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ABSTRACT
We study popularity for matchings under preferences. This solu-
tion concept captures matchings that do not lose against any other
matching in a majority vote by the agents. A popular matching
is said to be robust if it is popular among multiple instances. We
present a polynomial-time algorithm for deciding whether there ex-
ists a robust popularmatching if instances only differ with respect to
the preferences of a single agent while obtaining NP-completeness
if two instances differ only by a downward shift of one alternative
by four agents. Moreover, we find a complexity dichotomy based
on preference completeness for the case where instances differ by
making some options unavailable.
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1 INTRODUCTION
Matchings under preferences have been an enduring object of study
for many decades with an abundance of applications ranging as
far as labor markets, organ transplantation, or dating. The general
idea is to match two types of agents that each possess a ranking of
the agents from the other side. One of the most celebrated results
in this area is the Deferred Acceptance Algorithm by Gale and
Shapley [15] for identifying so-called stable matchings. These are
matchings that do not admit a blocking pair of agents preferring
each other to their designated matching partners. Subsequently,
many related algorithms and solution concepts have been developed
and investigated. Among these, the concept of popular matchings
proposed by Gärdenfors [19] has caused substantial research, see,
e.g., the book chapter by Cseh [10]. A matching is said to be popular
if it does not lose a majority election against any other matching.
In this election, the agents vote according to their preferences
between their respective matching partners. As already shown by
Gärdenfors, stable matchings are popular, but the converse is not
necessarily true.

A common feature of real-world scenarios is that it can be hard
for agents to express their exact preferences. For instance, an agent
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might report their preferences but alter them at a later stage. In a
matching market, this situation can easily occur when the inter-
action with other agents changes the opinion about these agents.
Or an agent might maintain their preferences but then some event
happens that turns some of their options into unacceptable or impos-
sible options, or creates new opportunities. Again, such situations
frequently occur, for instance, when some of the matching partners
move away, or when an agent gets to know new agents.

In terms of algorithmic solutions, it would be desirable to es-
tablish a solution that is robust to changes. To formalize this idea,
we propose robust popular matchings, which are popular match-
ings across multiple instances. We then consider RobustPopular-
Matching, the algorithmic problem of computing a robust popular
matching, or to decide that no such matching exists. Specifically, we
consider this problem for the two scenarios described above. First,
we assume that the set of available matching partners is maintained,
but agents may alter their preferences. We present a polynomial-
time algorithm for the case where only a single agent alters their
preferences. The key idea for this algorithm is to define a set of
hybrid instances on which we search for popular matchings that
include a predefined edge. By contrast, we show that RobustPopu-
larMatching becomes NP-complete if four agents may perform
a particularly simple type of preference alteration called a down-
ward shift. Second, we consider RobustPopularMatching for the
case where the preference orders of the agents are maintained but
options may become unavailable. We find a complexity dichotomy
based on whether one of the input instances has every potential
partner available. We conclude by discussing related problems, such
as robustness for related popularity notions.

2 RELATEDWORK
Popularity was first considered by Gärdenfors [19] under the name
of “majority assignments.” He also introduced strong popularity, the
version of the solution concept where a matching has to beat every
other matching in a majority election. In a broader interpretation,
popular and strongly popular matchings correspond to weak and
strong Condorcet winners in social choice [9]. The book chapters
by Cseh [10] and Manlove [23, Chapter 7] provide a good overview
of previous work on popular matchings.

Our research continues a stream of algorithmic results on popu-
larity. In this line of work, close relationships between popularity
and stability often play an important role: Popular matchings can
have different sizes and stable matchings are popular matchings of
minimum size. Moreover, popular matchings of maximum size can
be computed efficiently [11]. By contrast, somewhat surprisingly,
it is NP-hard to decide if there exists a popular matching that is
neither stable nor of maximum size [13].

An important algorithmic problem for our research is the prob-
lem of computing a popular matching containing a predefined set
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of edges. A polynomial time algorithm for this problem exists if
only a single edge has to be included in the matching [11] but the
problem is NP-hard if at least two edges are forced [13]. However,
this hardness heavily relies on the fact that some matching partners
are unavailable. If the preference orders of the agents encompass
the complete set of agents of the other side, then popular match-
ings of maximum weight can be computed in polynomial time [11].
Consequently, by setting appropriate weights, one can find pop-
ular matchings containing or preventing any subset of edges for
complete instances.

