof Sketch of Proposition 2. The idea of automatonB con-

structed in Algorithm 1 is to simulate the path that corresponds to

path variable 𝜋 . To argue that B expresses the desired language, we

make use of the positional determinacy of concurrent parity games

(CPG) [40]. A CPG is a simple multi-player game model where we

can quantify over strategies for each of the players. For any fixed Π,
we design an (infinite-state) CPG, that is won iff Eq. (1) holds. We

then exploit the fact that CPGs are determined (cf. [40, Thm. 4.1]),

i.e., instead of quantifying over entire strategies in the CPG, we can

quantify over Skolem functions for actions in each step. This allows

us to show that the CPG is won iff B has an accepting run (on the

fixed Π), giving us the desired result. We refer the interested reader

to the full version [18] for details. □

6.5 Model-Checking Algorithm
Equipped with the concept of (G, ¤𝑠, 𝑘)-summary and the simula-

tion construction, we can now present our MC algorithm for Hy-

perSL[SPE] in Algorithm 2. The modelCheck procedure is given a

CGS G, a state ¤𝑠 , and a HyperSL[SPE] formula 𝜑 , and checks if

¤𝑠, {} |=G 𝜑 . Our algorithm assumes, w.l.o.g., that the path formula

𝜓 contains no nested state formulas. In case there are nested state

formulas, we can eliminate them iteratively: We recursively check

each nested state formula on all states of the CGS, and label all

states where the state formula holds with a fresh atomic proposi-

tion. In the path formula, we can then replace each state formula

with a reference to the fresh atomic proposition. See, e.g., [19, 32]

for details.

The main idea of our MC algorithm is to iteratively construct

a (G, ¤𝑠, 𝑘)-summary A𝑘 for each 1 ≤ 𝑘 ≤ 𝑚 + 1. Initially, in line

4, we construct a (G, ¤𝑠,𝑚 + 1)-summary A𝑚+1 using a standard

Table 1: We compare HyMASMC and MCMAS-SL[1G] on the sched-
uler problem from [24]. We give the size of the system (|𝑺 |),
the size of the reachable fragment (|𝑺reach |), and the times in
seconds (𝒕). The timeout (TO) is set to 1 h.

𝒏 |𝑺 | |𝑺reach | 𝒕MCMAS-SL[1G] 𝒕HyMASMC

2 72 9 0.1 0.4

3 432 21 6.71 1.9
4 2592 49 313.7 24.5
5 15552 113 TO 332.1

construction to translate the LTL formula𝜓 to an APA over alphabet

({𝜋1, . . . , 𝜋𝑚} → 𝑆), as is, e.g., standard for HyperCTL
∗
[33]. For

each 𝑘 from𝑚 to 1, we then use the (G, ¤𝑠, 𝑘 + 1)-summary A𝑘+1 to
compute a (G, ¤𝑠, 𝑘)-summary A𝑘 using the simulate construction

from Algorithm 1 (similar to what we illustrated in Example 7).

From Proposition 2, we can conclude the following invariant:

Lemma 4. In line 7, A𝑘 is a (G, ¤𝑠, 𝑘)-summary.

After the loop, we are thus left with a (G, ¤𝑠, 1)-summary A1

(over the simpleton alphabet (∅ → 𝑆)) and can check if ¤𝑠, {} |=G 𝜑

by testing A1 for emptiness (line 8):

Lemma 5. For any (G, ¤𝑠, 1)-summaryA, we have that L(A) ≠ ∅
if and only if ¤𝑠, {} |=G 𝜑 .

From Lemmas 4 and 5, it follows that modelCheck(G,¤𝑠,𝜑) returns
SAT iff ¤𝑠, {} |=G 𝜑 , proving Theorem 3.

6.6 Model-Checking Complexity
The determinization in line 2 of Algorithm 1 results in a DPA Adet
of doubly exponential size (cf. Proposition 1). The size of B is then

linear in the size of Adet and G. In the worst case, each call of

simulate thus increases the size of the automaton by two expo-

nents. For a HyperSL[SPE] formula with block-rank𝑚, simulate is

called𝑚 times, so the final automaton A1 has, in the worst case,

2𝑚-exponential many states (in the size of 𝜓 and G). As we can
check emptiness of APAs over the singleton alphabet (∅ → 𝑆) in
polynomial time, we get:

Theorem 4. Model checking for a HyperSL[SPE] formula with
block-rank𝑚 is in 2𝑚-EXPTIME.

