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ABSTRACT
A connected graph 𝐺 = (𝑉 , 𝐸) provides a natural context for im-

porting the connectivity requirement of fair division from the con-

tinuous world into the discrete one. Each of 𝑛 agents is allocated

a share of 𝐺 ’s vertex set 𝑉 . These 𝑛 shares partition 𝑉 , with each

required to induce a connected subgraph. Agents use their own val-

uation functions to determine the non-negative numerical values of

the shares, which then determine whether the allocation is fair in

some specified sense. Applications include the problem of dividing

cities connected by a road network when each party wishes to drive

among its allocated cities without leaving its territory.

We introduce graph cutsets – forbidden substructures which

block allocations that are fair in the EF1 (envy-free up to one item)

sense. Two parameters – gap and valence – determine blocked

values of 𝑛. If 𝐺 contains a cutset of gap 𝑘 ≥ 2 and valence in the

interval [𝑛−𝑘 + 1, 𝑛− 1], then allocations that are CEF1 (connected

EF1) fail to exist for 𝑛 agents with certain CM (common monotone)

valuations; an elementary cutset yields such a failure even for CA
(common additive) valuations. Additionally, we provide an example

(Graph𝐺𝐼 𝐼 𝐼 in Figure 1) which excludes both cutsets of gap at least

two and CEF1 divisions for three agents even with CA valuations.

We show that it is NP-complete to determine whether cutsets exist.

Finally, for some graphs 𝐺 we can, in combination with some new

positive results, pin down 𝐺 ’s spectrum – the list of exactly which

values of𝑛 do/ do not guarantee CEF1 allocations. Examples suggest

a conjectured common spectral pattern for all graphs.
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1 PRELIMINARIES: EF1 GRAPH DIVISIONS
Let 𝑁 = {1, 2, . . . , 𝑛} be a finite set of agents and 𝐺 = (𝑉 , 𝐸) a con-
nected undirected graph. We call 𝐺 traceable if it admits a Hamil-

tonian path. A vertex subset 𝑉 ′ ⊆ 𝑉 is connected if it induces a
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connected subgraph of 𝐺 ; C(𝑉 ) is the set of all connected vertex

subsets. For 𝑋 any family of vertex subsets, let

⋃
𝑋 denote the

union of all sets in 𝑋 ; that is, 𝑥 ∈ ⋃
𝑋 iff 𝑥 ∈ 𝑆 for some 𝑆 ∈ 𝑋 .

Each agent 𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 : 𝐶 (𝑉 ) → R+
0
, with

𝑣𝑖 (∅) = 0; the 𝑣𝑖 aremonotone if for all 𝑋,𝑌 ∈ C(𝑉 ), 𝑋 ⊆ 𝑌 implies

𝑣𝑖 (𝑋 ) ≤ 𝑣𝑖 (𝑌 ); common if 𝑣𝑖 = 𝑣 𝑗 for all 𝑖, 𝑗 ∈ 𝑁 ; arbitrary if not

required to be common; and additive if 𝑣𝑖 (𝑉 ′) = ∑
𝑥∈𝑉 ′ 𝑣𝑖 ({𝑥}) for

each 𝑖 ∈ 𝑁 and each 𝑉 ′ ∈ C(𝑉 ). Additive valuations are properly
contained among monotone valuations, and CA (common additive)

is properly contained in CM (common monotone). A connected
allocation𝐴 = (𝐴𝑖 )𝑖∈𝑁 of𝐺 assigns each 𝑖 ∈ 𝑁 an𝐴𝑖 ∈ 𝐶 (𝑉 ), with
the 𝐴𝑖 partitioning 𝑉 .

Envy-freeness requires 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ) for every pair 𝑖, 𝑗 ∈ 𝑁

of agents. With indivisible objects, envy-free allocations may not

exist. We use the notion of envy-free up to one good, aka EF1, which
requires that for all 𝑖, 𝑗 ∈ 𝑁 , either 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ), or some 𝑥 ∈ 𝐴 𝑗

makes 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 \ {𝑥}). We use CEF1 to refer to an allocation

that is connected and EF1. Envy-freeness up to one outer good, aka
CEF1outer, additionally requires 𝐴 𝑗 \ {𝑥} to be connected in 𝐺 .

Related Work. Since its introduction [1, 4], fair division of graphs

has been among the most relevant research topics of fair division

with constraints. Recent work in this setting investigates different

fairness concepts with respect to matters of existence and (parame-

terized) complexity [2, 3, 6, 7, 9, 10, 12–15].

For a path graph, Bilò et al. [3], in combination with Igarashi [11],

establish that for any traceable graph𝐺 and any number 𝑛 of agents

with monotone valuations, there is always a CEF1outer allocation.