Popular matchings have also been considered in related domains.
Biró et al. [4] consider popular matchings for weak preferences,
where their computation becomes NP-hard. However, in a house
allocation setting, where one side of the agents corresponds to
objects without preferences, popular matchings can be computed
efficiently, even for weak preferences [1]. One can also relax the
allowed input instances by considering the roommate setting where
every pair of agents may bematched. Then, popularity already leads
to computational hardness for strict preferences [13, 20].

In addition, some work considers a probabilistic variant of pop-
ularity called mixed popularity, where the output is a probability
distribution over matchings [21]. Mixed popular matchings are
guaranteed to exist by the Minimax Theorem, and can be computed
efficiently if the output are matchings, even in the roommate set-
ting [6, 21]. However, finding matchings in the support of popular
outcomes becomes intractable in a coalition formation scenario
where the output may contain coalitions of size three [6].

Robustness of outcomes with respect to perturbations of the
input has also been studied in other scenarios of multiagent systems,
such as voting [7, 14, 26]. There, robustness is commonly studied
under the lens of bribery, i.e., deliberately influencing an election
by changing its input. Then, a cost is incurred for modifying votes,
often measured with respect to the swap distance of the original
and modified votes [12].

More closely related, a series of papers study the complexity of
finding stablematchings acrossmultiple instances. Mai and Vazirani
[22] initiate this stream of work and propose a polynomial-time al-
gorithm if one agent shifts down a single alternative. Subsequently,
this result was improved by Gangam et al. [17] for arbitrary changes
of the preference order by a single agent and in very recent work
even for arbitrary changes by all agents of one side [18]. Notably,
the algorithmic approach of these papers is to exploit the combi-
natorial structure of the lattice of stable matchings. By contrast, a
similar structure for popular matchings is unknown, and we de-
velop an alternative technique. In addition, if all agents may change
their preference lists, a computational intractability is also obtained
for stable matchings [24]. Notably, in the reduction byMiyazaki and
Okamoto [24], the number of agents that change their preference
order is linear with respect to the total number of agents, and these
agents apply extensive changes. This is a contrast to our hardness
result, which holds even if only four agents perform the simple
operation of shifting down an alternative.

Finally, some work on stable matchings considers other models
in which multiple instances interact. Aziz et al. [2, 3] propose a
model with uncertainty for the true preference relations. They ask
for matchings that are possibly or necessarily stable, or stable with
high probability. In addition, Boehmer et al. [5] study bribery for

stable matchings, i.e., the strategic behaviour for achieving certain
goals like forcing a given edge into a stable matching by deliberately
manipulating preference orders.

3 PRELIMINARIES
In this section, we introduce our formal model.

An instance I of matchings under preferences (MP) consists of a
bipartite graph 𝐺I = (𝑊 ∪ 𝐹, 𝐸I ), where the elements of𝑊 ∪ 𝐹

are called agents. In addition, every agent 𝑥 ∈𝑊 ∪ 𝐹 is equipped
with a linear order ≻I

𝑥 , their so-called preference order, over 𝑁 I
𝑥 :=

{𝑦 ∈𝑊 ∪ 𝐹 : {𝑥,𝑦} ∈ 𝐸I }, i.e., the set of their neighbors in 𝐺 . We
usually refer to the sets𝑊 and 𝐹 as workers and firms, respectively.
Note that we have superscripts pointing to the instance for most
of our notation because we will soon consider different instances
in parallel. However, we might omit the superscript if the instance
is clear from the context. Moreover, workers and firms are always
identical across instances and we entirely omit superscripts for
these.

Given a graph 𝐺 = (𝑊 ∪ 𝐹, 𝐸), a matching is a subset𝑀 ⊆ 𝐸 of
pairwise disjoint edges, i.e.,𝑚 ∩𝑚′ = ∅ for all𝑚,𝑚′ ∈ 𝑀 . For a
matching 𝑀 , we call an agent 𝑥 ∈ 𝑊 ∪ 𝐹 matched if there exists
𝑚 ∈ 𝑀 with 𝑥 ∈𝑚, and unmatched, otherwise. If 𝑥 is matched, we
denote their matching partner by𝑀 (𝑥).

Assume now that we are given an instance I of MP together
with an agent 𝑥 ∈ 𝑊 ∪ 𝐹 and two matchings 𝑀 and 𝑀′. We say
that 𝑥 prefers 𝑀 over 𝑀′ if 𝑥 is matched in 𝑀 and unmatched in
𝑀′, or if 𝑥 is matched in both𝑀 and𝑀′ with𝑀 (𝑥) ≻𝑥 𝑀′ (𝑥).

