
Agent-Based Triangle Counting and its Applications in
Anonymous Graphs

Extended Abstract

Prabhat Kumar Chand

Indian Statistical Institute

Kolkata, India

pchand744@gmail.com

Apurba Das

BITS Pilani

Hyderabad, India

apurba@hyderabad.bits-pilani.ac.in

Anisur Rahaman Molla

Indian Statistical Institute

Kolkata, India

molla@isical.ac.in

ABSTRACT
Triangle counting in graphs is a fundamental problemwith a diverse

application domain. In this paper, we propose a solution to the tri-

angle counting problem in an anonymous graph using autonomous

mobile agents. We further use the triangle count to address the

Truss Decomposition problem which involves finding maximal sub-

graphs with strong interconnections. Truss decomposition helps in

identifying maximal, highly interconnected sub-graphs, or trusses,

within a network. Additionally, the triangle count is also used to

compute two important metrics - Triangle Centrality and Local Clus-
tering Coefficient for the nodes of the graph. Our goal is to devise

algorithms that effectively solve these problems minimizing both

the overall time complexity and the memory usage at each agent.

KEYWORDS
Mobile Agents; Triangle Counting; 𝑘-Truss; Truss Decomposition;

Triangle Centrality; Local Clustering Coefficient; Time Complexity;

Space Complexity; Network Algorithms; Distributed Algorithms

ACM Reference Format:
Prabhat Kumar Chand, Apurba Das, and Anisur Rahaman Molla. 2024.

Agent-Based Triangle Counting and its Applications in Anonymous Graphs:

Extended Abstract. In Proc. of the 23rd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION AND RELATEDWORK
Triangle counting in graphs has received significant attention in

recent decades, serving as a building block of complex network

analysis. It is used for computing the clustering coefficient, one

of the most used metrics for network analysis [5, 19, 25], and tri-

angle centrality [1, 6, 15]. Triangle counting also plays a pivotal

role in the hierarchical decomposition of a graph such as truss

decomposition [24], an important hierarchical subgraph structure

in community detection [2, 11]. In addition, Becchetti et al. [4] used
triangle counts in detecting web spam and estimating the content

quality of a web page. Other applications include query optimiza-

tion in databases [3], link prediction in social networks [22], and

community detection in system biology [12]. A detailed account of

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

related works on triangle counting for various model set-ups may

be found in [3, 4, 10, 14, 16, 20–23].

On the other hand, our agent-based model has been gaining

significant attention recently. For example, there have been some

recent works on positioning the agents on nodes of the graph

𝐺 such that each agent’s position collectively form the maximal

independent set (MIS) [17, 18] or they identify a small dominating

set [8] of 𝐺 . Another related problem is of dispersion in which

𝑘 ≤ 𝑛 agents are positioned on 𝑘 different nodes of 𝐺 , see [13]

and the references therein. A solution to the dispersion problem

guarantees that 𝑘 agents are positioned on 𝑘 different nodes; which

is a requirement for the triangle counting problem defined in this

paper. Exploration problem on graphs using mobile agents refers

to solving a graph analytic task using one or more agents [9].

In this work, we consider triangle counting in a simple, undi-

rected, anonymous graph using mobile agents and then use it as a

sub-routine to solve the (i) Truss Decomposition Problem and com-

pute (ii) Triangle Centrality and (iii) Local Clustering Coefficient. Our
solution to the truss decomposition problem is based on h-index
based parallel truss decomposition algorithm described in [26]. We

study these problems from a theoretical perspective and aim to

solve them while minimizing both time and memory-per-agent as

much as possible. The full version of the paper can be found in [7].

2 PRELIMINARIES, PROBLEM AND RESULTS
2.1 Model
We have𝐺 (𝑉 , 𝐸) - a connected, undirected, unweighted and anony-
mous graph with 𝑛 nodes and𝑚 edges. The nodes of𝐺 do not have

any identifiers and are memoryless. Edges incident on 𝑣 are locally

labelled using port numbers. The edges of the graph serve as routes
through which the agents can commute.

