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ABSTRACT
Unsupervised reinforcement learning (URL) relies on carefully de-

signed training objectives rather than task rewards to learn general

skills. However, we lack quantitative evaluation metrics for URL

but mainly rely on visualizations of trajectories for comparison.

Moreover, most URL methods choose to optimize a single training

objective, which may hinder later-stage learning and the devel-

opment of new skills. To bridge these gaps, we first introduce a

combination of metrics that can evaluate diverse properties of URL.

We show that balancing these metrics in URL leads to better per-

formance and trajectories with empirical evidence and theoretical

insights. Next, we develop an automatic curriculum that uses a non-

stationary multi-armed bandit algorithm to select URL objectives

for different learning episodes, resulting in a balanced improvement

on all the metrics. Extensive experiments in different environments

demonstrate the advantages of our method in achieving promising

and balanced performance on multiple metrics when compared to

recent URL methods.
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1 INTRODUCTION
Reinforcement learning (RL) has recently achieved remarkable suc-

cess in autonomous control [25] and video games [33]. Its mastery

of Go [43] and large-scale multiplayer video games [46] has drawn

growing attention. However, a primary limitation for the current

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

RL is that it is highly task-specific and easily overfitting to the train-

ing task, while it is still challenging to acquire basic skills that are

generalisable across tasks. Moreover, most RL methods still suffer

from sparse rewards and insufficient exploration in many tasks. To

overcome these weaknesses, intrinsic motivations [35] have been

introduced to pre-train RL agents in earlier stages even without a

task assigned. Unsupervised RL (URL) does not rely on any extrinsic

task rewards, and its primary goal is to encourage exploration and

develop versatile skills that can be adapted to downstream tasks.

Although URL provides additional objectives and rewards to

train fundamental and task-agnostic skills, it lacks quantitative

evaluation metrics and yet relies mainly on visualizations of trajec-

tories [7, 13, 42] to demonstrate its effectiveness. One significant

drawback of visualizations is that they require prior knowledge to

represent at most two or three more important dimensions of the

state, which contradicts the concept of ’unattended’ RL. Although

URL learned skills can be evaluated through downstream tasks

by their extrinsic rewards [27], this requires further training and

can be prone to overfitting or bias towards specific tasks. A key

challenge in developing evaluation metrics for URL is how to cover

different expectations or preferable properties for the agent, which

usually cannot be all captured by a single metric. Recently, the

concept of disentanglement is introduced in [24] to evaluate the in-

formativeness and separability of learned skills, and state coverage

to evaluate how well the state space is explored. However, their

implementation of the state coverage needs prior knowledge of

the environment to partition it into equally divided bins, and there

lacks theoretical justification for the new disentanglement metrics.

In addition, how to balance multiple metrics in the evaluation is an

open challenge. Therefore, it is critical to develop a set of metrics

that can provide a complete and precise evaluation of an URL agent.

In contrast to the ambiguity of evaluation metrics for current

URL, the existing intrinsic rewards for URL are quite specific and

focused, e.g., the novelty/uncertainty of states [6, 38, 39], the en-

tropy of state distribution [29, 31, 34], and the mutual information

between states and skills [13, 20], which are task-free and can pro-

vide dense feedback. For example, as shown later, agent learning

with a single intrinsic reward for exploration could be hindered
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from further exploration since its novelty approximation is limited

to local regions. For most URL methods, only one intrinsic reward

is used. They mainly differ on instantiations, e.g., how to define the

novelty, how to estimate the state entropy or mutual information,

etc. However, the quality of instantiations is significantly affected

by the error of modeling the environmental dynamics or possibility

density functions. Moreover, in order to achieve consistent improve-

ment on multiple evaluation metrics and balance their trade-offs,

training with a single intrinsic reward is not enough. Hence, it is

necessary for URL to take multiple intrinsic rewards into account

as training objectives.