The notion of popularity depends on amajority vote of the agents
between matchings according to their preferences. Therefore, we
define the following notation for a vote between matchings:

voteI𝑥 (𝑀,𝑀′) :=


1 𝑥 prefers𝑀 over𝑀′,
−1 𝑥 prefers𝑀′ over𝑀 ,
0 otherwise.

Given a set of agents 𝑁 ⊆ 𝑊 ∪ 𝐹 , we define voteI
𝑁
(𝑀,𝑀′) :=∑

𝑥∈𝑁 voteI𝑥 (𝑀,𝑀′). The popularity margin between𝑀 and𝑀′ is
defined as ΔI (𝑀,𝑀′) := voteI

𝑊∪𝐹 (𝑀,𝑀′). Now, a matching𝑀 is
called popular with respect to instance I if, for every matching𝑀′,
it holds that ΔI (𝑀,𝑀′) ≥ 0. In other words, a matching is popular
if it does not lose a majority vote among the agents in an election
against any other matching. Moreover, a matching𝑀 is called stable
if for every edge 𝑒 = {𝑥,𝑦} ∈ 𝐸 \𝑀 , it holds that 𝑥 is matched and
prefers 𝑀 (𝑥) to 𝑦 or 𝑦 is matched and prefers 𝑀 (𝑦) to 𝑥 . As we
discussed before, all stable matchings are popular.

We are interested in matchings that are popular across multiple
instances. For this, we consider a pair of instances (I𝐴,I𝐵) of MP
where we assume that they are defined for the same set of workers
and firms.

Given a pair of instances (I𝐴,I𝐵), a matching is called a robust
popular matching with respect to I𝐴 and I𝐵 if it is popular with
respect to both I𝐴 and I𝐵 individually. Note that this implies that a
robust popular matching is in particular a matching for both I𝐴 and
I𝐵 and therefore a subset of the edge set of both underlying graphs.
We are interested in the computational problem of computing robust
popular matchings, specified more precisely as follows.
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RobustPopularMatching
Input: Pair (I𝐴,I𝐵) of instances of MP.
Question: Does there exist a robust popular matching
with respect to I𝐴 and I𝐵?

In particular, we consider the cases where the underlying graph
or the underlying preferences remain the same across instances.

First, if the underlying graphs are the same, i.e., 𝐺I𝐴 = 𝐺I𝐵 ,
we say that I𝐵 is a perturbed instance with respect to I𝐴 . Hence, a
perturbed instance only differs with respect to the preference orders
of the agents over the identical sets of neighbors. As a special case,
we consider the case where agents simply push down a single
alternative in their preference order. Given an agent 𝑥 ∈𝑊 ∪ 𝐹 and
two preference orders ≻I𝐴

𝑥 , ≻I𝐵
𝑥 over 𝑁𝑥 , we say that ≻I𝐵

𝑥 evolves
from ≻I𝐴

𝑥 by a downshift if there exists an agent 𝑦 ∈ 𝑁𝑥 such that

• for all agents 𝑧, 𝑧′ ∈ 𝑁𝑥 \ {𝑦}, it holds that 𝑧 ≻I𝐴
𝑥 𝑧′ if and

only if 𝑧 ≻I𝐵
𝑥 𝑧′, and

• for all agents 𝑧 ∈ 𝑁𝑥 \ {𝑦}, it holds that 𝑧 ≻I𝐴
𝑥 𝑦 implies

𝑧 ≻I𝐵
𝑥 𝑦.

In other words, the preference order of 𝑥 only changes by making 𝑦
worse, and maintaining the order among all other agents. Moreover,
we say that I𝐵 evolves from I𝐴 by downshifts if, for all agents
𝑥 ∈𝑊 ∪ 𝐹 with ≻I𝐴