We have a collection of 𝑛 agents residing on the nodes of the

graph in such a way that each node is occupied by a distinct agent

at the start (known as dispersed configuration in literature). Each

agent has a unique ID and memory to store information. Two or

more agents can be present (co-located) at a node or pass through
an edge in 𝐺 . The agents operate in a synchronous system where

they are synchronised to a common clock. We consider the local

communication model where only co-located agents (i.e., agents

at the same node) can communicate among themselves. An agent

can perform a𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒 −𝐶𝑜𝑚𝑝𝑢𝑡𝑒 −𝑀𝑜𝑣𝑒 task in a time unit,

called round. The time complexity of an algorithm is the number

of rounds required to achieve the goal. The space complexity is

the number of bits required by each agent to execute the algorithm.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2186

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2.2 Definitions
Definition 2.1 (𝑠𝑢𝑝𝑝𝑜𝑟𝑡 [26]). For a given graph 𝐺 (𝑉 , 𝐸), the

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 of an edge 𝑒 ∈ 𝐸 is the number of 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 in 𝐺 that

contain 𝑒 .

Definition 2.2 (𝑘-truss [26]). k−𝑡𝑟𝑢𝑠𝑠 is the largest sub-graph 𝑇𝑘
of𝐺 (𝑉 , 𝐸) in which every edge has 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥ 𝑘 − 2 with respect to

𝑇𝑘 . In case, 𝑇𝑘 is a 𝑛𝑢𝑙𝑙 graph, we say 𝑘-truss for 𝐺 does not exist.

Definition 2.3 (𝑡𝑟𝑢𝑠𝑠𝑛𝑒𝑠𝑠 [26]). The 𝑡𝑟𝑢𝑠𝑠𝑛𝑒𝑠𝑠 of an edge 𝑒 , is

defined as the maximum 𝑘 such that 𝑒 belongs to𝑇𝑘 but not to𝑇𝑘+1.

Definition 2.4 (𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 [6]). Triangle Centrality,𝑇𝐶 (𝑣)
of a node 𝑣 ∈ 𝐺 is given by the equation:

𝑇𝐶 (𝑣) =
1

3

∑
𝑢∈𝑁 +

T (𝑣) T(𝑢) +
∑

𝑤∈{𝑁 (𝑣)\𝑁T (𝑣) } T(𝑤)
𝑇 (𝐺)

where, where 𝑁 (𝑣) is the neighborhood set of 𝑣 , 𝑁T (𝑣) is the set
of neighbors that are in triangles with 𝑣 , and 𝑁 +

T (𝑣) is the closed
set that includes 𝑣 . T(𝑣) and T(𝐺) denote the respective triangle
counts with 𝑣 as vertex and the total triangle count in 𝐺 .

Definition 2.5 (𝐿𝑜𝑐𝑎𝑙 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 [19]). The Local Clus-
tering Coefficient (𝐿𝐶𝐶) of a node 𝑣 ∈ 𝐺 is written as 𝐿𝐶𝐶 (𝑣) =

T(𝑣)
𝛿 (𝑣) (𝛿 (𝑣)−1) , where T(𝑣) is the number of triangles with 𝑣 as a

vertex and 𝛿 (𝑣), the degree of the node 𝑣 .

2.3 Problem Statements
Triangle Counting using Mobile Agents: Consider an undi-

rected, simple, connected anonymous 𝑛-node graph𝐺 = (𝑉 , 𝐸) and
a collection R = {𝑟1, 𝑟2, . . . , 𝑟𝑛} of 𝑛 agents, each of which is ini-

tially placed distinctly at each node of𝐺 . The 𝑛 autonomous agents

coordinate among themselves to solve the following problems.

(a) Node-Based Triangle Counting: To count the number of

triangles with a given node as a vertex.

(b) Edge-Based Triangle Counting: To count the number of tri-

angles based on a given edge.

(c) Total Triangle Counting: To count the total number of trian-

gles in the graph 𝐺 .

Truss Decomposition, Triangle Centrality and Local Cluster-
ing Coefficient: Consider an undirected, simple, connected anony-

mous 𝑛-node graph𝐺 = (𝑉 , 𝐸) and a collection R = {𝑟1, 𝑟2, . . . , 𝑟𝑛}
of 𝑛 agents, each of which is initially placed distinctly at each node

of 𝐺 . The 𝑛 autonomous agents coordinate among themselves to

solve the (i) Truss Decomposition Problem and compute (ii) Triangle
Centrality and (iii) Local Clustering Coefficient of a given node.