In this paper, we take a first step towards quantitative multi-
criteria evaluations of URL by proposing a set of complementary

evaluation metrics that can cover different preferred capabilities

of URL, e.g., on both exploration and skill discovery. In the case

studies, we show that URL achieves balanced and high scores over

all the proposed metrics, which meet our requirements of a promis-

ing pre-trained agent. In contrast, excelling on only one metric

cannot exclude certain poorly learned URL policies. Regarding
the training objectives, we consider multiple existing intrinsic

rewards and choose the most helpful one in each learning stage

for maximizing the proposed evaluation metrics. To this end, we

develop a curriculum of URL whose training objective is not static

but adaptive to the needs of different training stages, whose goal

is to keep improving all the involved evaluation metrics. Since the

intrinsic reward is varying concurrently with URL policy on the

fly, we apply a multi-objective multi-armed bandits algorithm to

address the exploration-exploitation trade-off. We intend to select

the intrinsic reward (1) that has been rarely selected before (explo-

ration) or (2) that results in the greatest and balanced improvement

over all into account as metrics in history (exploitation). Specifically,

we adopt Pareto UCB [11] to optimize the multi-objective defined

by the metrics and then extend it to capture the non-stationary

dynamics of best reward, i.e., which may change across learning

stages. This assumption is in line with our observation that a single

intrinsic reward cannot keep improving all metrics, while URL may

stop exploration and ends with sub-optimal skills.

Our contributions are:

(1) To the best of our knowledge, our work is among a few pio-

neering studies focusing on developing evaluation metrics

for URL.

(2) We theoretically justify the necessity of disentanglement

metric for URL.

(3) We introduced automatic curriculum learning to Unsuper-

vised RL.

(4) In experiments, we evaluate our curriculum URL in challeng-

ing URL environments, showing that our proposed metrics

faithfully capture multiple properties of learned skills that

could benefit downstream tasks, and our method consis-

tently achieves better and more balanced results on multiple

evaluation metrics than existing URL methods.

(5) We present extensive empirical analyses demonstrating the

advantages of automatic curriculum and the multi-objective

for optimizing the curriculum.

2 PRELIMINARIES
MDPwithout external rewards. InMarkovDecision Process (MDP)

M = (S,A, 𝑝) without external rewards, S and A respectively

denote the state and action spaces, and 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the tran-
sition function where 𝑠𝑡 , 𝑠𝑡+1 ∈ S and 𝑎𝑡 ∈ A. Given a pol-

icy 𝜋 (𝑎𝑡 |𝑠𝑡 ), a trajectory 𝜏 = (𝑠0, 𝑎0, . . . , 𝑠𝑇 ) follows the distribu-
tion 𝜏 ∼ 𝑝 (𝜏) = 𝑝 (𝑠0)

∏𝑇−1

𝑡=0
𝜋 (𝑎𝑡 |𝑠𝑡 )𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). We formulate

the problem of unsupervised skill discovery as learning a skill-

conditioned policy 𝜋 (𝑎𝑡 |𝑠𝑡 , 𝑧) where 𝑧 ∈ Z represents the latent

skill. The latent representations of skills 𝑧 can be either continu-

ous 𝑧 ∈ R𝑑 or discrete 𝑧 ∈ {𝑧1, 𝑧2, ..., 𝑧𝑁𝑧
}. 𝐻 (·) and 𝐼 (·; ·) denote

entropy and mutual information, respectively.

3 RELATEDWORKS
Unsupervised Reinforcement Learning. Intrinsic rewards are
used for training URL. For exploration, intrinsic motivations can

be based on curiosity and surprise of environtal dynamics [8], such

as Intrinsic Curiosity Module (ICM) [38], Random Network Distil-

lation (RND) [6], and Disagreement [39]. Another common way

to explore is to maximize the state entropy. State Marginal Match-

ing (SMM) [29] approximates the state marginal distribution, and

matching it to the uniform distribution is equivalent to maximiz-

ing the state entropy. Other methods approximate state entropy

by particle-based method MEPOL [34], APT [31], ProtoRL [47],

APS [30]. Mutual Information-based Skill Learning (MISL) has

been used for self-supervised skill discovery, such as VIC [20],

DIAYN [14], VALOR [1]. VISR [21] also optimizes the same ojective,

but its special approximation brought successor feature [2] into un-

supervised skill learning paradigm and enables fast task inference.

APS [30] combines the exploration of APT and successor feature of

VISR.

AutomaticCurriculumLearning. Automatic curriculum learn-

ing has been widely studied. It allows models to learn in a specific

order for learning harder tasks more efficiently [3, 19]. In RL, a

lot of work considers scheduling learning tasks [16–18, 32, 41]. In

URL, handcrafted curriculum is used by EDL [7] and IBOL [24].

EDL first explores, then assigns the discovered states to skills, and

finally learns to achieve those skills. IBOL also explores and assigns

skill after a specific linearzer learning phase. Both of them are not

automatic curriculum, and the number of training steps for each

training phase needs to be specified before training. In addition,

VALOR [1] mentioned curriculum learning, but their curriculum is

just gradually increasing the number of skills.