𝑥 ≠≻I𝐵
𝑥 , it holds that ≻I𝐵

𝑥 evolves from ≻I𝐴
𝑥 by

a downshift.
Second, we consider the case of identical preference orders. More

formally, we say that I𝐵 evolves from I𝐴 by altering availability

if, for every agent 𝑥 ∈ 𝑊 ∪ 𝐹 , there exists a preference order ≻𝑥
on 𝑁

I𝐴
𝑥 ∪ 𝑁

I𝐵
𝑥 such that for all 𝑦, 𝑧 ∈ 𝑁

I𝐴
𝑥 , it holds that 𝑦 ≻I𝐴

𝑥 𝑧 if
and only if 𝑦 ≻𝑥 𝑧 and for all 𝑦, 𝑧 ∈ 𝑁

I𝐵
𝑥 , it holds that 𝑦 ≻I𝐵

𝑥 𝑧 if
and only if 𝑦 ≻𝑥 𝑧. In other words, the underlying graphs of the
two input instances may differ but the preferences for common
neighbors are identical. As a special case, we say that I𝐵 evolves
from I𝐴 by reducing availability if I𝐵 evolves from I𝐴 by altering
availability and 𝐸I𝐵 ⊆ 𝐸I𝐴 .

Before presenting our results, we illustrate central concepts in
an example.

Example 3.1. Consider an instance I𝐴 of MP with 𝑊 =

{𝑤1,𝑤2,𝑤3,𝑤4} and 𝐹 = {𝑓1, 𝑓2, 𝑓3, 𝑓4} where the graph and prefer-
ences are defined as depicted in Figure 1. The instance contains a
unique stable matching𝑀1 = {{𝑤1, 𝑓1}, {𝑤2, 𝑓3}, {𝑤3, 𝑓2}, {𝑤4, 𝑓4}}.
Moreover, there exists another popular matching 𝑀2 =

{{𝑤1, 𝑓3}, {𝑤2, 𝑓1}, {𝑤3, 𝑓2}, {𝑤4, 𝑓4}}. Note that this matching is
not stable, because of the edge {𝑤1, 𝑓1}.

Now, consider the instance I𝐵 that is obtained from instance I𝐴
by having agent𝑤1 change their preferences to 𝑓2 ≻I𝐵

𝑤1 𝑓3 ≻I𝐵
𝑤1 𝑓1,

and leaving everything else the same. Hence, I𝐵 evolves from I𝐴 by
a downshift of agent𝑤1. The unique popular (and therefore stable)
matching in I𝐵 is𝑀2. In particular, it therefore holds that (I𝐴,I𝐵)
is a Yes-instance of RobustPopularMatching. ◁

Our results make use of existing results in the literature. First,
we consider StableMatching, the problem of computing a stable
matching in a given instance of MP, which can be solved in poly-
nomial time by the famous Deferred Acceptance Algorithm [15].

𝑤1𝑓2 ≻I𝐴
𝑤1 𝑓1 ≻I𝐴

𝑤1 𝑓3

𝑤2𝑓1 ≻I𝐴
𝑤2 𝑓3

𝑤3𝑓2 ≻I𝐴
𝑤3 𝑓1 ≻I𝐴

𝑤3 𝑓4

𝑤4𝑓2 ≻I𝐴
𝑤4 𝑓4

𝑓1 𝑤3 ≻I𝐴
𝑓1

𝑤1 ≻I𝐴
𝑓1

𝑤2

𝑓2 𝑤3 ≻I𝐴
𝑓2

𝑤1 ≻I𝐴
𝑓2

𝑤4

𝑓3 𝑤1 ≻I𝐴
𝑓3

𝑤2

𝑓4 𝑤4 ≻I𝐴
𝑓4

𝑤3

Figure 1: Instance I𝐴 in Example 3.1. The perturbed in-
stance I𝐵 is obtained by having agent 𝑤1 swap their pref-
erences for 𝑓1 and 𝑓3.

Second, we consider PopularEdge, the problem of computing a
popular matching in a given instance of MP containing a designated
edge, or deciding that no such matching exists. This problem can
also be solved in polynomial time [11].

4 RESULTS
In this section, we present our results.

4.1 Perturbations of One Agent
First, we consider instances of RobustPopularMatching with
identical underlying graphs, where the perturbed instance only
differs with respect to the preferences of a single agent. We will
eventually show that there exists a polynomial-time algorithm
that solves RobustPopularMatching under this restriction. For
this, we perform two key steps. First, we define a set of hybrid
instances, which allow us to answer if there exists a robust popular
matching that contains a given edge. Second, we deal with the
case of robust popular matchings where the agent with perturbed
preferences remains unmatched. Combining these insights with
known algorithmic and structural results about popular matchings,
we obtain a polynomial-time algorithm.

