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ABSTRACT
We study a majority based preference diffusion model in which the

members of a social network update their preferences based on

those of their connections. Consider an undirected graph where

each node has a strict linear order over a set of 𝛼 alternatives. At

each round, a node randomly selects two adjacent alternatives and

updates their relative order with the majority view of its neighbors.

We bound the convergence time of the process in terms of the

number of nodes/edges and 𝛼 . Furthermore, we study the minimum

cost to ensure that a desired alternative will “win” the process,

where occupying each position in a preference order of a node has

a cost. We prove tight bounds on the minimum cost for general

graphs and graphs with strong expansion properties.

Furthermore, we investigate a more light-weight process where

each node chooses one of its neighbors uniformly at random and

copies its order fully with some fixed probability and remains un-

changed otherwise. We characterize the convergence properties

of this process, namely convergence time and stable states, using

Martingale and reversible Markov chain analysis.

Finally, we present the outcomes of our experiments conducted

on different synthetic random graph models and graph data from

online social platforms. These experiments not only support our

theoretical findings, but also shed some light on some other funda-

mental problems, such as designing powerful countermeasures.
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1 INTRODUCTION
Humans constantly form and update their preferences on different

topics. In the process of making such decisions, we tend to rely

not only on our own personal judgment and knowledge, but also

that of others, especially those whose opinion we value and trust.

As a result, opinion diffusion, influence propagation, and (mis)-

information spreading can affect different aspects of our lives from

economy and defense to fashion and personal affairs.
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Recent years have witnessed a booming development of online

social networking platforms. The enormous popularity of these

platforms has led to fundamental changes in how humans share

and form opinions. Social phenomena such as disagreement and

polarization that have existed in human societies for millennia, are

now taking place in an online virtual world and are tightly woven

into everyday life, with a substantial impact on society.

The motive to gain insights on how opinions are shaped and

evolved in multi-agent systems has been the driving force behind

an interdisciplinary research effort in diverse areas such as sociol-

ogy [26], economics [18], political science [24], mathematics [3],

physics [14], and computer science [8]. Within the field of com-

puter science, especially computational social choice and algorith-

mic game theory, there has been a rising interest in developing

and analyzing mathematical models which simulate the opinion

diffusion in a network of individuals, cf. [5, 28].

The following generic and abstract model is the foundation for

most of the proposed opinion diffusion models. Consider a graph

where each node has a color and the nodes change their color ac-

cording to an updating rule, which is a function of the color of the

neighboring nodes, in a defined order. The graph is meant to repre-

sent a social network, where the individuals are modeled as nodes

and edges indicate relations between them, e.g., friendship, common

interests, or advice. The color of a node stands for its preference

about a certain topic, e.g., an order over a set of candidates.

In the abundance of opinion diffusion models, cf. [8, 22, 23, 27,

32, 37–39], the majority-based models, where an individual updates

its opinion to reflect the majority view among its connections, have

gained substantial popularity and interest. In most of these models,

the individual opinions are modelled as binary views on a given

issue, that is, a node has one of the two colors black and white.

However, opinions are sometimes complex objects that cannot

be accurately modelled in binary terms. As a result, there is an

emerging line of research, cf. [6, 7, 17], which studies the models

where the preferences are expressed as linear orders over a set

of alternatives, following standard conventions in voting theory,

cf. [30, 31]. In the present paper, we focus on a model, called the

Preference Diffusion model, which falls under the umbrella of the

above line of research, that is, the nodes have an ordered list of

preferences and follow a majority updating rule. This model was

proposed in [17] and was generalized by [6].

Arguably, the most well-studied problem in the area of opinion

diffusion models is determining the convergence properties of the

opinion dynamics: Is convergence to stable states guaranteed and

if yes, what are the upper and lower bounds on the convergence

time? Since in most cases the opinion dynamics can be modelled

as a Markov process, this problem is usually equivalent to deter-

mining the stationary distribution and convergence time of the

corresponding Markov chain, cf. [13].
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Marketing campaigns routinely use online social platforms to

sway people’s opinions in their favor, for instance by targeting seg-

ments of members with free or discount samples of their products

or misleading information. The ultimate goal is to trigger a large

cascade of product adoptions through the word-of-mouth effects by

targeting a small set of influential individuals. Therefore, a question

which has been studied extensively is finding the minimum cost

of manipulating the preferences of the individuals to ensure that a

favored alternative dominates once the process ends, cf. [2, 12].

Our main focus is to address the above problems for the Prefer-

ence Diffusion model by providing theoretical findings (building on

various graph and probabilistic tools) and conducting experiments

on data from real-world social networks.

1.1 Preliminaries
Graph Definitions. Let 𝐺 = (𝑉 , 𝐸) be a simple undirected graph,

where 𝑉 := {𝑣1, · · · , 𝑣𝑛} and 𝐸 ⊆ {{𝑣𝑖 , 𝑣 𝑗 } : 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗}. (We

always assume that 𝐺 is undirected; otherwise, it is mentioned

explicitly.) Furthermore, 𝑛 and𝑚 denote the number of nodes and

edges in 𝐺 , respectively.

For a node 𝑣 ∈ 𝑉 , Γ (𝑣) := {𝑢 ∈ 𝑉 : {𝑢, 𝑣} ∈ 𝐸} is the neighbor-
hood of 𝑣 . For a set 𝑆 ⊂ 𝑉 , we define Γ𝑆 (𝑣) := Γ (𝑣) ∩ 𝑆 . Moreover,

𝑑 (𝑣) := |Γ (𝑣) | is the degree of 𝑣 . For two node sets 𝑆 and 𝑆 ′, we
define 𝑒 (𝑆, 𝑆 ′) := |{(𝑣,𝑢) ∈ 𝑆 × 𝑆 ′ : {𝑣,𝑢} ∈ 𝐸}| where 𝑆 × 𝑆 ′ is the
Cartesian product of 𝑆 and 𝑆 ′.

Random Graph. Let G𝑛,𝑞 denote the Erdős-Rényi (ER) random

graph, which is the random graph on the set {𝑣1, · · · , 𝑣𝑛} where
each edge is present independently with probability (w.p.) 𝑞.

Expansion. There exist different parameters to measure how

expansive (i.e., well-connected) a graph is. We consider an algebraic

characterization of expansion. Assume that 𝐴 (𝐺) is the adjacency
matrix of graph 𝐺 = (𝑉 , 𝐸) and define 𝐷 to be the diagonal matrix

where the entries of the diagonal are the degrees of the nodes. We

consider the normalized adjacency matrix𝑀 = 𝐷− 1

2𝐴𝐷− 1

2 , which

is symmetric. Let 1 = 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 ≥ −1 be the eigenvalues

of 𝑀 . We denote the second-largest absolute eigenvalue of the

normalized adjacency matrix by 𝜆 (𝐺) := max2≤𝑖≤𝑛 |𝜆𝑖 |. For our
purpose here, it suffices to note that graph𝐺 has stronger expansion

properties (i.e., is more well-connected) when 𝜆 (𝐺) is smaller.

Preference Diffusion Model. Let A be a set of 𝛼 alternatives
for some 𝛼 ∈ N. The preferences of a node 𝑣𝑖 ∈ 𝑉 are represented

as a strict linear order ≻𝑖⊂ A × A. For two distinct alternatives

𝑎, 𝑏 ∈ A, we write 𝑎 ≻𝑖 𝑏 if (𝑎, 𝑏) ∈≻𝑖 , i.e., 𝑎 is preferred over 𝑏.

