
Concurrency Model of BDI Programming Frameworks:
Why Should We Control It?

Extended Abstract

Martina Baiardi

University of Bologna

Cesena, Italy

m.baiardi@unibo.it

Samuele Burattini

University of Bologna

Cesena, Italy

samuele.burattini@unibo.it

Giovanni Ciatto

University of Bologna

Cesena, Italy

giovanni.ciatto@unibo.it

Danilo Pianini

University of Bologna

Cesena, Italy

danilo.pianini@unibo.it

Andrea Omicini

University of Bologna

Cesena, Italy

andrea.omicini@unibo.it

Alessandro Ricci

University of Bologna

Cesena, Italy

a.ricci@unibo.it

ABSTRACT

We provide a taxonomy of concurrency models for BDI frameworks,

elicited by analysing state-of-the-art technologies, and aimed at

helping both BDI designers and developers in making informed

decisions. Comparison among BDI technologies w.r.t. concurrency

models reveals heterogeneous support, and low customisability.

KEYWORDS

Agent-Oriented Programming; Concurrency; BDI Agents; Threads

ACM Reference Format:

Martina Baiardi, Samuele Burattini, Giovanni Ciatto, Danilo Pianini, Andrea

Omicini, and Alessandro Ricci. 2024. Concurrency Model of BDI Program-

ming Frameworks: Why Should We Control It?: Extended Abstract. In Proc.
of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,

3 pages.

1 INTRODUCTION

By construction, Belief-Desire-Intention (BDI) agents are able to

carry on multiple intentions at any given time [13], and many

research and software-development efforts have been devoted to the

definition of BDI architectures and programming languages giving

precise semantics to the concurrent execution of such intentions [3].

As computational entities, agents are autonomous if they en-

capsulate their own control flow [9]. Control-flow encapsulation is

commonly referred to as computational autonomy [10], and it is con-

sidered a necessary pre-requisite for autonomy in software agents.

On mainstream programming platforms, autonomy is achieved by

mapping each agent onto ad-hoc control-flow-related primitives,

such as threads, processes, or event loops; providing different trade-

offs in terms of efficiency, determinism, and reproducibility of the

Multi-Agent Systems (MASs) built on top of them.

Adopting the right concurrency model is essential, as it deeply

impacts many aspects of the agent programming framework and the

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

dynamics of all MASs leveraging it. In particular, the concurrency

model affects whether, and to what extent, multiple agents can run

at the same time, impacting performance and efficiency of MASs;

opposedly, parallelism as well as the determinism of the overall

MAS dynamics, is a strict requirement in applications requiring

reproducibility, such as multi-agent based simulation [2].

Dealing with concurrency is commonly acknowledged as error-

prone and challenging. Thus, mainstream programming platforms

provide dedicated libraries and language constructs shielding devel-

opers from the intricacies of concurrency. Similarly, Agent-Oriented

Programming (AOP) tools and frameworks come with their own

concurrency model, often hidden under the hood.

Although hiding concurrency details is helpful to reduce the

learning curve, experienced developers unaware of the nuances of

the framework they are relying upon may have reduced control

over the execution of their MASs and the trade-offs that come with

it. This is particularly true for BDI agent technologies, where the

semantics of intention scheduling can be realised in many different

ways. Arguably, BDI technologies should rather let MASs develop-

ers choose or configure the concurrency model of their systems,

in order to tune the execution of the MAS to the specific needs of

their application and execution environment.

In this study, we provide a taxonomy of the concurrency models

available for BDI agent technologies, and classify several widely

used frameworks accordingly. The current literature on BDI agents

and concurrency (e.g., [5, 6, 14–16]) focuses on agents’ internal
concurrency—roughly, how control loops interleave intentions. Con-
versely, we focus on external concurrency, i.e., the way multiple

agents are mapped onto the underlying (threads, processes, event

loops, executors) concurrency abstractions. Finally, we elaborate

on the importance of customisable MASs execution, recommend-

ing framework designers to promote a neat separation of the MAS

specification from its actual runtime concurrency model.