We start by defining hybrid instances. Consider an instance
(I𝐴,I𝐵) of RobustPopularMatching where I𝐵 only differs from
I𝐴 with respect to the preferences of agent 𝑥 . Let 𝐺 = (𝑊 ∪ 𝐹, 𝐸)
be the underlying graph and consider an edge 𝑒 ∈ 𝐸 with 𝑥 ∈ 𝐸,
say 𝑒 = {𝑥,𝑦}. Define 𝑃𝐴 = {𝑧 ∈𝑊 ∪ 𝐹 : 𝑧 ≻I𝐴

𝑥 𝑦} and 𝑃𝐵 = {𝑧 ∈
𝑊 ∪ 𝐹 : 𝑧 ≻I𝐵

𝑥 𝑦}, i.e., 𝑃𝐴 and 𝑃𝐵 are the agents preferred to 𝑦 by 𝑥
in instance I𝐴 and I𝐵 , respectively. Consider any linear order ≻′ of
the neighbors 𝑁𝑥 of 𝑥 in 𝐺 that satisfies 𝑧 ≻′ 𝑦 if 𝑧 ∈ 𝑃𝐴 ∪ 𝑃𝐵 , as
well as 𝑦 ≻′ 𝑧 if 𝑧 ∈ 𝑁𝑥 \ (𝑃𝐴 ∪𝑃𝐵 ∪{𝑦}). Hence, ≻′ is a preference
order, where 𝑃𝐴 and 𝑃𝐵 are ordered arbitrarily at the top, then
agent 𝑦, and finally all other neighbors of 𝑥 in an arbitrary order.

The hybrid instance H𝑒 of (I𝐴,I𝐵) with respect to 𝑒 is defined
as the instance of MP where ≻H𝑒

𝑧 is equal to ≻I𝐴
𝑧 for all 𝑧 ≠ 𝑥

and ≻H𝑒
𝑥 is equal to ≻′. Note that we illustrate hybrid instances in

Example 4.7, where we also illustrate our main proof. We now prove
two important lemmas that create a correspondence of popular
matchings inH𝑒 and robust popular matchings for (I𝐴,I𝐵). The
first lemma considers popular matchings in H𝑒 containing 𝑒 .
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Lemma 4.1. Let 𝑀 be a matching and 𝑒 ∈ 𝑀 with 𝑥 ∈ 𝑒 . If 𝑀 is

popular in H𝑒 , then it is popular in both I𝐴 and I𝐵 .

Proof. Let𝑀 be a matching and 𝑒 ∈ 𝑀 with 𝑥 ∈ 𝑒 . Assume that
𝑀 is popular in H𝑒 . As the definition of the hybrid instance H𝑒

is symmetric with respect to I𝐴 and I𝐵 , we only prove that 𝑀 is
popular in I𝐴 .

Let 𝑀′ be any other matching. We determine the popularity
margin between 𝑀 and 𝑀′ in I𝐴 by considering the votes of all
agents. First, let 𝑧 ∈ (𝑊 ∪ 𝐹 ) \ {𝑥}. Then, since the preferences
of 𝑧 are identical in H𝑒 and I𝐴 , it holds that voteI𝐴𝑧 (𝑀,𝑀′) =

voteH𝑒
𝑧 (𝑀,𝑀′). Second, let us consider the vote of agent 𝑥 . By

construction of the hybrid instance, for all agents 𝑧 ∈ 𝑁𝑥 , it holds
that 𝑦 ≻I𝐴

𝑥 𝑧 whenever 𝑦 ≻H𝑒
𝑥 𝑧. Hence, since 𝑀 (𝑥) = 𝑦, we can

conclude that voteI𝐴𝑥 (𝑀,𝑀′) ≥ voteH𝑒
𝑥 (𝑀,𝑀′).

Combining these two insights, we obtain

ΔI𝐴 (𝑀,𝑀′) =
∑︁

𝑧∈𝑊∪𝐹
voteI𝐴𝑧 (𝑀,𝑀′)

≥
∑︁

𝑧∈𝑊∪𝐹
voteH𝑒

𝑧 (𝑀,𝑀′) = ΔH𝑒 (𝑀,𝑀′) ≥ 0.

The last inequality holds because of the popularity of 𝑀 in H𝑒 .
Hence,𝑀 is popular in I𝐴 . □

Lemma 4.2. Let 𝑀 be a matching and 𝑒 ∈ 𝑀 with 𝑥 ∈ 𝑒 . If 𝑀 is

popular in both I𝐴 and I𝐵 , then it is popular in H𝑒 .