4 BACKGROUND AND MOTIVATION
Unsupervised Reinforcement Learning needs to explore the envi-

ronment and learn basic skills to prepare for downstream tasks. So

URL agent naturally needs to optimize at least two objectives: one

for exploration, and another for skill learning, eg., the state entropy

and the mutual information between state and skill. Most prior URL

algorithms try to explore and learn good skills with only a single

intrinsic reward or by a simple linear combination of two intrinsic

rewards. We argue that a single intrinsic reward is not enough and

we need to combine the advantages of multiple intrinsic rewards

to balance the multiple objectives related to exploration and skill

learning.
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Figure 1: Multiple properties are important for exploration and skill
learning of URL. Existing URL approaches have advantages and
disadvantages. We can combine and take advantage of multiple in-
trinsic rewards to balance the URL agent for multiple properties.

(a) APT (b) ICM

Figure 2: These are the trajectories of URL agents learned by sin-
gle intrinsic rewards in a continuous tree maze environment. (a) is
learned by APT and (b) is learned by ICM. Different colors represent
the trajectories of different skills.

4.1 Why combine multiple intrinsic rewards?
Existing URL methods only use a single intrinsic reward to train

their policies. Since the accuracy of the reward depends on the

agent’s modeling of the environment dynamics [38, 39] or state

entropy [29, 31], whose quality heavily relies on the data collected

through the agent’s exploration, URL keeping using the same re-

ward may stop exploration earlier with a sub-optimal policy.

Fig. 2 shows the trajectories of two agents learned by URL. The

agent in (a) is learned with the simple linear combination of a single

intrinsic reward for exploration (APT [31]) and the common skill

learning objective 𝐼 (𝑆 ;𝑍 ) [13]. The agent in (b) is also learned with

the simple linear combination of one for exploration (ICM [38])

and 𝐼 (𝑆 ;𝑍 ) for skill learning. The trajectories are in different col-

ors representing different skills. Despite the fact that both agents

are learned with a single exploration reward and a skill-learning

reward, there are significant differences in the trajectories of their

skills. By examining the visualized trajectories, we can see that the

trajectories of APT agent are getting thicker but stay near to the

starting state. It seems that APT, as a method of optimizing the state

entropy 𝐻 (𝑆), prefers to make the agent expand its state coverage

locally. While the ICM agent reaches further areas, its trajectories

are thin, possibly because its reward relies on a prediction model

of environmental dynamics. When this model is accurate in a large

part of the state space, the intrinsic reward might lead the agent to

go only along where the model is not as accurately approximated.

With this empirical example showing the advantages and disadvan-

tages of APT and ICM, we can consider the possibility of a method

combining both intrinsic rewards and taking advantage of both to

make the skills both have enough coverage and reach distant areas.

4.2 Why optimize multiple objectives?
As mentioned before, as an URL agent that needs to explore and

learn skills, it already has two objectives. We argue that there could

be more necessary objectives for URL. For example, some previous

work mentioned the distance between the starting state and the

ending state could be an objective to encourage the trajectory length

of skills [36]. And from this empirical example, we can see that some

skills in fig. 2b overlaps and can not be separated from each other,

so the disentanglement metric mentioned in [24] that measures

separability between skills can also be an objective.

Besides, similar to humans that learn from basic skills to ad-

vanced skills [3, 23], at each learning stage of URL, the primary

objective should also be different. For example, in the beginning,

exploration should be primary, so metrics like the coverage of state

space could be more important. In the later stage, the quality of

learned skills should be the main concern, then it should be focused

on improving the diversity and separability of skills.

5 METHODOLOGY
To combine the advantages of multiple intrinsic rewards for multi-

ple objectives, we propose an automatic curriculum learning frame-

work for URL

5.1 Overview of Automatic Curriculum for URL
Instead of keep using one intrinsic reward for training an URL

agent, we allow the agent to choose one reward among multiple

candidates in each learning stage (multiple episodes of learning)

for improving multiple evaluation metrics. This generates an auto-

matic curriculum for URL whose goal is to find a sequence of in-

trinsic rewards that optimizes multi-objectives each corresponding

to a metric. The framework of our proposed automatic curriculum

method is illustrated in fig. 3. Our curriculum adds an outer loop

outside the conventional URL framework (i.e., the interaction be-

tween RL agent and environment). The curriculum has a reward

selection module that selects an intrinsic reward for each learning

stage based on multiple evaluation metrics computed on the replay

buffer. By allocating the intrinsic reward that can result in the great-

est improvement on multiple metrics in each stage, the curriculum

aims to find an optimal sequence of intrinsic reward choices to keep

improving the URL loop and optimize all the metrics.