2 CONCURRENCY MODELS FOR BDI SYSTEMS

Mostmodern programming languages support concurrency through

one or more of the following abstractions: (i) threads, the basic

units of concurrency [7], i.e., the executors of sequential programs;

(ii) processes, i.e., containers of threads sharing memory; (iii) event
loops, i.e., individual threads carrying out sequential programs

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2147

https://orcid.org/0000-0002-6655-3869
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

(tasks) enqueued by users; and (iv) executors, i.e., event loops with
a possibly configurable unbound thread count.

As introduced, external concurrency models mapMASs concepts

onto these abstractions; concretely, they differ in theway the control

loop of each agent is mapped onto them. Different model provide

different granularity:

One-Agent-One-Thread (1A1T) – each agent is mapped onto

a single thread, which is responsible for executing its entire control

loop. The control over the of MAS execution is abysmal: essentially,

developers are delegating control to the Operating System (OS).

Determinism is compromised as well, as the OS scheduler may

interleave the execution of different agents arbitrarily. The amount

of threads in the MAS is unbound, which may lead to relevant

overhead when the number of active agents (threads) is far greater

than the amount of hardware cores/processors.

All-Agents-One-Thread (AA1T) – the whole MAS is executed

on a single thread that internally schedules all agents’ execution

in a custom way, following some (usually cooperative) scheduling

policy. This model enables fully deterministic execution of MASs,

as parallelism is absent. Hence, it is desirable when reproducibility

is a concern, such as in testing or reproducible simulations, but it

is unsuitable for performance-critical scenarios, when hardware

capable of parallel computation is available.

All-Agents-One-Event-Loop (AA1EL) – the whole MAS is ex-

ecuted on a single event loop, which internally schedules all agents’

execution with a first-in-first-out queue of tasks, guaranteeing fair-

ness by design. AA1EL is equivalent (also in terms of determinism

and performance) to an AA1T strategy with fair scheduling (e.g.,

round-robin).

All-Agents-One-Executor (AA1E) – each agent’s activity is

enqueued as task on a shared executor. However, tasks are executed
concurrently (possibly, in parallel). AA1E is conceptually equiva-

lent to 1A1T, yet technologically preferable as, by controlling the

executor’s thread count, provides finer control on the degree of par-

allelism. Two specialisations of this model are possible, depending

on whether the alive thread count changes with time: fixed thread

pools and variable thread pools.

Further models can be obtained by (possibly hierarchical) com-

binations of the aforementioned ones, obtaining diverse flexibility/-

controllability trade-offs. For instance, considering that event loops,

executors, and threads are hosted into processes, we can think of:

One-Agent-One-Process (1A1P) – each agent is a process

using threads, executors, or event loops for internal concurrency.

3 ANALYSIS OF BDI TECHNOLOGIES

We analyse a selection of open-source and actively maintained BDI

programming technologies to inspect their external concurrency

model(s). We focus on Jason [3], Astra [4], JaKtA [1], Phidias [8],

Spade-BDI [11], Jadex [12]. In our analysis, for each BDI technology,

we combine two approaches: we first run a benchmark to reveal how

many threads are involved in a MAS execution; then, we inspect the

source code and documentation to understand which concurrency

abstractions are used, and to what extent they are customisable.

Table 1 summarises the results of our analysis including the

1A1P model, which is the basis for agents not sharing memory,

hence, potentially distributable.

Table 1: BDI technologies and concurrency models. Meaning

of symbols: “✓” – supported out of the box; “∗” – supports

customizations; “∼” – wewere unable to conclusively confirm

or rule out support.

Model → 1A1T AA1T AA1EL AA1E AA1E 1A1P

Tech. ↓ fixed variable

Jason [3] ✓ ✓∗ ✓ ✓ ✓∗ ✓∗
Astra [4] ✓∗ ✓∗ ✓ ✓ ✓ ∼
JaKtA [1] ✓ ✓ ✓ ✓ ✓ ✓∗

Phidias [8] ✓ × × × × ✓
Spade-BDI [11] × × ✓ × × ✓

Jadex [12] × ✓ × × ✓ ×

4 DISCUSSION AND CONCLUSION

The concurrency model is a paramount dimension to consider when

designing or using a (BDI) MAS technology. Generally, choice is

desirable, as different applications and execution environments may

benefit from different concurrency models.