From Lemma 2 and the lower bounds known for HyperATL
∗

[17], it follows that our algorithm is asymptotically almost optimal:

Lemma 6. Model checking for a HyperSL[SPE] formula with block-
rank𝑚 is (2𝑚 − 1)-EXPSPACE-hard.

6.7 Beyond HyperSL[SPE]
HyperSL[SPE] is defined purely in terms of the structure of the quan-

tifier prefix. As soon as strategy variables are quantified in an order

such that they cannot be grouped together, MC becomes, in general,

undecidable: Already the simplest such property Q𝑥 .Q𝑦.Q𝑧.Q𝑤.

𝜓 [𝜋1 : (𝑥, 𝑧), 𝜋2 : (𝑦,𝑤)], leads to undecidable MC (see the full

version [18]). The fragment we have identified is thus the largest

possible (when only considering the quantifier prefix). Any fur-

ther study into decidable fragments of HyperSL needs to impose

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

195

Table 2: We check random formulas from the (Sec), (GE),
and (Rnd) templates on the ISPL models from [39]. For each
model and template, we sample 10 formulas and report the
average time (in seconds).

Model Sec GE Rnd2 Rnd3 Rnd4

bit-transmission 0.6 0.7 0.8 0.8 2.7

book-store 0.4 0.4 0.4 0.5 0.5

card-game 0.4 0.5 0.4 0.5 0.5

dining-cryptographers 0.6 2.7 11.4 22.6 10.3

muddy-children 0.4 3.0 1.7 0.8 0.9

simple-card-game 0.3 3.4 2.9 25.3 32.6

software-development - - - - -

strongly-connected 0.6 0.8 0.8 1.7 3.2

tianji-horse-racing 0.4 0.5 0.4 0.5 0.5

restrictions beyond the prefix and, e.g., analyze how different path

variables are related within an LTL path formula (see also Section 8).

7 IMPLEMENTATION AND EXPERIMENTS
We have implemented our HyperSL[SPE] model-checking algo-

rithm in the HyMASMC tool [19].

7.1 Model-Checking For Strategy Logic
We compare HyMASMC against MCMAS-SL[1G] [24] on (non-hyper)

SL[1G] properties (cf. Section 6.2). In Table 1, we depict the verifi-

cation times for the scheduling problem from [24] (which can be

expressed in SL[1G] and ATL
∗
). As in [19], we observe that HyMASMC

performs much faster than MCMAS-SL[1G], which we largely ac-

credit to HyMASMC’s efficient automata backend using spot [31].

Note that we use MCMAS-SL[1G] and HyMASMC directly on the origi-

nal model, i.e., we did not perform any prepossessing using, e.g.,

abstraction techniques [5, 6, 8] (which would reduce the system

size and make the verification more scaleable for both tools).

7.2 Model-Checking For Hyperproperties
In a second experiment, we demonstrate that HyMASMC can verify

hyperproperties on various MASs from the literature. We use the

ISPL models from the MCMAS benchmarks suit [39], and generate

random HyperSL[SPE] formulas from various property templates:

• (Sec): We check if some agent 𝑖 can reach some target state

without leaking information about some secret AP via some

observable AP. Concretely, we check if 𝑖 can play such that on

some other path, the same observation sequence is coupled with

a different high-security input, a property commonly referred to

as non-inference [43] or opacity [52, 55].

• (GE): We check if a given SL[1G] formula holds on all input

sequences for which some winning output sequence exists, as is,

e.g., required in good-enough synthesis [1, 3].

• (Rnd):We randomly generateHyperSL[SPE] formulaswith block-

rank 2, 3, and 4 (called Rnd2, Rnd3, and Rnd4, respectively).
We depict the results in Table 2, demonstrating that HyMASMC

can handle most instances. The only exception is the software-

development model, which includes ≈15k states and is therefore

too large for an automata-based representation.

Table 3: We use HyMASMC to solve the optimal adversarial plan-
ning problem (cf. Example 5) for varying sizes. Times are
given in seconds, and the TO is set to 120 sec.