Proof. Let𝑀 be a matching and 𝑒 ∈ 𝑀 with 𝑥 ∈ 𝑒 . Assume that
𝑀 is popular in both I𝐴 and I𝐵 .

Let𝑀′ be any other matching. We will compute the popularity
margin between𝑀 and𝑀′ inH𝑒 . Let 𝑧 ∈ (𝑊 ∪ 𝐹 ) \ {𝑥}. As in the
proof of the previous lemma, since the preferences of 𝑧 are identical
inH𝑒 , I𝐴 , and I𝐵 , it holds that voteH𝑒

𝑧 (𝑀,𝑀′) = voteI𝐴𝑧 (𝑀,𝑀′) =
voteI𝐵𝑧 (𝑀,𝑀′).

We make a case distinction with respect to the vote of agent 𝑥 .
If voteH𝑒

𝑥 (𝑀,𝑀′) = 1, then the previous observation immediately
implies that ΔH𝑒 (𝑀,𝑀′) ≥ ΔI𝐴 (𝑀,𝑀′) ≥ 0. If voteH𝑒

𝑥 (𝑀,𝑀′) =
0, i.e., 𝑀′ (𝑥) = 𝑀 (𝑥), then ΔH𝑒 (𝑀,𝑀′) = ΔI𝐴 (𝑀,𝑀′) ≥ 0. If
voteH𝑒

𝑥 (𝑀,𝑀′) = −1, then𝑀′ (𝑥) ≻H𝑒
𝑥 𝑀 (𝑥) where𝑀 (𝑥) = 𝑦, and

therefore 𝑀′ (𝑥) ∈ 𝑃𝐴 ∪ 𝑃𝐵 . Without loss of generality, we may
assume that 𝑀′ (𝑥) ∈ 𝑃𝐴 . Then, by definition, 𝑀′ (𝑥) ≻I𝐴

𝑥 𝑀 (𝑥),
and therefore voteI𝐴𝑥 (𝑀,𝑀′) = −1. Combining this with the votes
of the other agents, it follows that ΔH𝑒 (𝑀,𝑀′) = ΔI𝐴 (𝑀,𝑀′) ≥ 0.
Since we have exhausted all cases, we conclude that ΔH𝑒 (𝑀,𝑀′) ≥
0. As𝑀′ was an arbitrary matching, it follows that𝑀 is popular. □

Combining Lemmas 4.1 and 4.2, we can find robust popular
matchings containing a specific edge by solving an instance of
PopularEdge.

Corollary 4.3. The instance (I𝐴,I𝐵) contains a robust popular
matching containing edge 𝑒 if and only if PopularEdge for the hybrid

instance with designated edge 𝑒 is a Yes-instance.

It remains to figure out whether there exist robust popular match-
ings that leave the agents with perturbed preferences unmatched.
For this, we make another observation.

Lemma 4.4. Let𝑀 be a matching that leaves agent 𝑥 unmatched.

Then,𝑀 is popular for I𝐴 if and only if𝑀 is popular in I𝐵 .

Proof. Let𝑀 be a matching that leaves 𝑥 unmatched. Then, for
every matching𝑀′, it holds that voteI𝐴𝑥 (𝑀,𝑀′) = voteI𝐵𝑥 (𝑀,𝑀′).
Hence, since 𝑥 is the only agent to perturb their preferences, it
follows that ΔI𝐴 (𝑀,𝑀′) = ΔI𝐵 (𝑀,𝑀′). Therefore, as 𝑀′ was an
arbitrary matching, it holds that𝑀 is popular for I𝐴 if and only if
𝑀 is popular for I𝐵 . □

As a consequence, we can tackle this case by finding a popular
matching in I𝐴 that leaves 𝑥 unmatched, or decide that no such
matching exists. This problem has a surprisingly easy solution: It
suffices to compute any stable matching. The key insight is captured
in the next lemma by Cseh and Kavitha [11], a lemma that resembles
the fundamental Rural Hospitals Theorem for stable matchings
[16, 25].

Lemma 4.5 (Cseh and Kavitha [11]). If an agent is unmatched in

some popular matching, then it is unmatched in all stable matchings.

We combine all our insights to state an algorithm for Robust-
PopularMatching if the perturbed input instance only differs with
respect to the preference order of one agent.