From an application development perspective, the concurrency

models impact primarily reproducibility and performance. Repro-

ducibility requires determinism (especiallywhen testing), supported

by AA1T; sheer performance is usually better with parallel models

like 1A1T or, preferably, AA1E. Some scenarios may be better tack-

led through custom concurrency models, hence, we recommend

BDI technology designers to provide dedicated APIs.

We argue that flexibility in the choice of concurrency models is

a central feature for BDI technologies Thus, we recommend con-

sidering them early in BDI framework design: adopting a specific

concurrency model early on may complicate or prevent chang-

ing it later. When support for multiple (customisable) concurrency

models is not feasible, early analysis can still prove beneficial. For

instance, despite being conceptually akin, AA1E is preferable over

1A1T, as the former supports controlling the overall thread count.

Careful design of the BDI framework architecture is essential

to ensure separation between the MAS specification and its actual

runtime concurrency model: the former should be written once,

and the latter should be selected as late as possible (ideally, at appli-

cation launch). Flexibility enables: (i) controlling reproducibility for
debugging or simulation, (ii) maximising performance in produc-

tion, (iii) comparing and selecting the best model for the scenario

at hand.

Summarising, external concurrency of BDI agents is paramount

in MAS engineering, Yet, we believe further investigation is needed

to provide a general concurrency blueprint for BDI technologies.

ACKNOWLEDGMENTS

This work has been partially supported by: (i) “WOOD4.0”, Emil-

ia-Romagna project, art. 6 L.R. N. 14/2014, call 2022; (ii) “FAIR”,
(PNRR,M4C2, Investimento 1.3, Spoke 8, P.E. PE00000013); (iii) “2023
PhD scholarship co-funded by NextGenerationEU and AUSL Ro-

magna” (PNRRM4C2, Investimento 3.3, D.M. 352/2022); and (iv) “EN-
GINES”, (Italian MUR PRIN 2022, grant 20229ZXBZM).

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2148

REFERENCES

[1] Martina Baiardi, Samuele Burattini, Giovanni Ciatto, and Danilo Pianini. 2023.

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin. In Multi-Agent Systems
- 20th European Conference, EUMAS 2023, Naples, Italy, September 14-15, 2023,
Proceedings (Lecture Notes in Computer Science, Vol. 14282), Vadim Malvone and

Aniello Murano (Eds.). Springer, 49–65. https://doi.org/10.1007/978-3-031-43264-

4_4

[2] Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari. 2009. Agent Based Mod-

eling and Simulation: An Informatics Perspective. J. Artif. Soc. Soc. Simul. 12, 4
(2009). http://jasss.soc.surrey.ac.uk/12/4/4.html

[3] Rafael H. Bordini, Jomi F. Hübner, and Michael J. Wooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak using Jason. JohnWiley & Sons, Ltd. XVII, 292

pages. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html

[4] Rem W. Collier, Sean Edward Russell, and David Lillis. 2015. Reflecting on Agent

Programming with AgentSpeak(L). In PRIMA 2015: Principles and Practice of
Multi-Agent Systems. Springer International Publishing, 351–366. https://doi.

org/10.1007/978-3-319-25524-8_22

[5] Lavindra de Silva. 2020. An Operational Semantics for True Concurrency in

BDI Agent Systems. In AAAI Conference on Artificial Intelligence. https://api.

semanticscholar.org/CorpusID:214310595

[6] Lavindra de Silva, Felipe Meneguzzi, and Brian Logan. 2020. BDI Agent Architec-

tures: A Survey. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 4914–4921.

https://doi.org/10.24963/ijcai.2020/684

[7] E. W. Dijkstra. 1965. Solution of a Problem in Concurrent Programming Control.