We always assume that an order is a strict linear order; otherwise,

it is mentioned explicitly. Thus, we always have either 𝑎 ≻𝑖 𝑏 or

𝑏 ≻𝑖 𝑎. We say the alternatives 𝑎, 𝑏 are adjacent in ≻𝑖 if they appear
next to each other in the order, i.e., there is no alternative 𝑐 such

that 𝑎 ≻𝑖 𝑐 ≻𝑖 𝑏 or 𝑏 ≻𝑖 𝑐 ≻𝑖 𝑎. Furthermore, an alternative 𝑎 is

in the 𝑘-th position in order ≻𝑖 if exactly 𝑘 − 1 other alternatives

are preferred over 𝑎. For example, let A = {𝑎, 𝑏, 𝑐} (which implies

𝛼 = 3) and ≻1= {(𝑎, 𝑏), (𝑏, 𝑐), (𝑎, 𝑐)} for node 𝑣1 ∈ 𝑉 . This can also

be written as 𝑎 ≻1 𝑏 ≻1 𝑐 , where 𝑎, 𝑏, and 𝑐 are in the first, second,

and third position, respectively. In this order, 𝑎 and 𝑏 (similarly,

𝑏 and 𝑐) are adjacent. Furthermore, 𝑎 is preferred over 𝑏 and 𝑏 is

preferred over 𝑐 .

A profile P = (≻1, · · · , ≻𝑛) contains the preferences of all nodes.
For two alternatives 𝑎, 𝑏 and a profile P, let 𝑉 P

𝑎𝑏
denote the set of

nodes where 𝑎 is preferred over 𝑏 in P and let 𝑛P
𝑎𝑏

:= |𝑉 P
𝑎𝑏

|. We

sometimes write 𝑛𝑎𝑏 , when P is clear from the context. Let 𝑉 P
≻ be

the set of nodes which have order ≻ in profile P and𝑉
P
≻ := 𝑉 \𝑉 P

≻ .

Furthermore, we define 𝑛P≻ := |𝑉 P
≻ | and 𝑛P≻ := |𝑉 P

≻ |.
Consider a graph 𝐺 and an initial profile P0. In the Preference

Diffusion (PD) model, in each round, some nodes are selected to

update their preferences. Each selected node 𝑣𝑖 chooses two distinct

alternatives in A uniformly at random (u.a.r.), say 𝑎, 𝑏. If 𝑎, 𝑏 are

adjacent in ≻𝑖 and more than half of 𝑣𝑖 ’s neighbors disagree with

the relative order of 𝑎, 𝑏 in ≻𝑖 , then it swaps 𝑎, 𝑏 in ≻𝑖 ; otherwise,
it remains unchanged. In the Synchronous Preference Diffusion

(SPD) model, the set of nodes which update is equal to 𝑉 in every

round. In the Asynchronous Preference Diffusion (APD) model, in

each round a node is chosen u.a.r. to update.

We also define the Random Preference Diffusion model, where

starting from an initial profile P0, in each round every node decides

independently and with some fixed probability 0 < 𝑞 < 1 to update

its order or not. If a node decides to update its order, it picks one of

its neighbors u.a.r. and copies its order fully.

We let P𝑡 for 𝑡 ∈ N denote the profile obtained in round 𝑡 , where

graph𝐺 , initial profile P0, and the model are clear from the context.

An update from P𝑡 to P𝑡+1 is effective if P𝑡 ≠ P𝑡+1. A profile P is

called fixed if there is no effective update possible from P.

We should mention that the PD model in the special case of

|A| = 2 is usually known as the Majority model, which is a very

well-studied model in the literature, cf. [13, 34]. Thus, the PD model

can be seen as a generalization of the Majority model.

Winning. In Section 2, we prove that the PD process always

reaches a fixed profile. We say an alternative 𝑎 wins the process if
it is in the first position for all nodes in the final profile. Similarly,

for an order ≻, we say it wins if all nodes have order ≻ in the final

profile. It is worth mentioning that most of our results would still

hold if we relax the definition of winning, e.g., we require that 80%

of nodes satisfy the desired property instead of all nodes.

Cost. For a graph𝐺 , let a placement determine a position from

1 to 𝛼 on each node. A placement is called a solution in the APD

(or SPD) model on 𝐺 whenever the following holds: If an alterna-

tive occupies the positions determined by the placement in the

initial profile, then that alternative wins, regardless of how other

alternatives are positioned and the random choices of the process.

(Most of our results would also hold for a relaxed version of this

definition.) In a solution, the cost for each node 𝑣 is defined to be

𝛼 minus the selected position in 𝑣 (for example, the cost is 𝛼 − 1

if the first position is chosen, it is 𝛼 − 2 if the second position is

chosen, and 0 if the last one is chosen). The cost of a solution is

the summation of the cost of all nodes. We define MC(𝐺) to be

the minimum cost for a solution on𝐺 . Furthermore, we letNS(𝐺)
denote the number of solutions for 𝐺 .

Condorcet winner.We say an alternative 𝑎 is 𝜖-Condorcet in
a profile P and for some constant 𝜖 > 0 if 𝑛P

𝑎𝑏
> 𝑛P

𝑏𝑎
+ 𝜖𝑛 for any

alternative 𝑏 ≠ 𝑎. (In voting theory [30, 31], this is usually known

as the Condorcet winner for 𝜖 = 0, where 𝑎 wins against every

other alternative in a head-to-head comparison.) Similarly, we say
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an order ≻ is 𝜖-Condorcet in a profile P when the following holds:

For every two alternatives 𝑎, 𝑏 ∈ A, if 𝑎 ≻ 𝑏, then 𝑛P
𝑎𝑏

> 𝑛P
𝑏𝑎

+ 𝜖𝑛.
Some Useful Inequalities. Let us provide the Chernoff bound

and Chebyshev’s inequality, cf. [10], which come in handy later.

• Chernoff Bound: Suppose𝑥1, · · · , 𝑥𝑛 are independent Bernoulli

random variables and let 𝑋 denote their sum. Then, P[𝑋 ≤
(1 − 𝜖′) E[𝑋 ]] ≤ exp

(
−𝜖 ′2E[𝑋 ]

2

)
for 0 ≤ 𝜖′ ≤ 1.

• Chebyshev’s Inequality: Let 𝑋 be a random variable with

finite variance and 𝑓 > 0. Then, we have P[|𝑋 − E[𝑋 ] | ≥
𝑓 ] ≤ 𝑉𝑎𝑟 [𝑋 ]/𝑓 2

.

Assumptions. All logarithms are to base 𝑒 and we let 𝑛 (the

number of nodes) tend to infinity. We say an event happens with

high probability (w.h.p.) when it occurs w.p. 1−𝑜 (1). As mentioned,

the PD model is equivalent to the Majority model when |A| = 2,

but in the present paper we focus on the case of |A| > 2. Thus,

whenever we talk about the PD model, it is assumed that |A| > 2;

otherwise, we use the termMajoritymodel. Furthermore, we always

assume that the underlying graph is connected; otherwise, it is

stated explicitly.

1.2 Our Contribution
We study the PD model developed in [6], based on a preliminary

version of the model proposed in [17]. However, unlike the present

paper which focuses on undirected graphs, in [6] the process was

studied on directed graphs, especially acyclic ones and in [17] the

special case of a complete graph was analyzed.

How long does it take for the process to reach a stable state?

And what does such a stable state look like? Building on some

potential function arguments, we prove that the PD process always

converges to a fixed profile. For the asynchronous set-up, we prove

that this happens in O(𝑛𝑚𝛼4) rounds w.h.p. We also argue the

tightness of this bound.