Algorithm 1 RobustPopularMatching for changes of one agent

Input: Instance (I𝐴,I𝐵) of RobustPopularMatching where
only one agent 𝑥 perturbs their preference order
Output: Robust popular matching for (I𝐴,I𝐵) or statement that
no such matching exists
1: Compute stable matching𝑀 for I𝐴
2: if 𝑀 leaves 𝑥 unmatched then return𝑀 .
3: end if
4: for 𝑒 ∈ 𝐸 with 𝑥 ∈ 𝑒 do
5: if there exists a popular matching 𝑀 for H𝑒 with 𝑒 ∈ 𝑀

then return𝑀

6: end if
7: end for
8: return “No robust popular matching exists”

The algorithm first checks a stable matching to attempt finding a
robust popular matching that leaves 𝑥 unmatched. Then, it checks
the hybrid instances to search for robust popular matchings where
𝑥 is matched. The correctness and running time of this algorithm
are captured in the main theorem of this section.

Theorem 4.6. RobustPopularMatching can be solved in poly-

nomial time if the perturbed input instance only differs with respect

to the preference order of one agent.

Proof. The polynomial running time follows because Sta-
bleMatching and PopularEdge can be solved in polynomial time
[11, 15].

Let us consider the correctness of Algorithm 1. For this we show
that Algorithm 1 returns a matching if and only if there exists a
robust popular matching in the considered instance. First, note that
if Algorithm 1 returns a matching in line 2, then it returns a popular
matching for I𝐴 because stable matchings are popular [19]. Hence,
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by Lemma 4.4, it returns a robust popular matching in this case.
Moreover, if Algorithm 1 returns a matching in line 5, it is a robust
popular matching according to Corollary 4.3. Hence, if Algorithm 1
returns a matching, then it is a robust popular matching.

Conversely, assume that there exists a robust popular matching
𝑀 . Assume first that𝑀 leaves 𝑥 unmatched. Then, by Lemma 4.5,
every stable matching leaves 𝑥 unmatched, and Algorithm 1 returns
a matching in line 2. In addition, if 𝑥 is matched in𝑀 by an edge 𝑒 ,
then, by Corollary 4.3,H𝑒 contains a popular matching containing 𝑒 .
Hence, Algorithm 1 returns a matching in line 5. □

Example 4.7. We illustrate the proof as well as hybrid instances
by continuing Example 3.1. In this example, the two input instances
I𝐴 and I𝐵 only differ with respect to the preferences of agent𝑤1.

Since the stable matching 𝑀1 for I𝐴 matches 𝑤1, we can con-
clude that there exists no robust popular matching that leaves
𝑤1 unmatched. Hence, we have to consider the hybrid instances
H𝑒 for 𝑒 ∈ {{𝑤1, 𝑓1}, {𝑤1, 𝑓2}, {𝑤1, 𝑓3}}, i.e., all edges incident
to 𝑤1. Interestingly, I𝐴 can serve as a hybrid instance for 𝑒 ∈
{{𝑤1, 𝑓2}, {𝑤1, 𝑓3}} and I𝐵 can serve as a hybrid instance for
𝑒 = {𝑤1, 𝑓1}. In fact, this incidence generalizes: Whenever I𝐵
evolves from I𝐴 by a downshift of agent 𝑦 in the preference order
of agent 𝑥 , then I𝐵 serves as a hybrid instance for 𝑒 = {𝑥,𝑦}, and
I𝐴 for all other edges containing 𝑥 .

Now, since 𝑀2 is popular in I𝐴 for the hybrid instance where
𝑒 = {𝑤1, 𝑓3}, Algorithm 1 finds the robust popular matching for
(I𝐴,I𝐵). ◁

Finally, by straightforward extensions of the techniques devel-
oped in this section, we can generalize our result for the case of
more than two instances that all differ only with respect to the
preferences of one agent 𝑥 . To find a robust popular matching con-
taining a specific edge 𝑒 = {𝑥,𝑦}, we define the preference order
of 𝑥 in a generalized hybrid instance by putting the agents preferred
to 𝑦 by 𝑥 in any input instance above 𝑦. This ensures that whenever
we contest the popularity of a matching in the hybrid instance with
a matching where 𝑥 receives a better partner 𝑧, then the popularity
of this matching is also contested in the input instances that have 𝑧
ranked above 𝑦.

Theorem 4.8. There exists a polynomial-time algorithm for the

following problem: Given a collection of MP instances (I1, . . . ,I𝑘 ),
which are all defined for the same underlying graph and differ only

with respect to the preferences of a single agent, does there exist a

matching that is popular for I𝑖 for all 1 ≤ 𝑖 ≤ 𝑘?