Given previous work in URL, we still need to address two pri-

mary new challenges in building the curriculum: (1) how to is the

intrinsic reward for each learning stage selected? and (2) what are

the evaluation metrics? We propose our solutions to these two

problems in Section 5.3 and 5.2, respectively. In Section 5.2, we

discuss the exploration-exploitation trade-off for award selection in

URL and extend a multi-objective multi-armed bandits algorithm to

make non-stationary decisions on the reward used for each learn-

ing stage’s URL. In Section 5.3, we propose multiple metrics to

evaluate the capability of URL on exploration and skill learning.

These metrics not only include existing ones but also cover other

preferred properties.
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Figure 3: Block diagram of our proposed method: The inner loop
is an RL agent interacting with an environment and learning from
intrinsic reward selected by the reward selection module. The outer
loop is a reward selection module selecting intrinsic rewards based
on historical progress on the evaluation metrics.

5.2 Automatic Curriculum for URL
The curriculum for unsupervised RL should also be unsupervised,
meaning no prior knowledge or extrinsic metric is allowed. The

mechanism of choosing the next intrinsic reward for the agent

should only be based on the historical information collected from

environmental interactions. In order to make better choices, it also

needs to try different intrinsic rewards and evaluate the improve-

ment they bring to URL. Therefore, an exploration-exploitation

trade-off process, e.g., a multi-armed bandit algorithm, is critical to

curriculum development. Since our goal is an agent excelling on

multiple evaluation metrics, the curriculum should take all these

multiple objectives into account when selecting a reward for the

next stage of training. In addition, due to the non-stationary dynam-

ics of a curriculum, the best intrinsic reward may change across

learning stages. Hence, we need an automatic curriculum that is (1)

unsupervised, (2) multi-objective, and (3) able to handle nonstation-
arity.

We formulate it as a Multi-objective multi-armed bandit problem

and adopt the empirical Pareto UCB [11] algorithm because of its

easier implementation and tighter regret bound, and we need a

non-stationary extension of Pareto UCB to capture the changes.

This Empirical Pareto UCB should learn a task selection function

D : H → U whereH can contain any information about previous

interactions andU is the finite candidate set of intrinsic rewards

as tasks. The goal of D is to minimize the regret with respect to

the Pareto optimal for these objectives:

max

D
ED [

𝑇∑︁
𝑡=0

𝑃1

𝑡 ], max

D
ED [

𝑇∑︁
𝑡=0

𝑃2

𝑡 ], · · · , max

D
ED [

𝑇∑︁
𝑡=0

𝑃
𝑝
𝑡 ], (1)

where 𝑇 is the total number of selections in the curriculum and

𝑃 ∈ R𝑝 is a vector with each entry corresponding to each evaluation
metric, and it is the learning progress of the evaluation metrics

𝑃𝑡 = 𝑀𝑡 − 𝑀𝑡−1, where 𝑀𝑡 ∈ R𝑝 is a vector containing each

entry as a considered evaluation metric. 𝑃𝑖 is the 𝑖th entry of 𝑃 .

𝐻𝑡 ∈ H is composed of the (𝑃 𝑗 , 𝑢 𝑗 = D(𝐻𝑡−1)) tuples for all 𝑗 < 𝑡 .
The decision of task selection = D(𝐻𝑡 ) is recurrently affected by

𝑃 𝑗 ,∀𝑗 < 𝑡 in the experience.