We study the minimum cost to guarantee that an alternative 𝑎

wins the process, i.e., MC(𝐺). We prove that, in both the SPD and

APD model, the minimum cost is at least

√
𝑛(𝛼 − 1) and this bound

is tight, that is, there are graphs where there is a solution of cost√
𝑛(𝛼 − 1).
The above result implies that there are graph classes where an

extremely small subset of nodes, i.e.,

√
𝑛(𝛼 − 1) nodes, has a dis-

proportionate amount of power and can engineer the outcome of

the process. A natural question arises is whether there are graphs

where the power is distributed more uniformly among the nodes,

which as a result would limit the potency of an adversary who at-

tempts to manipulate the process. In [17], it was shown that when

the underlying graph is complete, then the minimum cost to guar-

antee a win is 𝑛(𝛼 − 1)/2, that is, an adversary needs to bribe at

least half of the nodes to ensure its desired outcome. Thus, a com-

plete graph structure is immensely resilient against the mentioned

adversarial attacks. However, demanding the graph to be complete

is quite restrictive and also unrealistic. We prove a similar result for

a much larger class of graphs, namely graphs with a certain level

of expansion and regularity. We actually provide our results in a

more general form and in terms of 𝜖-Condorcet with a logarithmic

bound on the convergence time (which is shown to be tight).

We also initiate the study of the number of solutions for a graph

𝐺 . We provide tight bounds for different classes of graphs. In par-

ticular, for a cycle 𝐶𝑛 we prove the bound of NS(𝐶𝑛) = Θ̃(𝜓𝑛) for
some𝜓 ∈ (𝛼1/3, 𝛼1/3 + 0.22), where Θ̃ hides polynomial terms in 𝑛

and 𝛼 . For the proof, we show that the number of solutions can be

bounded by a recurrence relation, which can then be solved using

classical methods.

The primary objective of introducing the PD model in [17] was

to develop a method for reaching consensus on the choice of order

in the network. However, as it is observed in [17] and [6], the PD

model does not fulfill this objective for many classes of graphs. On

the other hand, we prove that the Random PDmodel always reaches

consensus and this takes O(𝑛4) rounds in expectation. For graphs

with strong expansion properties, the stronger bound of O(𝑛 log𝑛)
exists. Furthermore, the Random PD model is a “lightweight” and

“fair” process. It is lightweight since it polls the order of only one of

its neighbors, in contrast to the APD and SPD model which require

the full knowledge of the preferences of the neighboring nodes. It

is fair in the sense that, as we will prove, the probability that the

process converges to an order ≻ is proportional to the summation

of the degree of nodes which hold order ≻ initially.

We conduct several experiments for our models on different

classes of graphs, such as cycles and ER random graphs, and graph

data from real-world social networks, such as Facebook and Twitter.

Our experiments support and complement our theoretical find-

ings, such as the results on the convergence time and resilience

against adversarial attacks. Furthermore, we develop and evaluate

two countermeasures to stop an adversary from engineering the

outcome of the process. Roughly speaking, the first countermeasure

requires each node to choose some of its connections at random

and in the second countermeasure, the nodes give more weight to

the preferences of the nodes which are more “similar” to them.

1.3 Related Work
As mentioned, our main focus is on the PD model, which was

introduced in [6, 17]. In [17], the PD model was studied for the

special case of complete graphs and in [6] the study of the PD

model was extended to general directed graphs, with a special

focus on acyclic graphs. Other similar preference diffusion models

have also been considered. For example, in [7] a variant called

liquid democracy was studied, where voters have partial preference

orders and can delegate their vote to another voter of their choice

for some preference comparisons. Furthermore, a majority based

model was introduced in [4], where each node has to choose a fixed

number of alternatives from a pool of alternatives.

What does the final state look like? In [17], it was proven that for

the APD model on a complete graph, the process always reaches

a fixed profile and if there is a Condorcet winner 𝑎 in the initial

profile, 𝑎 wins the process. Brill et al. [6] proved that for both the

APD and SPD model on a directed acyclic graph, the corresponding

Markov chain is also acyclic, which implies that the process always

reaches a fixed profile. For general graphs, they showed that if

the initial profile and all profiles which possibly arise during the

process satisfy a certain property, then the process reaches a fixed

profile. However, it was left open whether this is true for any graph
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regardless of the initial profile. They also characterized the set of

possible final profiles for acyclic directed graphs and simple cycles.

For the Majority model, i.e., the PD model with |A| = 2, it

is known [16] that the asynchronous version always reaches a

fixed profile while the synchronous variant might deterministically

switch between two profiles.

What is the convergence time? To our knowledge, we are the

first to study the convergence time of the APD and SPD model.

However, the convergence time has been studied extensively for

other opinion diffusion models. Poljak and Turzik [29] proved the

upper bound of O(𝑛2) on the convergence time of the Majority

model (which is shown [13] to be tight, up to some poly-logarithmic

factor) while stronger bounds are known for special classes of

graphs. For example, for a 𝑑-regular random graph, the tight bound

of O(log𝑑 𝑛) was proven in [15]. On the other hand, once some

randomness is introduced to the updating rule, the process might

need exponentially many rounds to converge, cf. [20].

What is the minimum cost to win? The minimum cost to guar-

antee the dominance of a particular alternative in the final profile

has been investigated for different majority based models. In [34],

this problem is studied for the Majority model on expander graphs,

and in [2] the problem is investigated experimentally in the set-up

where a certain subset of nodes, known as elites, have a higher

influence factor than ordinary nodes. Furthermore, Zehmakan [35]

focused on a variant where initially all nodes are neutral about the

alternatives except a small subset of nodes, known as seeds or early

adopters, which will lead the preference formation process.

2 CONVERGENCE TIME
We provide our results about the convergence of the APD model in

Theorem 2.2. Its proof is built on Lemma 2.1 whose proof is given

in the full version [36], in addition to the proof of the tightness of

our convergence results.

Lemma 2.1. In the coin flip process with parameters 𝑝 and 𝐾 , for
some probability 0 < 𝑝 ≤ 1 and a positive integer 𝐾 , we keep flipping
a coin, which comes head w.p. 𝑝 and tail otherwise independently, until
we see 𝐾 heads. Let the random variable 𝑋 denote the number of flips
required. Then, we have P

[
1

2
(𝐾/𝑝) < 𝑋 < 3

2
(𝐾/𝑝)

]
≥ 1 − 1/(4𝐾).

Theorem 2.2. In the APDmodel on a graph𝐺 = (𝑉 , 𝐸), the process
reaches a fixed profile and this takes at most 𝑛𝑚𝛼4 rounds w.h.p.

Proof. For an edge 𝑒 = {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸 and profile P, let us define

the potential 𝜙𝑒 (P) of the edge 𝑒 in P to be the number of pairs

of two distinct alternatives 𝑎, 𝑏 such that 𝑣𝑖 and 𝑣 𝑗 disagree on the

order of 𝑎 and 𝑏, i.e., either 𝑎 ≻𝑖 𝑏 and 𝑏 ≻𝑗 𝑎 or 𝑏 ≻𝑖 𝑎 and 𝑎 ≻𝑗 𝑏.

Let Φ𝐺 (P) :=
∑
𝑒∈𝐸 𝜙𝑒 (P) be the potential of graph 𝐺 in P.

Note that the potential of an edge 𝑒 is at most

(𝛼
2

)
since there are

this many pairs of distinct alternatives. Thus, Φ𝐺 (P) ≤ 𝑚
(𝛼
2

)
for

any profile P. It is also easy to see that Φ𝐺 (P) ≥ 0. Furthermore,

whenever we swap two adjacent alternatives 𝑎, 𝑏 in the order of a

node 𝑣𝑖 in the APD model, the potential decreases at least by one.

This is simply true because there is a subset of neighbors of size

larger than |Γ(𝑣𝑖 ) |/2 that 𝑣𝑖 disagreed with on the relative order of 𝑎

and 𝑏 before the update, but agrees with after. Thus, if the process is

in a profile with at least one effective update, it eventually updates

and the potential decreases. Since the initial potential is at most

𝑚
(𝛼
2

)
and it can never become negative, the process must eventually

reach a fixed profile.