Commun. ACM 8, 9 (sep 1965), 569. https://doi.org/10.1145/365559.365617

[8] Fabio D’Urso, Carmelo Fabio Longo, and Corrado Santoro. 2019. Programming

Intelligent IoT Systems with a Python-based Declarative Tool (CEUR Workshop
Proceedings, Vol. 2502), Claudio Savaglio, Giancarlo Fortino, Giovanni Ciatto,

and Andrea Omicini (Eds.). CEUR-WS.org, 68–81. https://ceur-ws.org/Vol-

2502/paper5.pdf

[9] James J. Odell. 2002. Objects and Agents Compared. Journal of Object Technology
1, 1 (May–June 2002), 41–53. http://www.jot.fm/issues/issue_2002_05/column4

[10] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. 2008. Artifacts in the A&A

Meta-Model for Multi-Agent Systems. Autonomous Agents and Multi-Agent
Systems 17, 3 (Dec. 2008), 432–456. https://doi.org/10.1007/s10458-008-9053-x

Special Issue on Foundations, Advanced Topics and Industrial Perspectives of

Multi-Agent Systems.

[11] Javier Palanca, Jaime Andres Rincon, Carlos Carrascosa, Vicente Julián, and

Andrés Terrasa. 2022. A Flexible Agent Architecture in SPADE (Lecture Notes in
Computer Science, Vol. 13616). Springer, 320–331. https://doi.org/10.1007/978-3-

031-18192-4_26

[12] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI

reasoning engine. 149–174. https://doi.org/10.1007/0-387-26350-0_6

[13] Anand S. Rao. 1996. AgentSpeak(L): BDI agents speak out in a logical computable

language. In Agents Breaking Away, Walter Van de Velde and John W. Perram

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 42–55. https://doi.org/10.

1007/BFb0031845

[14] Alessandro Ricci and Andrea Santi. 2013. Concurrent Object-Oriented Pro-

gramming with Agent-Oriented Abstractions: The ALOO Approach. In 2013
Workshop on Programming Based on Actors, Agents, and Decentralized Control
(AGERE! 2013) (Indianapolis, Indiana, USA). ACM, New York, NY, USA, 127–138.

https://doi.org/10.1145/2541329.2541333

[15] Alessandro Ricci and Andrea Santi. 2013. From Actors and Concurrent Ob-

jects to Agent-Oriented Programming in simpAL. In Concurrent Objects and
Beyond – Festschrift in Honor of Akinori Yonezawa, Gul Agha, Atsushi Igarashi,
Naoki Kobayashi, Hidehiko Masuhara, Satoshi Matsuoka, Etsuya Shibayama, and

Kenjiro Taura (Eds.). Springer.

[16] Maicon R. Zatelli, Alessandro Ricci, and Jomi F. Hübner. 2015. EvaluatingDifferent

Concurrency Configurations for Executing Multi-Agent Systems. In Engineering
Multi-Agent Systems, Matteo Baldoni, Luciano Baresi, and Mehdi Dastani (Eds.).

Springer International Publishing, Cham, 212–230.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2149

https://doi.org/10.1007/978-3-031-43264-4_4
https://doi.org/10.1007/978-3-031-43264-4_4
http://jasss.soc.surrey.ac.uk/12/4/4.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
https://api.semanticscholar.org/CorpusID:214310595
https://api.semanticscholar.org/CorpusID:214310595
https://doi.org/10.24963/ijcai.2020/684
https://doi.org/10.1145/365559.365617
https://ceur-ws.org/Vol-2502/paper5.pdf
https://ceur-ws.org/Vol-2502/paper5.pdf
http://www.jot.fm/issues/issue_2002_05/column4
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/978-3-031-18192-4_26
https://doi.org/10.1007/978-3-031-18192-4_26
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1145/2541329.2541333

	Abstract
	1 Introduction
	2 Concurrency models for BDI systems
	3 Analysis of BDI technologies
	4 Discussion and Conclusion
	Acknowledgments
	References