2.4 Our Results
Let 𝐺 be an 𝑛 node arbitrary, anonymous, simple, connected graph

with𝑚 edges, maximum degree Δ and diameter 𝐷 . Let 𝑛 mobile

agents with distinct IDs with the highest ID 𝜆, be placed at each

of the 𝑛 nodes of 𝐺 in an initial dispersed configuration. Then, we

have the following results:

Theorem 2.6 (Triangle Counting). Each agent 𝑟𝑖 with𝑂 (Δ log𝑛)
bits of memory, can calculate the number of triangles with 𝑟𝑖 as a
vertex in 𝑂 (Δ log 𝜆) rounds, the number of triangles based on each
of its adjacent edges in 𝑂 (Δ log 𝜆) rounds and the total number of
triangles in 𝐺 , in 𝑂 (𝐷Δ log 𝜆) rounds.

Theorem 2.7 (Truss Decomposition). The Truss Decomposi-

tion Problem for𝐺 can be solved by themobile agents in𝑂 (𝑚Δ𝐷 log 𝜆)
rounds with 𝑂 (Δ log𝑛) bits of memory per agent.

Theorem 2.8 (Triangle Centrality). The Triangle Centrality
of each node 𝑣 ∈ 𝐺 can be calculated in 𝑂 (Δ log 𝜆) rounds if T(G) is
known and in 𝑂 (𝐷Δ log 𝜆) rounds, if T(𝐺) is unknown. T(𝐺) is the
total triangle count of the graph 𝐺 .

Theorem 2.9 (Local Clustering Coefficient). The Local Clus-
tering Coefficient of each node 𝑣 ∈ 𝐺 , 𝐿𝐶𝐶 (𝑣) can be calculated in
𝑂 (Δ log 𝜆) rounds.

3 TRIANGLE COUNTING VIA MOBILE
AGENTS

In this section, we formulate algorithms for 𝑛 mobile agents that

are initially dispersed among the 𝑛 nodes of the graph 𝐺 to count

the number of triangles within 𝐺 . Due to the indistinguishable

nature of the nodes, the algorithm relies on the memory and IDs

of the mobile agents stationed on these nodes. Moreover, the lim-

itation of communication only within the co-located agents and

synchronising their movement emerges as an additional challenge.

Our algorithm operates in three phases:

• Phase 1 (Neighbourhood Discovery): Agents, symbolically

representing their respective nodes, initially scan their neigh-

bourhoods to gather information about adjacent nodes.

• Phase 2 (Common Neighborhood Counting): Once the neigh-
bourhood information is collected, agents count the number

of common neighbours with each adjacent agent. Addition-

ally, each agent 𝑟𝑖 tallies local triangles with itself as a vertex

and triangles with (𝑟𝑖 , 𝑟 𝑗) as an edge, where 𝑟 𝑗 is an adjacent

agent to 𝑟𝑖 .

• Phase 3 (Total Triangle Counting): In the final phase, each

agent consolidates the local triangle count from every other

agent, enabling the determination of the total number of

triangles in the graph 𝐺 .

The results attained throughout the three phases are summarized

in Theorem 2.6. For details, refer to the full version [7].

4 APPLICATIONS
Truss Decomposition: In truss decomposition, we compute the

𝑡𝑟𝑢𝑠𝑠𝑛𝑒𝑠𝑠 for each edge in 𝐺 (𝑉 , 𝐸), to obtain a partition (equiva-

lence classes) of 𝐸, thereby obtaining the 𝑘-trusses of 𝐺 for any

𝑘 by taking union of the equivalent classes. Using methods from

Section 3, we obtain 𝑡𝑟𝑢𝑠𝑠𝑛𝑒𝑠𝑠 values for each edge, thus solving the

Truss Decomposition Problem. The main result of this section is

provided in Theorem 2.7. For more details, refer to [7].

Triangle Centrality and Local Clustering Coefficient: Triangle
Centrality, formulated in [6], identifies key vertices in a graph

by assessing the concentration of triangles around each vertex.