It remains to prove the bound on the convergence time. If the

process has not reached a fixed profile, there is at least a node

𝑣𝑖 and a pair of alternatives 𝑎, 𝑏 such that 𝑎, 𝑏 are adjacent in ≻𝑖
and 𝑣𝑖 disagrees with more than half of its neighbors on the order

of 𝑎, 𝑏. If we swap 𝑎, 𝑏 in ≻𝑖 , the potential function decreases at

least by one. The probability that the node 𝑣𝑖 and the pair 𝑎, 𝑏

are chosen is equal to 1/(𝑛
(𝛼
2

)
). Thus, we start with a potential

of at most 𝐾 = 𝑚
(𝛼
2

)
and in each round it decreases at least by

one w.p. at least 𝑝 = 1/(𝑛
(𝛼
2

)
), regardless of all the previous steps,

and the process stops when it reaches potential zero (or possibly

even earlier). Thus, the convergence time of the process can be

upper-bounded by the number of flips required by the coin flip

process, defined in Lemma 2.1, with parameters 𝑝 and 𝐾 . Let the

random variable 𝑋 denote the required number of coin flips. By

applying Lemma 2.1, we have P
[
𝑋 < 3

2
(𝐾/𝑝)

]
≥ 1 − (4/𝐾). Since

(3/2) (𝐾/𝑝) = (3/2)𝑛𝑚
(𝛼
2

)
2 ≤ 𝑛𝑚𝛼4

and 4/𝐾 ≤ 4/𝑚 = 𝑜 (1) (note
since we assume 𝐺 is connected,𝑚 ≥ 𝑛 − 1), we conclude that the

process reaches a fixed profile in at most 𝑛𝑚𝛼4
rounds w.h.p. □

Synchronous Set-up. The set of fixed profiles is identical in

both the APD and SPD model. Furthermore, if a transition from

profile P to P′
is possible in the APD model, it is also possible

in the SPD model (because there is a non-zero probability that

in the SPD model all nodes choose two non-adjacent alternatives,

except the node which updates in the APD model). According to

Theorem 2.2, in the APD model there is a path from each profile

to a fixed profile. Combining the above three statements, we can

conclude that the SPD model also always reaches a fixed profile.

However, the problem of determining the convergence time in the

SPD model is left as an open problem.

3 MINIMUM COST TOWIN
3.1 General Graphs

Theorem 3.1. In the APD and SPD model on a graph 𝐺 = (𝑉 , 𝐸),
MC(𝐺) ≥

√
𝑛(𝛼 − 1).

Proof. Consider an arbitrary solution S and two alternatives

𝑎, 𝑏 ∈ A. Let P be a profile where all positions determined by S
are occupied by 𝑎. Furthermore, for each node if the first position

is taken by 𝑎, assign the second position to 𝑏; otherwise, assign the

first one. Since S is a solution, in the process starting from P, 𝑎

must win regardless of the random choices during the process.

Let 𝐿 be the set of nodes which place 𝑎 in the first position. If

there is a node 𝑣 ∈ 𝐿 such that |Γ𝐿 (𝑣) | < |Γ𝑉 \𝐿 (𝑣) |, then it is possible
that in the next round of the APD process, only the order of 𝑎 and

𝑏 in 𝑣 is updated (i.e., 𝑏 moves to the first position). This is also true

for the SPD process since it is possible that all other nodes pick two

alternatives which are not adjacent. If we continue this argument

repeatedly, we must reach a profile P′
where 𝑏 is ranked first in

all nodes except in a non-empty set 𝐿′ ⊆ 𝐿, where 𝑎 is ranked first,

and for every node 𝑤 ∈ 𝐿′, |Γ𝐿′ (𝑤) | ≥ |Γ𝑉 \𝐿′ (𝑤) |. (Note that 𝐿′
is non-empty because otherwise the process has reached a profile

with 𝑏 being ranked first in every node, which is a contradiction.)

Since |Γ𝐿′ (𝑤) | ≤ |𝐿′ | − 1, we have 𝑒 (𝐿′,𝑉 \ 𝐿′) ≤ 𝑙 ′ (𝑙 ′ − 1) for
𝑙 ′ := |𝐿′ |.
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There is no set 𝐵 ⊆ 𝑉 \ 𝐿′ such that for every 𝑣 ∈ 𝐵, |Γ𝐵 (𝑣) | ≥
|Γ𝑉 \𝐵 (𝑣) | because otherwise all nodes in 𝐵 will keep 𝑏 as their first

alternative forever, which is a contradiction. Therefore, there is a

labeling 𝑢1, · · · , 𝑢𝑛−𝑙 ′ of the nodes in 𝑉 \ 𝐿′ such that for every

1 ≤ 𝑖 ≤ 𝑛 − 𝑙 ′, 𝑢𝑖 has more neighbors in 𝐿′ ∪ {𝑢 𝑗 : 𝑗 < 𝑖} than
the rest of nodes. If we start from 𝐿′ and keep adding 𝑢𝑖 ’s to the

set one by one, the number of edges on the boundary of the set

decreases at least by one after each addition. Note that we do 𝑛 − 𝑙 ′
additions and as we proved in the previous paragraph we start

with 𝑒 (𝐿′,𝑉 \ 𝐿′) ≤ 𝑙 ′ (𝑙 ′ − 1) edges. Thus, we can conclude that

𝑛 − 𝑙 ′ ≤ 𝑙 ′ (𝑙 ′ − 1), which gives

√
𝑛 ≤ 𝑙 ′. Finally, this implies that

the cost of solution S is at least 𝑙 ′ (𝛼 − 1) ≥
√
𝑛(𝛼 − 1) since the

first position of nodes in 𝐿′ are chosen in S. □

Tightness. Consider a clique of size
√
𝑛 and attach

√
𝑛−1 leaves

to each node in the clique. This 𝑛-node graph has a solution of cost√
𝑛(𝛼 − 1), namely the placement which selects the first position in

all nodes in the clique and the last position in the others. A proof is

given in the full version [36].

3.2 Expander Graphs
Our results about expander graphs are presented in Theorem 3.5.

The main ingredient of the proof of Theorem 3.5 is Proposition 3.4.

More precisely, to prove the theorem, we need to repeatedly apply

the proposition; this is discussed in the full version [36]. To prove

the proposition, we first need to prove Lemma 3.3, which uses a

variant of the expander mixing lemma presented in Lemma 3.2.

Lemma 3.2 (Theorem 9.2.4 in [1]). Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular
graph. For a node set 𝑆 ⊂ 𝑉 , we have ∑

𝑣∈𝑉
(
|Γ(𝑣) ∩ 𝑆 | − 𝑑 |𝑆 |

𝑛

)
2

≤

(𝜆𝑑)2 |𝑆 |
(
1 − |𝑆 |

𝑛

)
.

Let the set of “bad” nodes 𝐵P
𝑎𝑏

be the set of nodes for which at

least half of the neighbors rank 𝑏 higher than 𝑎 in profile P. For

an order ≻, let 𝐵P
≻ be the union of 𝐵P

𝑎𝑏
’s for every two distinct

alternatives 𝑎, 𝑏 ∈ A such that 𝑎 ≻ 𝑏. Furthermore, we define

𝑏P
𝑎𝑏

:= |𝐵P
𝑎𝑏
| and 𝑏P≻ := |𝐵P

≻ |.

Lemma 3.3. Consider a profile P on a 𝑑-regular graph𝐺 = (𝑉 , 𝐸).
If the order ≻ is 𝛿-Condorcet in P, for some 𝛿 > 0, then 𝑏P≻ ≤
(2𝛼𝜆/𝛿)2𝑛P≻ .