Size 40 50 60 70 80 90 100 110 120

t 14.2 22.0 31.2 42.5 57.6 70.1 86.8 104.6 TO

We stress that we do not claim that all formulas in each of the

templates model realistic properties in each of the systems. Rather,

our evaluation (1) demonstrates that HyperSL[SPE] can express

interesting properties, and (2) empirically shows that HyMASMC can

check such properties in existing ISPL models (confirming this via

further real-world scenarios is interesting future work).

7.3 Model-Checking For Optimal Planning
In our last experiment, we challenge HyMASMC with planning ex-

amples as those outlined in Example 5. We randomly generate

planning instances between the robot 𝑟 , adversary 𝑎, and ndet, and
check if robot 𝑟 can reach the goal following some shortest path in

the problem. For a varying size 𝑛, we randomly create 10 planning

instances with 𝑛 states. We report the verification times in Table 3.

With increasing size, the running time of HyMASMC clearly increases,
but the increase seems to be quadratic rather than exponential.

8 CONCLUSION AND FUTUREWORK
Wehave presentedHyperSL, a new temporal logic that extends strat-

egy logic with the ability to reason about hyperproperties. HyperSL

can express complex properties in MASs that require a combination

of strategic reasoning and hyper-requirements (such as optimalilty,

GE, non-interference, and quantitative Nash equilibria); many of

which were out of reach of existing logics. As such, HyperSL can

serve as a unifying foundation for an exact exploration of the inter-

action of strategic behavior with hyperproperties, and provides a

formal language to express (un)decidability results. Moreover, we

have taken a first step towards the ambitious goal of automatically

model-checking HyperSL. Our fragment HyperSL[SPE] subsumes

many relevant other logics and captures unique properties not ex-

pressible in existing frameworks. Our implementation in HyMASMC
shows that our MC approach is practical in small MASs.

A particularly interesting future direction is to search for further

fragments of HyperSL with decidable model checking. As argued

in Section 6.7, any such fragment needs to take the structure of

the LTL-formula(s) into account. For example, Mogavero et al. [46]

showed that SL[CG] (a fragment of SL that only allows conjunctions

of goal formulas) still admits behavioral strategies (i.e., strategies

that do not depend on future or counterfactual decisions of other

strategies). When extending this to our hyper setting, it seems likely

that if a strategy is used on multiple path variables, but these paths

occur in disjoint conjuncts of path formulas, MC remains decidable.

We leave such extensions as future work.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (ERC)

Grant HYPER (101055412), and by the German Research Foundation

(DFG) as part of TRR 248 (389792660).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

196

REFERENCES
[1] Shaull Almagor and Orna Kupferman. 2020. Good-Enough Synthesis. In Interna-

tional Conference on Computer Aided Verification, CAV 2020.
[2] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time

temporal logic. J. ACM (2002).

[3] Benjamin Aminof, Giuseppe De Giacomo, and Sasha Rubin. 2021. Best-Effort

Synthesis: Doing Your Best Is Not Harder Than Giving Up. In International Joint
Conference on Artificial Intelligence, IJCAI 2021.

[4] Benjamin Aminof, Marta Kwiatkowska, Bastien Maubert, Aniello Murano, and

Sasha Rubin. 2019. Probabilistic Strategy Logic. In International Joint Conference
on Artificial Intelligence, IJCAI 2019.

[5] Thomas Ball and Orna Kupferman. 2006. An Abstraction-Refinement Framework

for Multi-Agent Systems. In Symposium on Logic in Computer Science LICS 2006.
[6] Francesco Belardinelli, Angelo Ferrando, Wojciech Jamroga, Vadim Malvone, and

Aniello Murano. 2023. Scalable Verification of Strategy Logic through Three-

Valued Abstraction. In International Joint Conference on Artificial Intelligence,
IJCAI 2023.

[7] Francesco Belardinelli, Sophia Knight, Alessio Lomuscio, Bastien Maubert,

Aniello Murano, and Sasha Rubin. 2021. Reasoning About Agents That May

Know Other Agents’ Strategies. In International Joint Conference on Artificial
Intelligence, IJCAI 2021.

[8] Francesco Belardinelli and Alessio Lomuscio. 2017. Agent-based Abstractions

for Verifying Alternating-time Temporal Logic with Imperfect Information. In

Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017.
[9] Francesco Belardinelli, Alessio Lomuscio, and Vadim Malvone. 2019. An

Abstraction-Based Method for Verifying Strategic Properties in Multi-Agent

Systems with Imperfect Information. In Conference on Artificial Intelligence, AAAI
2019.