It is still unknown whether any non-traceable graphs offer such a

guarantee for arbitrarily many agents. However, for exactly two

agents Bilò et al. [3] show that for all finite connected graphs 𝐺

the following three statements are equivalent: (i) 𝐺 guarantees

CEF1outer allocations for 2 agents with monotone valuations. (ii)𝐺

guarantees CEF1outer allocations for 2 agents with CA valuations.

(iii)𝐺 contains no tridents. (iv)𝐺 has a bipolar ordering. Here bipolar
orderings are certain relaxations of Hamiltonian paths, while tridents
(see the long version [5] for the precise definition) are particularly

simple special cases of our graph cutsets (Definition 1). For three

agents, no general characterization is known, but Igarashi and

Zwicker [13] have shown that in the case of Graph 𝐺𝐼 (Figure 1) –

and of any graph obtained from it by inserting additional degree

2 vertices along its edges – CEF1outer allocations for three agents

with monotone valuations always exist.

2 EXAMPLES OF GRAPH CUTSETS
Before we dive into the definition of cutset, we discuss examples for

the graphs given in Figure 1. The cutset for graph𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼 ) (see
also [13, Figure 11]) will be the collection 𝐶𝐼 = {{𝑎}, {𝑏}, {𝑐}} of 3
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Figure 1: Left graph 𝐺𝐼 has an elementary cutset of valence
3 and gap 2. Middle graph 𝐺𝐼 𝐼 has a tame cutset of valence 3
and gap 2. Right graph 𝐺𝐼 𝐼 𝐼 has no cutset of gap 2 or greater.

singleton vertex subsets. If we delete all vertices in

⋃
𝐶𝐼 , we obtain

5 disconnected components. We use 𝐶𝐼 to block CEF1 allocations

for 𝑛 = 4 agents as follows. Any share that overlaps more than

one component, and is connected, must also contain one of the 3

vertices of

⋃
𝐶𝐼 . As 𝑛 = 4 > 3, some deprived agent 𝑥 gets a share

disjoint from

⋃
𝐶𝐼 , hence overlapping at most one component. As

𝑛 = 4 < 5, some privileged agent 𝑦 gets a share that overlaps two

or more components, hence overlapping

⋃
𝐶𝐼 . In this case, agent 𝑥

gets at most one vertex, while 𝑦 at least three, so CA valuations

that assign value 1 to each of 𝐺𝐼 ’s 8 vertices results in 𝑥 envying 𝑦

by more than one object.
1

A cutset member is called type I if it is a singleton and type II if
not. All 𝐶𝐼 members were type I, making it an elementary cutset.

Graph𝐺𝐼 𝐼 ’s cutset𝐶𝐼 𝐼 = {{𝑎}, {𝑏, 𝑐, 𝑑, 𝑒, 𝑓 }} has one type-II member,

making it a tame cutset. The induced graph on 𝑉𝐼 𝐼 \
⋃
𝐶𝐼 𝐼 again

has 5 disconnected components. A connected share overlapping 2

components must contain 𝑎, or contain two from {𝑏, 𝑐, 𝑑, 𝑒, 𝑓 }, so
at most 3 agents have “tickets” to connect two components; with 4

agents, someone gets no ticket. By assigning value
1

2
to each vertex

in {𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } and value 1 to the others, a version of the deprived

agent argument goes through. Theorem 1 applies a version of this

argument whenever the number of agents lies strictly between the

number 𝜏 of “tickets” (called the valence, see Definition 1) and the

number 𝜏 + 𝑟 of sets in a certain partition of 𝑉𝐼 𝐼 \
⋃
𝐶 ,2 with the

difference 𝑟 between these numbers termed the gap. But for the
non-tame case, the counterexample valuations constructed are CM,

not CA. Cutsets arose as generalizations of the tridents from Bilò

et al. [3].

3 MAIN DEFINITION AND THEOREM
Type-II members complicate our definition for generalized cutset.

For elementary cutsets, the definition greatly simplifies. These no-

tions differ from the graph cutsets of graph theory, which are sets

of edges that disconnect the graph when deleted.

Definition 1 (generalized cutset; in short, cutset). For
𝐺 = (𝑉 , 𝐸) a finite connected graph, let
– C = {𝐶1,𝐶2, . . . ,𝐶𝑡 } be a family of 𝑡 pairwise disjoint, nonempty
subsets of 𝑉 , each inducing a connected subgraph,

– 𝜏 = (𝜏1, 𝜏2, . . . , 𝜏𝑡 ) be a sequence of natural numbers, with 𝜏 𝑗 called
𝐶 𝑗 ’s pass-through number and the sum Σ𝜏 of all 𝜏 𝑗 the valence,

– 𝐺 \ C be the subgraph of 𝐺 induced by 𝑉 \⋃C, and
– 𝐻 = {𝐻1, 𝐻2, . . . , 𝐻Σ𝜏+𝑟 }, with 𝑟 ≥ 2, be a partition of 𝑉 \ ⋃C
that is independent, meaning that whenever two vertices belong to
different members of the partition, they are non-adjacent.