For Empirical Pareto UCB, task is uniform randomly chosen from

the Pareto action set{
𝑢 | ∀𝑣 ∈ 𝑈 , 𝜇𝑡 (𝑣) + 𝑐

√︄
ln(𝑡 4

√︁
𝑝𝐾)

𝑁𝑡 (𝑣)
⊁ 𝜇𝑡 (𝑢) + 𝑐

√︄
ln(𝑡 4

√︁
𝑝𝐾)

𝑁𝑡 (𝑢)

}
,

(2)

where 𝑢𝑡 ∈ U is the intrinsic reward selected by UCB, and 𝜇 (𝑢) ∈
R𝑝 is the weighted sum of the past 𝑃 by training agent in the

intrinsic rewards of the task 𝑢. 𝑁 (𝑢) is the number of times 𝑢 has

been chosen. 𝐾 is a empirical number that upper bounds the Pareto

optimal set of arms. ⊁ means non-dominant. We say that 𝑥 is non-

dominated by 𝑦, 𝑦 ⊁ 𝑥 , if and only if there exists at least one

dimension j for which 𝑦 𝑗 < 𝑥 𝑗 [48].

This is a nonstationary multi-arm bandit, because the intrinsic

reward resulting in best learning progress might change along with

the agent’s learning process. There are two common ways to adapt

the UCB algorithm for nonstationary situations. One way to do this

is with discounting and another way is to use a sliding window [28].

We find that discounting has better performance in experiments.

Let 𝛾 ∈ (0, 1) be the discount factor, and define

𝜇
𝛾
𝑡 (𝑢) =

𝑡−1∑︁
𝑠=0

𝛾𝑡−𝑠𝑃𝑠 I{𝑢𝑠 = 𝑢}, (3)

and

𝑁
𝛾
𝑡 (𝑢) =

𝑡−1∑︁
𝑠=0

𝛾𝑡−𝑠 I{𝑢𝑠 = 𝑢}. (4)

When using discounting for nonstationary Empirical Pareto UCB,

the Pareto action set becomes{
𝑢 | ∀𝑣 ∈ 𝑈 , 𝜇𝛾𝑡 (𝑣) + 𝑐

√√
ln(∑𝑤∈U 𝑁

𝛾
𝑡 (𝑤) 4

√︁
𝑝𝐾)

𝑁
𝛾
𝑡 (𝑣)

⊁

𝜇
𝛾
𝑡 (𝑢) + 𝑐

√√
ln(∑𝑤∈U 𝑁

𝛾
𝑡 (𝑤) 4

√︁
𝑝𝐾)

𝑁
𝛾
𝑡 (𝑢)

}
.

(5)

Below in algorithm 1 is the algorithm outline of our proposed

Unsupervised Multi-Objective Curriculum (UMOC) algorithm.

Algorithm 1 UMOC

Candidate setU of intrinsic rewards, total number of task selec-

tions 𝑇 , set 𝐻𝑡 = ∅ initial Pareto action set P𝑎 = U, number of

episodes for each selected intrinsic reward 𝜏 , URL agent 𝐴.

𝑡 ← 0

while 𝑡 ≤ 𝑇 do
Get 𝑢𝑡 by uniformly sampling from P𝑎
Learn agent 𝐴 with intrinsic reward 𝑢𝑡 for 𝜏 episodes

Evaluate agent 𝐴 with metrics𝑀𝑡
𝑃𝑡 ← 𝑀𝑡 −𝑀𝑡−1

𝐻𝑡 ← 𝐻𝑡−1 ∪ (𝑃𝑡 , 𝑢𝑡 )
Update 𝜇

𝛾
𝑡 (𝑢), 𝑁

𝛾
𝑡 (𝑢) with 𝐻𝑡 by eqs. (3) and (4)

Update P𝑎 with 𝜇
𝛾
𝑡 (𝑢), 𝑁

𝛾
𝑡 (𝑢) by eq. (5).

end while

One question could be why we consider using Pareto UCB in-

stead of using a single objective method by linearly combining

the multiple objectives. 4.7.4 of [4] showed that optimizing the
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linearization (weighted sum) of objectives is incapable of finding

all the points in a non-convex Pareto optimal set of solutions.

5.3 Multiple Evaluation Metrics
In the following section, our goal is developing general and consis-

tent metrics to evaluate the process of exploration and skill learning.

They can be used as the objectives for the outer loop of task se-

lection, and their evaluations on the past intrinsic reward choices

can be the historical information affecting the choice of the re-

ward selection module. Previous works rely on visualizations of

trajetories to compare the performance of exploration and skill

learning [7] [24] [37] [13]. However, visualisations only show two

or three dimensions at most. Trying to reduce the number of state

dimensions for visualizable projections requires prior knowledge

about the importance of dimensions, which contradicts the concept

of unsupervised. Next, we will define general metrics that quantita-

tively evaluate exploration and skill learning, which can evaluate

URL online during training without any prior knowledge on down-

stream tasks.