[10] Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, and Sasha Rubin.

2017. Verification of Multi-agent Systems with Imperfect Information and Public

Actions. In Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017.

[11] Raphaël Berthon, Bastien Maubert, and Aniello Murano. 2017. Decidability

Results for ATL* with Imperfect Information and Perfect Recall. In Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017.

[12] Raphaël Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin, and Moshe Y.

Vardi. 2017. Strategy logic with imperfect information. In Symposium on Logic in
Computer Science, LICS 2017.

[13] Raphaël Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin, and Moshe Y.

Vardi. 2021. Strategy Logic with Imperfect Information. ACM Trans. Comput.
Log. (2021).

[14] Raven Beutner and Bernd Finkbeiner. 2021. A Temporal Logic for Strategic

Hyperproperties. In International Conference on Concurrency Theory, CONCUR
2021.

[15] Raven Beutner and Bernd Finkbeiner. 2022. Software Verification of Hyperproper-

ties Beyond k-Safety. In International Conference on Computer Aided Verification,
CAV 2022.

[16] Raven Beutner and Bernd Finkbeiner. 2023. AutoHyper: Explicit-State Model

Checking for HyperLTL. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2023.

[17] Raven Beutner and Bernd Finkbeiner. 2023. HyperATL*: A Logic for Hyperprop-

erties in Multi-Agent Systems. Log. Methods Comput. Sci. (2023).
[18] Raven Beutner and Bernd Finkbeiner. 2024. Hyper Strategy Logic. CoRR (2024).

[19] Raven Beutner and Bernd Finkbeiner. 2024. On Alternating-Time Temporal Logic,

Hyperproperties, and Strategy Sharing. In Conference on Artificial Intelligence,
AAAI 2024.

[20] Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. 2023.

Second-Order Hyperproperties. In International Conference on Computer Aided
Verification, CAV 2023.

[21] Patricia Bouyer, Orna Kupferman, Nicolas Markey, Bastien Maubert, Aniello

Murano, and Giuseppe Perelli. 2019. Reasoning about Quality and Fuzziness of

Strategic Behaviours. In International Joint Conference on Artificial Intelligence,
IJCAI 2019.

[22] Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. 2015. Unifying Hyper

and Epistemic Temporal Logics. In International Conference on Foundations of
Software Science and Computation Structures, FoSSaCS 2015.

[23] Nils Bulling and Wojciech Jamroga. 2014. Comparing variants of strategic ability:

how uncertainty and memory influence general properties of games. Auton.
Agents Multi Agent Syst. (2014).

[24] Petr Cermák, Alessio Lomuscio, and Aniello Murano. 2015. Verifying and Syn-

thesising Multi-Agent Systems against One-Goal Strategy Logic Specifications.

In Conference on Artificial Intelligence, AAAI 2015.
[25] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. 2010. Strategy

logic. Inf. Comput. (2010).
[26] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2012. Continuity

and robustness of programs. Commun. ACM (2012).

[27] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,

Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.

In International Conference on Principles of Security and Trust, POST 2014.
[28] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In Computer

Security Foundations Symposium, CSF 2008.
[29] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2019.

The Hierarchy of Hyperlogics. In Symposium on Logic in Computer Science, LICS
2019.

[30] Catalin Dima and Ferucio Laurentiu Tiplea. 2011. Model-checking ATL under

Imperfect Information and Perfect Recall Semantics is Undecidable. CoRR (2011).

[31] Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin,

Alexandre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, An-

toine Martin, Jérôme Dubois, Clément Gillard, and Henrich Lauko. 2022. From

Spot 2.0 to Spot 2.10: What’s New?. In International Conference on Computer
Aided Verification, CAV 2022.

[32] E. Allen Emerson and Joseph Y. Halpern. 1986. "Sometimes" and "Not Never"

revisited: on branching versus linear time temporal logic. J. ACM (1986).

[33] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for

Model Checking HyperLTL and HyperCTL*. In International Conference on Com-
puter Aided Verification, CAV 2015.

[34] Bernd Finkbeiner and Martin Zimmermann. 2017. The First-Order Logic of

Hyperproperties. In Symposium on Theoretical Aspects of Computer Science, STACS
2017.