Proof. Consider two arbitrary alternatives 𝑎, 𝑏 ∈ A such that

𝑎 ≻ 𝑏. By applying Lemma 3.2 for sets 𝑉 P
𝑏𝑎

and 𝑉 P
𝑎𝑏

and then com-

bining the two obtained inequalities, we get∑︁
𝑣∈𝑉

©­«
(���Γ(𝑣) ∩𝑉 P

𝑏𝑎

��� − 𝑑𝑛P
𝑏𝑎

𝑛

)2

+
(���Γ(𝑣) ∩𝑉 P

𝑎𝑏

��� − 𝑑𝑛P
𝑎𝑏

𝑛

)2ª®¬ ≤

(𝜆𝑑)2

(
𝑛P
𝑏𝑎

(
1 −

𝑛P
𝑏𝑎

𝑛

)
+ 𝑛P

𝑎𝑏

(
1 −

𝑛P
𝑎𝑏

𝑛

))
.

(1)

Fact 1. For reals 𝑥 > 𝑦 and 𝑧 ≥ 𝑤 , it is straightforward to show

that (𝑧 − 𝑦)2 + (𝑤 − 𝑥)2 ≥ (𝑥 − 𝑦)2/2.

For 𝑣 ∈ 𝐵P
𝑎𝑏
, we have

���Γ(𝑣) ∩𝑉 P
𝑏𝑎

��� ≥ ���Γ(𝑣) ∩𝑉 P
𝑎𝑏

���, by the defini-

tion of 𝐵P
𝑎𝑏
. By setting 𝑥 = 𝑑𝑛P

𝑎𝑏
/𝑛 and 𝑦 = 𝑑𝑛P

𝑏𝑎
/𝑛 in Fact 1, every

node 𝑣 ∈ 𝐵P
𝑎𝑏

contributes at least 𝑑2 (𝑛P
𝑎𝑏

− 𝑛P
𝑏𝑎
)2/(2𝑛2) ≥ 𝑑2𝛿2/2

(where we used 𝑛P
𝑎𝑏

≥ 𝑛P
𝑏𝑎

+ 𝛿𝑛) to the left hand-side of Equa-

tion (1). Thus, the left-hand side is at least 𝑏P
𝑎𝑏
𝑑2𝛿2/2. Furthermore,

using 𝑛P
𝑎𝑏

= 𝑛 − 𝑛P
𝑏𝑎
, we can upper-bound the right-hand side

of Equation (1) by (𝜆𝑑)2
2𝑛P

𝑎𝑏
𝑛P
𝑏𝑎
/𝑛 ≤ (𝜆𝑑)2

2𝑛P
𝑏𝑎
. Hence, we have

𝑏P
𝑎𝑏

≤ (2𝜆/𝛿)2 𝑛P
𝑏𝑎
. Now, using the fact that 𝑛P

𝑏𝑎
≤ 𝑛P≻ and sum-

ming up over all

(𝛼
2

)
≤ 𝛼2

possible choices of the alternatives 𝑎, 𝑏,

we conclude that 𝑏P≻ ≤ (2𝛼𝜆/𝛿)2𝑛P≻ . □

Let a phase be a sequence of
(𝛼
2

)
rounds. For our analysis here,

we break down the process into phases. Let P𝑡 , for 𝑡 ≥ 1, denote

the profile at the end of the 𝑡-the phase here (instead of round) and

use the shorthand 𝑛𝑡≻ for 𝑛
P𝑡
≻ and 𝑛𝑡≻ for 𝑛

P𝑡
≻ .

Proposition 3.4. Consider the SPD model on a 𝑑-regular graph
𝐺 = (𝑉 , 𝐸). Assume that 𝜆(𝐺) ≤ 𝛽 for a sufficiently small constant
𝛽 > 0. If the order ≻ is 𝜖-Condorcet in P𝑡−1, for some 𝜖 > 0, then
≻ is 𝜖-Condorcet in P𝑡 and 𝑛𝑡≻ ≤ (1 − 𝑓 (𝛼))𝑛𝑡−1

≻ w.p. at least 1 −
exp(−𝑛𝑡−1

≻ 𝑓 (𝛼)/8) − exp(−Θ(𝑛)), where 𝑓 (𝛼) := 1/(8𝛼 (𝛼2 ) ).

Proof Sketch. Let P (𝑖 )
𝑡 for 𝑖 = 1, · · · , 𝑟 :=

(𝛼
2

)
be the profile at

the end of the 𝑖-th round in phase 𝑡 and P (0)
𝑡 = P𝑡−1. Furthermore,

let us use the shorthand 𝑛
𝑡,𝑖
≻ for 𝑛

P (𝑖 )
𝑡

≻ and 𝑏
𝑡,𝑖
≻ for 𝑏

P (𝑖 )
𝑡

≻ . We claim

that in the profileP (𝑖 )
𝑡 , the order≻ is𝛿-Condorcet for𝛿 ≥ 𝜖−2𝑖∗𝑔𝛼,𝜖

and 𝑏
𝑡,𝑖
≻ ≤ 𝑔𝛼,𝜖𝑛𝑡,𝑖≻ , for 𝑔𝛼,𝜖 := 2𝜖 𝑓 (𝛼)/(𝑟𝑒1/2). This statement can

be proven by induction over 𝑖 . For the base case of 𝑖 = 0, we need

to apply Lemma 3.3 and utilize the fact that 𝛽 is a sufficiently

small constant (more precisely, we need 𝛽 ≤ √
𝑔𝛼,𝜖 (𝜖/4𝛼), which

is acceptable since both 𝜖 and 𝛼 are constants). For the induction

step, we additionally need to use the fact that moving from round

𝑖 − 1 to 𝑖 at most 𝑏
𝑡,𝑖−1

≻ ≤ 𝑔𝛼,𝜖𝑛 nodes could have changed a pair of

alternatives in violation with order of ≻ and the fact that 𝜖 − 2𝑖 ∗
𝑔𝛼,𝜖 ≥ 𝜖/2 for 𝑖 ≤ 𝑟 .

By the above statement, we have

∑𝑟−1

𝑖=0
𝑏
𝑡,𝑖
≻ ≤ 𝑔𝛼,𝜖

∑𝑟−1

𝑖=0
𝑛
𝑡,𝑖
≻ .

Using 𝑛
𝑡,𝑖
≻ ≤ (1 + 𝑔𝛼,𝜖 )𝑛𝑡,𝑖−1

≻ and 𝑛
𝑡,0
≻ = 𝑛𝑡−1

≻ gives us

∑𝑟−1

𝑖=0
𝑏
𝑡,𝑖
≻ ≤

𝑔𝛼,𝜖𝑛
𝑡−1

≻
∑𝑟−1

𝑖=0
(1 + 𝑔𝛼,𝜖 )𝑖 . Replacing the values of 𝑟 and 𝑔𝛼,𝜖 , using

the estimate 1 + 𝑥 ≤ exp(𝑥), and some small calculations, we get∑𝑟−1

𝑖=0
𝑏
𝑡,𝑖
≻ ≤ 2𝑓 (𝛼)𝑛𝑡−1

≻ .