State Coverage (SC). Exploration is important for RL in general. It

is also prerequisite for good skill learning, only when enough states

is explored can we assign them into skills. This metric evaluates

howmuch of the state space the agent can cover. Similar to previous

methods that approximate the state entropy using particle-based

methods, our metric is also based on particle-based entropy. By [44]

the particle-based entropy estimation should be a sum of the log of

the distance between each particle and its 𝑘-th nearest neighbor,

defined as

𝐻PB (𝑆) ∝
𝑛∑︁
𝑖=1

log ∥𝑠𝑖 − 𝑠 (𝑘 )𝑖
∥ . (6)

For robust and stable implementation, we use the modified version

from APT [31], see Appendix B. We find that with large numbers

of 𝑛 and 𝑘 , this estimation can reflect what a good state coverage is

in visualization, so we apply it for a large number of recent states

in the buffer to evaluate the learning progress of state coverage.

Particle-based Mutual Information (PMI). Mutual information

between state 𝑆 and a latent skill 𝑍 is an essential objective for

URL to learn a skill conditioned agent. Intuitively, [15] showed that,

under some assumption, maximizing the objective 𝐼 (𝑆 ;𝑍 ) initialize
the agent to be optimal for certain downstream tasks. Most previous

MISL approaches approximate this objective by approximating the

possibility density function of the state distribution, which is not

suitable for evaluation, because it could suffer from variance of

neural network approximation. PMI circumvent this by proposing

a non-parametric approach.

Mutual information between state and skill can be expanded as

𝐼 (𝑆 ;𝑍 ) = 𝐻 (𝑆) − 𝐻 (𝑆 |𝑍 ) . (7)

It is one entropy subtracting another, so we propose to implement

particle-based entropy to approximate them and obtain the mutual

information.

𝐼 (𝑆 ;𝑍 ) ≈ 𝐻̂PB (𝑆) − 𝐻̂PB (𝑆 |𝑍 ). (8)

The approximation bias of particle-based entropy in Eq. 6 depends

on 𝑘 and 𝑛, so with the large sample numbers of 𝑛 and 𝑘 for both

𝐻̂PB (𝑆) and 𝐻̂PB (𝑆 |𝑍 ), we can get accurate approximation from

this substraction.

Disentanglement. Disentanglement for URL should includes two

aspects for learned skills: Informativeness and separability. Infor-

mativeness here means information shared between a skill and

its inferred states. Separability in representation means that there

should be no information shared between two latent dimensions,

while here it means the trajectories inferred by two different skills

should be separated from each other.

Disentanglement metric such as SEPIN@k andWSEPIN [9] from

representation learning have been implemented for URL [24]. How-

ever, we argue that these twometrics are in fact not suitable for URL

in appendix C. Instead, we proposed novel metric 𝐼 (𝑆 ; 1𝑧) to mea-

sure the informativeness and separatability of an individual skill 𝑧,

random binary variable 1𝑧 is the indicator of 𝑍 = 𝑧. Appendix D

shows why it measures the properties and how it can be estimated.

Instead of ignoring the ones with lower informativeness, all learned

skills of an URL agent have an impact on the agent’s behavior, so

we care about the median and minimum of the informativeness of

the skills.

We defined Median SEParability and INformativeness (MSEPIN)

as

MSEPIN = med

𝑧
𝐼 (𝑆 ; 1𝑧), (9)

where med

𝑧
is the median over skills 𝑧, and Least SEParability and

INformativeness (LSEPIN) as

LSEPIN = min

𝑧
𝐼 (𝑆 ; 1𝑧) . (10)

Furthermore, we proposed theoretical justification for this metric,

showing that it can be a complement of 𝐼 (𝑆 ;𝑍 ) to evaluate how

well the URL agent is prepared for downstream tasks in appendix F

Proofs and explainations can be found in Appendix F.

Empirical analysis of our proposed metrics are in appendix H

6 EXPERIMENTS
In this section, we present experimental results with our proposed

automatic curriculum framework to show its advantages. To pro-

vide an intuitive comparison between visualizations and proposed

metrics, the results we present here are mainly from visualizable en-

vironments of continuousmazes [7] and Ant environment from [42].

There exists a URL benchmark [27], but it is not suitable for MISL

algorithms, as discussed and analyzed in appendix J.

6.1 Setup
We compare our methods with baselines in two categories:

Conventional URL with a single intrinsic reward Minimal

implementation of previous URL approaches, details in Appendix G.