Assume, in addition, that
1
When components have several vertices, assign value 1 to one and 0 to the rest.

2
However, a set in the partition might equal a union of several components.

– for each𝐶𝑖 and 𝐻 𝑗 there is at most one vertex 𝑠𝑖, 𝑗 in𝐶𝑖 adjacent to
any vertices in 𝐻 𝑗 , referred to as the contact vertex for 𝐶𝑖 and 𝐻 𝑗 ,

– each 𝐶 𝑗 ∈ C is either a “type-I member” containing one vertex, or
a “type-II member” containing more than one,

– the type-II members of C form an independent family, and
– for each type-II member𝐶𝑖 , there are 2𝜏 𝑗 +1 sets𝐻 𝑗 each admitting
a contact vertex 𝑠𝑖, 𝑗 ∈ 𝐶𝑖 , and these vertices are distinct.

Then C is a cutset of valence Σ𝜏 and gap 𝑟 ≥ 2, with witness 𝐻 . Such
a cutset is elementary if it contains no type-II members, and is tame

if it contains at most one.3

Theorem 1 (Main Theorem). Let 𝐺 = (𝑉 , 𝐸) be a finite, con-
nected graph. Suppose C = {𝐶1,𝐶2, . . . ,𝐶𝑡 } is a cutset for 𝐺 , of gap
𝑟 ≥ 2 and valence Σ𝜏 , with witness 𝐻 = {𝐻1, 𝐻2, . . . , 𝐻Σ𝜏+𝑟 }. Then
for each integer 𝑛 lying within the “critical interval” Σ𝜏 < 𝑛 < 𝑟 + Σ𝜏 ,
– there exist CM valuations for 𝑛 agents, under which no CEF1 allo-
cations exist (whence no CEF1outer allocations exist);

– if C is tame, there exist CA valuations for 𝑛 agents, under which
no CEF1 allocations exist (whence no CEF1outer allocations exist).

A counterexample. Theorem 1, along with a result by Bilò et al. [3]

(see Related Work) implies that cutsets (of gap ≥ 2) are forbid-

den substructures for traceable graphs. The converse is not true;

Graph 𝐺𝐼 𝐼 𝐼 is not traceable, yet fails to admit any cutset of gap

at least two. Moreover, the numbers on the vertices provide CA

valuations for which no CEF1outer allocation exists for 𝑛 = 3 agents.

4 COMPLEXITY AND A CONJECTURE
It is well-known that traceable graphs are NP-hard to detect [8]. In

the following, we show the same for cutsets.

Theorem 2. It is NP-complete to decide whether a graph admits
an elementary cutset (resp. cutset) of valence 𝑡 and gap ≥ 2.

Theorem 3. For all connected graphs 𝐺 = (𝑉 , 𝐸) and 𝑛 agents
with monotone valuations, if 𝑛 ≥ |𝑉 | − 1, or if 𝑛 = |𝑉 | − 2 and no
three vertices 𝑎, 𝑏,𝑢 exist such that 𝑢 is 𝑎’s only neighbor and 𝑏’s only
neighbor, then there always exists an CEF1outer allocation.

Theorem 3 helps to show that the spectrum of the 8 vertex graph

𝐺𝐼 is ⟨yes, yes, yes, no, YES⟩. Here the first 3 yes entries signify
that 𝐺𝐼 guarantees existence of CEF1outer allocations for 𝑛 = 1, 2,

and 3 agents, the 𝑌𝐸𝑆 in the fifth spot indicates the same is true

for all 𝑛 ≥ 5, and the 𝑛𝑜 in spot 4 indicates that CEF1 allocations

for 𝑛 = 4 agents fail to exist for some choice of valuations. Similar

patterns for the spectra of other graphs suggest:

Conjecture 1. The spectrum of any finite graph 𝐺 consists of an
infinite yes string, interrupted by a (possibly empty) finite no string.
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3
Requirements that cutset members induce connected subgraphs and pass-through

numbers 2𝜏 𝑗 + 1 be odd are unused in the Theorem 1 proof, but reduce the search

space for cutsets. If some number 𝑛 of agents lies in the critical interval of a cutset C
satisfying a version of Definition 1 with these requirements dropped, then 𝑛 lies in

the critical interval of a second cutset C′
satisfying the full definition.
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