The Local Clustering Coefficient of a node measures the proximity

of its neighbours to forming a clique, indicating the network’s

connectivity around that node. We employ the mobile agents to

compute these metrics. Our results on Triangle Centrality and Local
Clustering Coefficient have been summarized in Theorem 2.8 and

Theorem 2.9, respectively.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2187

REFERENCES
[1] Wali Mohammad Abdullah, David Awosoga, and Shahadat Hossain. 2022. Effi-

cient Calculation of Triangle Centrality in Big Data Networks. In HPEC.
[2] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. Proceedings of the VLDB Endowment
(2017).

[3] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. 2002. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In SODA.
[4] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008. Efficient

semi-streaming algorithms for local triangle counting in massive graphs. In

SIGKDD.
[5] Ulrik Brandes. 2005. Network analysis: methodological foundations. Vol. 3418.

Springer Science & Business Media.

[6] Paul Burkhardt. 2021. Triangle Centrality. arXiv:2105.00110

[7] Prabhat Kumar Chand, Apurba Das, and Anisur Rahaman Molla. 2024.

Agent-Based Triangle Counting and its Applications in Anonymous Graphs.

arXiv:2402.03653

[8] Prabhat Kumar Chand, Anisur Rahaman Molla, and Sumathi Sivasubramaniam.

2023. Run for Cover: Dominating Set via Mobile Agents. In ALGOWIN.
[9] Shantanu Das. 2019. Graph explorations with mobile agents. Distributed Com-

puting by Mobile Entities: Current Research in Moving and Computing (2019).

[10] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In OSDI.
[11] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

K-Truss Community in Large and Dynamic Graphs. In SIGMOD.
[12] Songwei Jia, Lin Gao, YongGao, andHaiyangWang. 2014. Anti-triangle centrality-

based community detection in complex networks. IET systems biology (2014).

[13] Ajay D. Kshemkalyani and Gokarna Sharma. 2021. Near-Optimal Dispersion on

Arbitrary Anonymous Graphs. In OPODIS.

[14] Matthieu Latapy. 2008. Main-memory triangle computations for very large

(sparse (power-law)) graphs. Theoretical computer science (2008).
[15] Fuhuan Li and David A Bader. 2021. A graphblas implementation of triangle

centrality. In HPEC.
[16] Ha-Myung Park, Francesco Silvestri, U Kang, and Rasmus Pagh. 2014. MapReduce

Triangle Enumeration With Guarantees. In CIKM.

[17] Debasish Pattanayak, Subhash Bhagat, Sruti Gan Chaudhuri, and Anisur Ra-

haman Molla. 2024. Maximal Independent Set via Mobile Agents. In ICDCN.
[18] Subhajit Pramanick, Sai Vamshi Samala, Debasish Pattanayak, and Partha Sarathi

Mandal. 2023. Filling MIS Vertices of a Graph by Myopic Luminous Robots. In

ICDCIT.
[19] Peter Sanders and Tim Niklas Uhl. 2023. Engineering a Distributed-Memory

Triangle Counting Algorithm. In IPDPS.
[20] Thomas Schank. 2007. Algorithmic aspects of triangle-based network analysis.

(2007).

[21] Siddharth Suri and Sergei Vassilvitskii. 2011. Counting Triangles and the Curse

of the Last Reducer. InWWW.

[22] Charalampos E Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis,

and Christos Faloutsos. 2011. Spectral counting of triangles via element-wise

sparsification and triangle-based link recommendation. Social Network Analysis
and Mining (2011).

[23] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. 2017. Parallel

triangle counting and k-truss identification using graph-centric methods. In

HPEC.
[24] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

Proc. VLDB Endow. (2012).
[25] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. Nature (1998).
[26] Jian Wu, Alison Goshulak, Venkatesh Srinivasan, and Alex Thomo. 2018. K-Truss

Decomposition of Large Networks on a Single Consumer-Grade Machine. In

ASONAM.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2188

https://arxiv.org/abs/2105.00110
https://arxiv.org/abs/2402.03653

	Abstract
	1 Introduction and Related Work
	2 Preliminaries, Problem and Results
	2.1 Model
	2.2 Definitions
	2.3 Problem Statements
	2.4 Our Results

	3 Triangle Counting via Mobile Agents
	4 Applications
	References