Random curriculum We consider curriculums with randomly

selected intrinsic rewards. By comparing our proposed method

to this random curriculum, we could validate whether the bandit

algorithm for selection is necessary.

The intrinsic reward candidates for the experiments are ICM [38],

SMM [29], APT [31], for exploration and log(𝑝 (𝑧 |𝑠)) of DIAYN [13]

for skill learning. More details are in appendix G. In our experimen-

tal setting, every exploration intrinsic reward is linearly combined

with log𝑝 (𝑧 |𝑠) for skill learning, eg., the intrinsic reward for APT
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is a linear combination of 𝐻𝑃𝐵 (𝑆) and log 𝑝 (𝑧 |𝑠). We call the full

version of our proposed method UMOC, and the single objective

version, when the metric 𝑀 is a one-dimensional value, of our

method USOC.

6.2 Advantages of Curriculum URL

(a) APT (b) ICM (c) USOC (d) UMOC

Figure 4: Tree maze trajectories of (a) APT, (b) ICM, (c) USOC, and (d)
UMOC.

Here we show how the combination of intrinsic rewards can take

advantage of the candidates and complement their disadvantages.

In a continuous tree maze environment, Our method uses APT and

ICM as two arms. For the tree maze environment, we consider a

single objective of State Coverage (SC) defined in Section 5.3 We

run APT, ICM, Random curriculum and our method with the same

series of 5 random seeds. The total number of reward selections is

100, one selection made every 500 episodes.

Table 1: State coverage comparison between single intrinsic rewards
and combining them with our method USOC, the second value in
the entries are metrics normalized by the maximum

APT ICM Random USOC

mean 1397 / 0.947 1215 / 0.824 1391 / 0.943 1475 / 1.0
std 54.12 / 0.18 304.28 / 1.0 114.82 / 0.38 48.99 / 0.16

By first looking at the trajectories learned by APT and ICM

shown in Fig. 4a and 4b, the results show that APT prefers to make

the agent expand its state coverage locally. The trajectories are

getting thicker but stay near the starting state. ICM reaches further

areas, but its trajectories are thin, possibly because its reward relies

on a prediction model of environmental dynamics. When this model

is accurate in a large part of the state space, the intrinsic reward

might lead the agent to go only along where the model is not as

accurately approximated. We found that as learning progresses,

Ours (SO) prefers to choose APT more. The number of times APT

is chosen in the later half of training is on average 32.6% higher

than the first half. This is in agreement with an intuition that for

better state coverage, the agent should first reach further and then

expand its trajectories.

In table 1, it’s clear that USOC dominates both in mean per-

formance and performance variance. The baseline of the random

curriculum could not be better than the single APT, so the order of

intrinsic rewards in the curriculum matters and USOC is capable of

finding a good curriculum.

6.3 Advantages of Multi-Objective for
Curriculum

To test the advantages of multi-objective, for the same tree maze,

we consider multiple objectives including SC, PMI and LSEPIN.

Intrinsic reward candidates for selection are SMM, ICM and APT.

Table 2 shows the results that we compare the multi-objective

Pareto UCB to UCB with only SC objective. Overall, MO works

better than SO. It means that learning multiple objectives benefits

the agent. Fig. 4 (c) and (d) show two agents learned by USOC with

single objective of SC and UMOC learned by multi-objective of {SC,

PMI, LSEPIN} respectively. The SO agent has 3 skill on the left side

of the tree, while theMO agent has trajectories of all skills separated.

This is an example of why UMOC has better disentanglement on

average.

Table 2: Comparison between UMOC and USOC. The second value
in the entries are metrics normalized by the maximum

Method SC PMI LSEPIN MSEPIN

UMOC 1394 / 0.945 921.34 / 1.0 198.61 / 1.0 274.66 / 1.0
USOC 1475 / 1.0 887.01 / 0.96 179.08 / 0.90 232.91 / 0.85

Table 3: Comparison between UMOC and baselines for 5x5 maze

Method SC PMI LSEPIN MSEPIN

UMOC 1552.8 / 1.0 1076.9 / 1.0 251.6 / 1.0 345.4 / 1.0
Random 1338.4 / 0.86 883.2 / 0.82 148.6 / 0.59 284.9 / 0.82

APT 1457.1 / 0.94 848.7 / 0.79 188.7 / 0.75 266.4 / 0.77

SMM 1279.9 / 0.82 764.5 / 0.71 137.4 / 0.55 229.7 / 0.67

ICM 1375.1 / 0.89 647.5 / 0.60 83.3 / 0.33 228.7 / 0.66

(a) ICM (b) SMM

(c) APT (d) UMOC

Figure 5: Trajectories samples of the crazy maze: (a) ICM, (b) SMM,
(c) APT, and (d) UMOC.