So far, we showed that there is a set 𝐿 := {𝑢1, · · · , 𝑢𝑙 } for some

𝑙 ≥ (1 − 2𝑓 (𝛼))𝑛𝑡−1

≻ such that for every 𝑢 ∈ 𝐿 and every pair of

alternatives, more than half of 𝑢’s neighbors agree with the relative

order imposed by ≻ during all rounds in phase 𝑡 and regardless of

the random choices. Assume that the Bernoulli random variable

𝑥𝑘 , for 1 ≤ 𝑘 ≤ 𝑙 , is 1 if and only if the pairs of alternatives

selected in node 𝑢𝑘 during the

(𝛼
2

)
rounds in the phase 𝑡 match

exactly the pairs chosen by the Bubble sort. For example, if 𝛼 =

4, then the pairs are chosen are respectively (4, 3), (3, 2), (2, 1),
(4, 3), (3, 2), (4, 3), where (𝑖, 𝑗) means alternatives in position 𝑖

and 𝑗 are selected. It is straightforward to observe that if 𝑥𝑘 = 1,

then node 𝑢𝑘 will have order ≻ at the end of phase 𝑡 (by a simple

induction over the alternatives). Note that the other direction is

not true, i.e., 𝑢𝑘 having order ≻ at the end does not imply 𝑥𝑘 =

1. The variables 𝑥𝑘 ’s are defined in this way to ensure that they

are independent. Let us define 𝑋 :=
∑𝑙
𝑘=1

𝑥𝑘 . Since P[𝑥𝑘 = 1] =
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1/
(𝛼
2

) (𝛼
2
)
, we have E[𝑋 ] = 𝑙/

(𝛼
2

) (𝛼
2
) ≥ (1 − 2𝑓 (𝛼))𝑛𝑡−1

≻ /𝛼𝛼 (2𝛼2 ) ≥
𝑛𝑡−1

≻ /(2𝛼 (2𝛼2 ) ), where in the last inequality we used 𝑓 (𝛼) ≤ 1/4.

Applying the Chernoff bound (see Section 1.1) gives us P[𝑋 ≤
3𝑛𝑡−1

≻ /(8𝛼 (2𝛼2 ) )] ≤ exp(−𝑛𝑡−1

≻ /(64𝛼 (2𝛼2 ) )). Since the number of

nodes with order ≻ increases at least by 𝑋 and decreases at most

by 2𝑓 (𝛼)𝑛𝑡−1

≻ , we can conclude that 𝑛𝑡≻ ≤ (1 − 𝑓 (𝛼))𝑛𝑡−1

≻ w.p. at

least 1 − exp(−𝑓 (𝛼)𝑛𝑡−1

≻ /8).
To finish the proof, it remains to show that ≻ is 𝜖-Condorcet

in P𝑡
. Consider two alternatives 𝑎, 𝑏 such that 𝑎 ≻ 𝑏. If the dif-

ference between the number of nodes which prefer 𝑎 over 𝑏 and

the nodes which prefer 𝑏 over 𝑎 in P𝑡−1 is at least 𝜖𝑛 + 2𝑓 (𝛼)𝑛𝑡−1

≻ ,

then the profile remains 𝜖-Condorcet after phase 𝑡 since at most

2𝑓 (𝛼)𝑛𝑡−1

≻ nodes can move 𝑏 over 𝑎 during phase 𝑡 . Otherwise,

there are linearly many nodes which rank 𝑏 over 𝑎 but their neigh-

borhood ranks 𝑎 higher during all rounds in phase 𝑡 . Similar to

above, using Chernoff bound we can prove w.p. 1−exp(−Θ(𝑛)), the
number of nodes which move 𝑎 higher than 𝑏 is at least 2𝑓 (𝛼)𝑛𝑡−1

≻ ,

which guarantees the 𝜖-Condorcet property w.r.t. 𝑎 and 𝑏. By a

union bound, this holds for all pairs of alternatives w.p. at least

1 −
(𝛼
2

)
exp(−Θ(𝑛)) = 1 − exp(−Θ(𝑛)). □

Theorem 3.5. Consider the SPD model on a 𝑑-regular graph 𝐺 =

(𝑉 , 𝐸). Assume that 𝜆(𝐺) ≤ 𝛽 for a sufficiently small constant 𝛽 > 0.
If the order ≻ is 𝜖-Condorcet in the initial profile P0, for some constant
𝜖 > 0, then ≻ wins in O(log𝑛) rounds w.h.p.

Minimum Cost Solution. One can infer that for a graph 𝐺

which satisfies the conditions of Theorem 3.5, MC(𝐺) ≥ (1/2 −
𝜖)𝑛(𝛼 − 1), for any constant 𝜖 > 0, because a placement with cost

at most (1/2 − 𝜖)𝑛(𝛼 − 1) does not occupy the first position in at

least (1/2 + 𝜖)𝑛 nodes. (Some details are left out.)

Tightness of Convergence Time. Consider a 𝑑-regular graph
𝐺 , with constant 𝑑 , which satisfies the conditions of Theorem 3.5.

Consider an arbitrary node 𝑣 and let 𝐵 be the set of nodes whose

distance from 𝑣 is at most 𝑡∗ = (log𝑑 𝑛)/2 − 1. Note that |𝐵 | ≤∑𝑡∗
𝑖=0

𝑑𝑖 ≤ 𝑑𝑡
∗+1 =

√
𝑛. Assume that initially all nodes in 𝐵 have

order ≻′
and nodes in 𝑉 \ 𝐵 have order ≻≠≻′

. This clearly satis-

fies the Condorcet condition of Theorem 3.5, and thus ≻ wins in

O(log𝑛) rounds w.h.p. However, it must take at leas 𝑡∗ = Ω(log𝑛)
rounds until 𝑣 has order ≻. Therefore, the logarithmic bound is

asymptotically tight.

3.3 Number of Solutions
We study the number of solutionsNS(𝐺) for a graph𝐺 . We particu-

larly prove a tight bound onNS(𝐶𝑛) for a cycle𝐶𝑛 in Theorem 3.6,

whose full proof is given in the full version [36].

Theorem 3.6. In both the APD and SPD model on a cycle 𝐶𝑛 ,
MC(𝐶𝑛) = (2⌊𝑛/3⌋ + (𝑛 mod 3)) (𝛼 − 1) and NS(𝐶𝑛) = Θ̃(𝜓𝑛)
for some𝜓 ∈ (𝛼1/3, 𝛼1/3 + 0.22), where Θ̃ hides polynomial terms in
𝑛 and 𝛼 .

Proof Sketch. Let S𝑛 be the set of all placements on 𝐶𝑛 such

that for every three consecutive nodes for at least two of them the

first position is chosen. We can show that S𝑛 is equal to the set of

all solutions in both the APD and SPDmodel on𝐶𝑛 . Thus,MC(𝐶𝑛)
is equal to the minimum cost among the elements of S𝑛 , which we

claim to be (2⌊𝑛/3⌋ + (𝑛 mod 3)) (𝛼 − 1).

Let 𝑠 (𝑛) := |S𝑛 | and 𝑝 (𝑛) be 𝑠 (𝑛) but for a path 𝑃𝑛 instead of

𝐶𝑛 . We observe that 𝑝 (𝑛 − 2) ≤ 𝑠 (𝑛) ≤ 𝑝 (𝑛). Thus, to approximate

𝑠 (𝑛), it suffices to calculate 𝑝 (𝑛). For that, we need to solve the

homogeneous linear difference equation 𝑝 (𝑛) = 𝑝 (𝑛 − 1) + (𝛼 −
1)𝑝 (𝑛−3). By solving the characteristic equation 𝜆3−𝜆2−(𝛼−1) = 0

(derived from 𝑝 (𝑛) = 𝑝 (𝑛− 1) + (𝛼 − 1)𝑝 (𝑛− 3)) and some standard

calculations, we get 𝑝 (𝑛) = Θ̃(𝜓𝑛) for some𝜓 ∈ (𝛼1/3, 𝛼1/3 + 0.22).
Finally, since 𝑝 (𝑛−2) ≤ 𝑠 (𝑛) ≤ 𝑝 (𝑛) and Θ̃ hides polynomial terms

in 𝛼 , we can conclude that 𝑠 (𝑛) = Θ̃(𝜓𝑛). Please refer to the full

version [36], for a complete proof. □
For an empty graph 𝐸𝑛 (a graph with 𝑛 nodes and zero edges),

we have NS(𝐸𝑛) = 1 because the only possible solution is to

choose the first position in all nodes. For a complete graph 𝐾𝑛 ,

we have NS(𝐾𝑛) =
∑𝑛
𝑘=⌊𝑛/2⌋+1

(𝑛
𝑘

)
(𝛼 − 1)𝑛−𝑘 because a solution

requires at least ⌊𝑛/2⌋ + 1 nodes to choose the first position. As

an upper bound, we have NS(𝐾𝑛) ≤ (𝛼 − 1)𝑛/2
∑𝑛
𝑘=0

(𝑛
𝑘

)
= (𝛼 −

1)𝑛/2
2
𝑛
. Furthermore, NS(𝐾𝑛) ≥ (𝛼 − 1) ⌈𝑛/2⌉−1

( 𝑛
⌊𝑛/2⌋+1

)
= (𝛼 −

1) ⌈𝑛/2⌉−1 ∗ Θ(2𝑛/
√
𝑛), where we used the estimate

( 𝑛
⌊𝑛/2⌋+1

)
=

Θ(2𝑛/
√
𝑛). Therefore, we have NS(𝐾𝑛) = Θ̃((4(𝛼 − 1))𝑛/2).