[35] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020. Proposi-

tional Dynamic Logic for Hyperproperties. In International Conference on Con-
currency Theory, CONCUR 2020.

[36] Sophia Knight and Bastien Maubert. 2019. Dealing with imperfect information

in Strategy Logic. CoRR (2019).

[37] François Laroussinie and Nicolas Markey. 2015. Augmenting ATL with strategy

contexts. Inf. Comput. (2015).
[38] François Laroussinie, Nicolas Markey, and Arnaud Sangnier. 2015. ATLsc with

partial observation. In International Symposium on Games, Automata, Logics and
Formal Verification, GandALF 2015.

[39] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2009. MCMAS: A Model

Checker for the Verification of Multi-Agent Systems. In International Conference
on Computer Aided Verification, CAV 2009.

[40] Vadim Malvone, Aniello Murano, and Loredana Sorrentino. 2016. Concurrent

Multi-Player Parity Games. In International Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2016.

[41] Bastien Maubert and Aniello Murano. 2018. Reasoning about Knowledge and

Strategies under Hierarchical Information. In International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2018.

[42] Daryl McCullough. 1988. Noninterference and the composability of security

properties. In Symposium on Security and Privacy, SP 1988.
[43] John McLean. 1994. A general theory of composition for trace sets closed under

selective interleaving functions. In Symposium on Research in Security and Privacy,
SP 1994.

[44] Satoru Miyano and Takeshi Hayashi. 1984. Alternating Finite Automata on

omega-Words. Theor. Comput. Sci. (1984).
[45] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2014.

Reasoning About Strategies: On the Model-Checking Problem. ACM Trans.
Comput. Log. (2014).

[46] Fabio Mogavero, Aniello Murano, and Luigi Sauro. 2013. On the Boundary of

Behavioral Strategies. In Symposium on Logic in Computer Science, LICS 2013.
[47] Fabio Mogavero, Aniello Murano, and Luigi Sauro. 2014. A Behavioral Hierarchy

of Strategy Logic. In International Workshop on Computational Logic in Multi-
Agent Systems, CLIMA 2014.

[48] John F Nash Jr. 1950. Equilibrium points in n-person games. Proceedings of the
national academy of sciences (1950).

[49] Marc Pauly and Rohit Parikh. 2003. Game Logic - An Overview. Stud Logica
(2003).

[50] Nir Piterman. 2007. From Nondeterministic Büchi and Streett Automata to

Deterministic Parity Automata. Log. Methods Comput. Sci. (2007).
[51] Andrei Sabelfeld. 2003. Confidentiality for Multithreaded Programs via Bisim-

ulation. In International Conference on Perspectives of Systems Informatics, PSI
2003.

[52] Anooshiravan Saboori and Christoforos N. Hadjicostis. 2013. Verification of

initial-state opacity in security applications of discrete event systems. Inf. Sci.
(2013).

[53] Moshe Y. Vardi. 1995. Alternating Automata and Program Verification. In

Computer Science Today: Recent Trends and Developments.
[54] J. Todd Wittbold and Dale M. Johnson. 1990. Information Flow in Nondetermin-

istic Systems. In Symposium on Security and Privacy, SP 1990.
[55] Kuize Zhang, Xiang Yin, and Majid Zamani. 2019. Opacity of Nondeterministic

Transition Systems: A (Bi)Simulation Relation Approach. IEEE Trans. Autom.
Control. (2019).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

197

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Hyper Strategy Logic
	5 Expressiveness of HyperSL
	5.1 SL and HyperSL
	5.2 HyperATL* and HyperSL
	5.3 Imperfect Information and HyperSL

	6 Model Checking of HyperSL
	6.1 HyperSL[SPE]
	6.2 Expressiveness Of HyperSL[SPE]
	6.3 Summarizing Path Assignments
	6.4 Constructing (G, , k)-Summaries
	6.5 Model-Checking Algorithm
	6.6 Model-Checking Complexity
	6.7 Beyond HyperSL[SPE]

	7 Implementation and Experiments
	7.1 Model-Checking For Strategy Logic
	7.2 Model-Checking For Hyperproperties
	7.3 Model-Checking For Optimal Planning

	8 Conclusion and Future Work
	Acknowledgments
	References