Fig. 5 shows sample trajectories on the the crazy maze environ-

ment, which is a more complicated 2D maze environment than the

tree maze. Our method works better than others. Table 3 shows
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that the well-rounded performance of our proposed method is con-

sistent.

6.4 More results for 2D crazy maze

(a) APT (b) ICM

(c) SMM (d) UMOC

Figure 6: Trajectories samples of the crazy maze: Comparing single
intrinsic rewards and our methods with multi-objective

Figure 7: Multi-metrics.

We also evaluated our

method on a larger crazy

maze environment. This is

an environment much more

difficult to explore than the

simple tree maze.

In Fig. 7, we compare

of our method with indi-

vidual intrinsic rewards and

the random curriculum base-

line. As we can see from

Fig. 7, as expected, our pro-

posed method achieves a

well-rounded evaluation re-

sult for all 4 proposed metrics. Also, the quantitative result intu-

itively accords with visualizations in Fig. 6. For example, SMM has

better SC metric but less disentanglement (MSEPIN and LSEPIN)

than APT. In 6, SMM covered more to the upper right of the maze,

but its green and purple skills seem to be entangled with each other.

6.5 Mujoco Ant environment
We have provided experimental results with complicated randomly

generated mazes in section 6.4. Besides maze environments, we

have also tested our multi-objective method on a high-dimensional

Mujoco Ant by the setting from DADS[42], which learns naviga-

tion skills for ant and the downstream tasks are to reach certain

destinations. It is a challenging environment for URL.

The reward candidates for our method are minimal implementa-

tions of SMM, ICM, and APT, their intrinsic rewards are chosen to

be linearly combined with log 𝑝 (𝑧 |𝑠) for skill learning. The original
DADS implementation exploited prior knowledge of state dimen-

sions and used specific tuning and scaling as well as other tricks,

(a) SMM (b) ICM (c) APT

(d) Rand (e) UMOC (f) DADS

Figure 8: Ant trajectories samples projected on x-y axis: (a) ICM,
(b) SMM, (c) APT, and (d) randomly choose rewards, (e) UMOC (f)
original implementation of DADS.

Table 4: Metrics and downstream task performance

R SC PMI LSEPIN MSEPIN

DADS (origin) -0.340 2501.23 248.15 29.91 71.81

UMOC -0.467 2271.13 132.54 26.71 36.64
Random -0.999 308.30 21.04 ≈ 0 4.31

SMM -0.680 2416.86 122.95 18.19 31.77

ICM -1.001 626.64 30.19 ≈ 0 12.64

APT -0.991 1081.82 28.15 2.63 27.78

Correlation efficient 0.91 0.96 0.99 0.88

so it has the best metric evaluation, visualization, and downstream

task performance. The minimal implementations of ICM and APT

without specific tuning have bad performance for this environ-

ment, which was also shown in [24, 36]. However, our method can

combine the advantages and complement the disadvantages of the

candidates, resulting in comparable evaluation metrics and down-

stream task performance to the original DADS implementation.

The experimental results also validated the strong correlation

between our proposedmetrics and downstream task performance as

shown in the last row of table 4.More results of the Ant environment

are in Appendix K.

7 CONCLUSION
We proposed quantifiable and general evaluation metrics for URL

and justified their necessity. Our proposed metrics can stably mea-

sure the state coverage for exploration, as well as mutual informa-

tion and disentanglement for skill learning. This helps to enable

evaluation of URL without specific downstream tasks. Furthermore,

we proposed an automatic curriculum to select intrinsic rewards

based on the agent’s learning progress. This automatic curriculum

does not require prior knowledge of the environment or its intrinsic

reward candidates. It is a nonstationary Pareto UCB that utilizes

historical evaluations for decision-making and tries to train the

agent to be well-rounded in all aspects of the considered metrics.

Our experimental results have demonstrated the effectiveness of

our method. The proposed metrics evaluate with fully observable

state samples, one future work would be developing evaluation

methods for pixel-based or partially observable observations.
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