It would be interesting to characterize the graph parameters

which control the value of NS(𝐺). Since we have proven that

NS(𝐸𝑛) ≤ NS(𝐶𝑛) ≤ NS(𝐾𝑛), one might be tempted to con-

jecture that NS(𝐺) grows in the number of edges in 𝐺 . However,

this is not true; for example, one can check that for a star graph

𝑆𝑛 (which has only 𝑛 − 1 edges) there are almost as many solu-

tions as in 𝐾𝑛 . This is true because a placement is a solution if the

internal node and at least ⌈(𝑛 − 1)/2⌉ of the 𝑛 − 1 leaves choose

the first position. For NS(𝐺) to be large, many placements should

result in a solution. Roughly speaking, this implies that many nodes

should have a similar level of “power”, which can be captured in

terms of graph parameters like regularity and vertex-transitivity.

Investigating this problem further is left to future work.

4 RANDOM PREFERENCE DIFFUSION
Theorem 4.1. Consider the Random PD on a graph 𝐺 = (𝑉 , 𝐸).

[I]
(1) The process always reaches a fixed profile, where the order of

all nodes is equal to some order ≻𝑓 .
(2) For 𝑎, 𝑏 ∈ A, P[𝑎 ≻𝑓 𝑏] = 𝑍𝑎𝑏

0
/(2𝑚), where 𝑍𝑎𝑏

0
is the

summation of the degree of nodes which rank 𝑎 higher than 𝑏
initially.

(3) The process takes O(𝑛4) rounds in expectation.

The proof of part III is given in the full version [36]. It uses

the results from [9] regarding the meeting time in some random

walks. We also discuss that a stronger bound of O(𝑛 log𝑛) exists
for graphs with strong expansion properties.

Proof of I and II. We prove that from any profile, there is a

non-zero probability to reach a fixed profile. Therefore, the process

must reach a fixed profile eventually. Consider an arbitrary profile

P. Let 𝑣 be an arbitrary node and let ≻ be its order in P. Define

Γ𝑡 (𝑣) to be the nodes whose distance from 𝑣 is equal to 𝑡 . There

is a non-zero probability that in the next round, all nodes in Γ1 (𝑣)
(i.e., the neighbors of 𝑣) choose order ≻ and all other nodes keep

their order unchanged. Repeating the same argument for Γ𝑡 (𝑣) and
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𝑡 ≥ 2, we can conclude that starting from P, it is possible that the

process reaches the profile where all nodes hold the order ≻.
Let the random variable 𝑍 ≻

𝑡 , for 𝑡 ∈ N and some order ≻, denote
the summation of the degree of nodes whose order is equal to ≻ in

P𝑡 . We prove that the sequence 𝑍 ≻
0
, 𝑍 ≻

1
, 𝑍 ≻

2
, · · · is a discrete-time

martingale, i.e., E[𝑍 ≻
𝑡 |𝑍 ≻

0
, 𝑍 ≻

1
, · · · , 𝑍 ≻

𝑡−1
] = 𝑍 ≻

𝑡−1
. Since a node 𝑣

keeps its order w.p. (1 − 𝑞) and selects ≻ from its neighbors w.p.

𝑞 |Γ(𝑣) ∩𝑉 P𝑡−1

≻ |/|Γ(𝑣) |, then E
[
𝑍 ≻
𝑡 |𝑍 ≻

0
, 𝑍 ≻

1
, · · · , 𝑍 ≻

𝑡−1

]
is equal to∑︁

𝑣∈𝑉 P𝑡−1

≻

(1 − 𝑞)𝑑 (𝑣) +
∑︁
𝑣∈𝑉

𝑞𝑑 (𝑣)
|Γ(𝑣) ∩𝑉 P𝑡−1

≻ |
𝑑 (𝑣) =

(1 − 𝑞)
∑︁

𝑣∈𝑉 P𝑡−1

≻

𝑑 (𝑣) + 𝑞
∑︁
𝑣∈𝑉

|Γ(𝑣) ∩𝑉 P𝑡−1

≻ | =
∑︁

𝑣∈𝑉 P𝑡−1

≻

𝑑 (𝑣) = 𝑍 ≻
𝑡−1

where we used

∑
𝑣∈𝑉 |Γ(𝑣) ∩𝑉 P𝑡−1

≻ | = ∑
𝑣∈𝑉 P𝑡−1

≻
𝑑 (𝑣).

Let 𝑍 ≻
𝑓
be the summation of the degree of nodes whose order is

equal to ≻ in the final profile. We proved that the expected value of

𝑍 ≻
𝑓
is equal to 𝑍 ≻

0
. (Note that 𝑍 ≻

0
is a fixed value.) Putting this in

parallel with the fact that the process always reaches a fixed profile,

we can conclude that the probability that ≻ wins is equal to 𝑍 ≻
0
/2𝑚

since the summation of all degrees is equal to 2𝑚.

Consider two alternatives 𝑎, 𝑏 ∈ A. Let𝑂𝑂𝑂𝑎𝑏 be the set of orders

which rank 𝑎 higher than 𝑏. Since the event that an order ≻ wins is

disjoint from the event that ≻′≠≻ wins, we have

P[𝑎 ≻𝑓 𝑏] =
∑︁

≻∈𝑂𝑂𝑂𝑎𝑏

P[≻𝑓
is equal to ≻] =

∑︁
≻∈𝑂𝑂𝑂𝑎𝑏

𝑍 ≻
0

2𝑚
=
𝑍𝑎𝑏

0

2𝑚
. □

5 EXPERIMENTS
We have developed and conducted a set of experiments for the PD

process on different synthetic graph structures (e.g., cycle and ER

random graph) and graph data from real-world social networks

(e.g., Facebook and Twitter). While some of our experiments fo-

cus on the aspects that we already studied theoretically, such as

convergence time and (randomized) minimum cost solutions, we

leverage our experiments to investigate other aspects of the model,

such as introducing countermeasures to make the process more

“democratic” and to create foundations for proposing some future re-

search directions. (It is worth to stress that our theoretical findings

are self-contained.)

Set-up. For the real-world graph data, we rely on the publicly

available network datasets from [21]. In the Facebook graph we

have 𝑛 = 4039 and 𝑚 = 88234, in the Twitter graph 𝑛 = 81306

and 𝑚 = 1768149, and in the Gplus graph 𝑛 = 107614 and 𝑚 =

13673453. For all of our synthetic graph structures, including cycle

and complete graph, we set 𝑛 = 4039, which is equivalent to the

number of nodes in the Facebook graph. For the ER random graph

G𝑛,𝑞 , we set 𝑞 such that the expected degree of a node is equal to the

average degree in the Facebook graph. Our experiments have also

been conducted on Hyperbolic Random (HR) graph, a graph model

that simulates real-world social networks. (HR graph is known

to have fundamental properties observed in real-world networks

such as small diameter, clustering property, and power law degree

distribution. See [19] for more details.) The parameters are set such

that the number of nodes and average degree are comparable to the

ones in the Facebook graph. We also need to provide the exponent

of the power-law degree distribution 𝛽 and the temperature 𝑇 as

the input parameters. We set 𝛽 = 2.5 and 𝑇 = 0.6.

All of our experiments were executed 20 times and then the

average output was considered. Furthermore, all experiments were

conducted on 64-bit Ubuntu 18.04 LTS with an Intel Core i7-3930K

3.2 GHz CPU and 64 GB RAM and using Go programming language.

Condorcet Winner. Consider the SPD model with three alter-

natives 𝑎, 𝑏, 𝑐 . We start with a random profile P0 where each node

picks one of the 6 possible orders u.a.r., except that a 10% advantage

is given to the order ≻ which puts 𝑎, 𝑏, and 𝑐 in positions 1, 2, and

3, respectively. For large values of 𝑛, the order ≻ almost surely

will be 𝜖-Condorcet in P0, for some 𝜖 > 0. As demonstrated in

Figure 1 (top-left), for the complete graph and ER random graph,

which enjoy strong expansion properties, all nodes adopt the or-

der ≻ (where the convergence time is, arguably, of logarithmic

order since log 4039 = 8.3). This is consistent with the statement

of Theorem 3.5. For the three studied social graphs, a somewhat

similar behavior is observed. This can be explained by the fact

that while the real-world social networks are not usually perfect

expanders, like an ER random graph, they definitely enjoy a certain

level of expansion. The HR graph (with parameters comparable to

the Facebook graph) demonstrates a similar behavior (which pro-

vides support that the HR graph is suitable for modeling real-world

social networks). On the other hand, in a cycle graph, which suffers

from weak expansion properties, the density of nodes with order ≻
remains almost unchanged. We should mention that this behavior

in cycles is not solely caused by weak expansion properties, but

rather its combination with regularity and vertex-transitivity.

Minimum Cost Solution. Our explanations on Figure 1 (top-

left) imply that if an adversary chooses the set of nodes to bribe at

random, engineering the outcome of the process on a real-world

social graph would be very costly. However, an adversary might

employ more efficient mechanisms. As discussed in Section 1.3, the

problem of finding a minimum cost solution for a given graph 𝐺

has been studied for various majority based models and in most

scenarios, it is known to be NP-hard, cf. [11, 12, 25]. However, there

exist greedy approaches, usually built on submodular function

maximization techniques, which provide polynomial time approxi-

mation algorithms. We assume that the adversary bribes the nodes

with the highest degrees (this is in some sense similar to what

the greedy algorithms do and is computationally very light; thus,

it is commonly used in the experimental set-ups, cf. [2, 28]. Our

experiments, not included here, yield similar results when we use

other measures such as betweenness or closeness instead of de-

gree.). More precisely, we sort the nodes by their degree and the

top 5% are assigned the order ≻ and the remaining nodes have the

reverse order ≻′
. Figure 1 (top-right) demonstrates that for Twitter

the density of nodes with order ≻ increases from 5% to over 20% and

for Facebook and Gplus to almost 50%. Note that if the remaining

95% nodes choose their order more uniformly among the 𝛼 ! orders

(6 in our case) instead of choosing the reverse order ≻′
, then the

density of ≻ will grow even more aggressively.

Countermeasures. So far, we observed that an adversary which
pursues a rather smart strategy, such as bribing the highest degree

nodes, can enforce their desired order (or alternative(s)) to a large

part of the network with a relatively small cost. A natural question
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Figure 1: The density of order ≻ in the SPD process: (top-left) with an initial random profile with a bias towards ≻, (top-right)
with only 5% highest degree nodes choosing ≻, where 𝐶𝑀1 is the countermeasure to add 10 random edges to each node and 𝐶𝑀2

is to give more weight to the preference of more similar neighbors. The convergence time of the Random PD process starting
with a u.a.r. profile: (down-left) on cycle graph, (down-right) on complete and ER random graph.

arises is whether one can design effective countermeasures to defeat

such an adversary. Since we know that graphs with strong expan-

sion properties are quite resilient against such adversarial attacks,

a promising approach is to add some random edges to the graph,

with the purpose of making it more expansive. (A similar counter-

measure was already introduced in [28] for the Majority model.) A

second countermeasure that we introduce is that each node gives

more weight to the preferences of the nodes which are more “simi-

lar” to it. For two nodes 𝑣,𝑢, let 𝑆 (𝑣,𝑢) := |Γ(𝑣)∩Γ(𝑢) |/(𝑑 (𝑣)+𝑑 (𝑢))
be the similarity between 𝑣 and 𝑢. (This is analogous to similarity

coefficients such as Jaccard and Szymkiewicz–Simpson coefficients,

cf. [33].) Assume that we modify the PD model such that a node

𝑣 changes the order of two chosen adjacent alternatives 𝑎 and 𝑏 if

the summation of the similarity of neighbors which disagree with

its current order is more than the sum for the ones which agree.

Figure 1 (top-right) shows that both countermeasures CM1 (adding

10 random edges to each node) and CM2 (integrating the similarity

coefficient into the updating rule) substantially reduce the extent to

which the adversary’s desired order spreads. In all the three studied

social networks, the countermeasure CM2 slightly outperforms

CM1.

An ideal countermeasure should have the following three prop-

erties. Firstly, it must not demand significant changes in the graph

structure or the updating rule. Secondly, it should be easy for the

nodes to implement, e.g., it does not require the nodes to have a full

knowledge of the graph structure or memorize the history of the

process. Last but not the least, such an alternation should be imple-

mented by the nodes instead of being enforced by a central entity,

such as a government or an online social platform management

team. The last criterion is crucial since it ensures that the counter-

measures can be deployed through educating and informing the

network members and leveraging their collective decision-making

power rather than abusing the excessive power of a central entity

which might need to violate fundamental human rights such as

freedom of expression to impose the countermeasure.

Our suggested countermeasures clearly satisfy the last two prop-

erties, since for their implementation, a node 𝑣 needs to simply

make some random friends in the network or give more weight to

the preferences of the “closer” friends (i.e., nodes which share a big-

ger fraction of their neighbors with 𝑣). Whether the first property is

fulfilled or not is up to interpretation. Note that the average degree

in our studied social networks is between 43 and 254. Thus, requir-

ing all nodes to make 10 random friends is somewhat equivalent to

asking them to choose around 4− 18% of their neighbors at random.

We believe that the second countermeasure is less intrusive and

more practical since it only requires the nodes to give more weight

to the preferences of the closer friends.

Convergence Time in Random PD. Figure 1 (down-left) visu-
alizes the convergence time of the Random PD model with 𝑞 = 1/2

on a cycle 𝐶𝑛 for different values of 𝑛, where in the initial pro-

file each node picks an order, with three alternatives 𝑎, 𝑏, 𝑐 , u.a.r.

Comparing its growth with the function 𝑛2/5 (i.e., Quadratic line
in the figure) suggests that it grows quadratically in 𝑛. Figure 1

(down-right) indicates that the convergence time on a complete

graph and ER random graph matches the growth of the function

(𝑛 log𝑛)/5 (i.e., Linear line in the figure). This is consistent with the
O(𝑛 log𝑛) bound mentioned in Section 4 for graphs with strong

expansion properties.

For the Facebook graph (with 𝑛 = 4039 ), the Twitter graph (with

𝑛 = 81306), and Gplus (with 𝑛 = 107614), our experiments output

the convergence time of 1941, 18491, and 27798, respectively. This

is closer to the linear behavior of the strong expanders rather than

the quadratic growth on cycles.
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