However, once we consider changes by more than one agent,
Corollary 4.3 breaks down. In fact, it ceases to hold even in the case
where two agents of the same class, e.g., workers, each swap their
preferences over two adjacent agents. We provide such an example
in the full version of the paper [8].

4.2 Perturbation by Four Downshifts
In this section, we continue the consideration of instance pairs with
the identical underlying graph. While we have previously seen a
polynomial-time algorithm for solving RobustPopularMatching
if the perturbed instance only differs by a single agent permuting
their preferences, we now allow several agents to change their pref-
erence orders. In this case, we obtain a computational intractability

if four agents are allowed to permute their preferences, even if the
only allowed changes are downshifts.

Our proof idea is to reduce from the problem of finding a popular
matching where a designated set of two edges is forbidden. In the
reduced instance of RobustPopularMatching, we use one of the
instances to represent the input instance and contain all originally
popular matchings. In the second instance, we perform a downshift
by the four agents involved in the two designated edges to prevent
these matchings. For this, one cannot simply move down their
respective partners in the original instance, because this might
have no effect, for example, if a designated edge represents the
only available option for one of its endpoints. Instead, we introduce
auxiliary agents that represent the case of agents being unmatched.
Then, moving the matching partners in the designated edges below
the auxiliary agents has the desired effect.

Theorem 4.9. RobustPopularMatching is NP-complete even if

the perturbed instance only differs by a downshift of four agents.

Proof. First, note that membership in NP is straightforward. A
robust popular matching with respect to two given input instances
of MP serves as a polynomial-size certificate for a Yes-instance. We
can verify it by simply checking whether the matching is popular
in both instances in polynomial time [4, Theorem 9].

For NP-hardness, we perform a reduction from the Forbid-
denEdge problem [13]. The input of this problem is an instance of
MP on a graph 𝐺 = (𝑊 ∪ 𝐹, 𝐸) and two designated disjoint edges
𝑒, 𝑒′ ∈ 𝐸. An instance is a Yes-instance if and only if there exists a
popular matching𝑀 with {𝑒, 𝑒′} ∩𝑀 = ∅. This problem is known
to be NP-hard [13, Theorem 4.1].1

We are ready to define the reduction. Consider an instance of
ForbiddenEdge given by an instance I of MP on the graph (𝑊 ∪
𝐹, 𝐸) together with two designated edges 𝑒, 𝑒′ ∈ 𝐸, say 𝑒 = {𝑎, 𝑏}
and 𝑒′ = {𝑐, 𝑑}, where 𝑎, 𝑐 ∈ 𝑊 and 𝑏, 𝑑 ∈ 𝐹 . We denote 𝐶 =

{𝑎, 𝑏, 𝑐, 𝑑} as the critical agents in the source instance, and for 𝑥 ∈ 𝐶 ,
we denote by 𝑓 (𝑥) their forbidden partner, for instance, 𝑓 (𝑎) = 𝑏.

The idea of the reduced instance is to enhance the source in-
stance by a set of auxiliary agents for the agents contained in the
designated edges. For each agent 𝑥 ∈ 𝐶 , we add a last agent ℓ𝑥 to
which 𝑥 can be matched when they would be unmatched as well as
an agent 𝑟𝑥 , which can be matched with ℓ𝑥 in case that 𝑥 is already
matched. A downshift of the agents in the designated edges in the
perturbed instance then ensures that they are forbidden in popular
matchings.

We start by defining the graph of the reduced instance more
precisely. Let𝑊 ′ =𝑊 ∪ {𝑟𝑎, ℓ𝑏 , 𝑟𝑐 , ℓ𝑑 } and 𝐹 ′ = 𝐹 ∪ {ℓ𝑎, 𝑟𝑏 , ℓ𝑐 , 𝑟𝑑 },
and 𝐸′ = 𝐸 ∪ {{𝑥, ℓ𝑥 }, {ℓ𝑥 , 𝑟𝑥 } : 𝑥 ∈ 𝐶}. Define 𝐺 ′ = (𝑊 ′ ∪ 𝐹 ′, 𝐸′).
For 𝑥 ∈ 𝐶 we define 𝑆𝑥 = {𝑥, ℓ𝑥 , 𝑟𝑥 }.

The preferences are mostly inherited from the source instance.
For 𝑖 ∈ (𝑊 ∪ 𝐹 ) \ 𝐶 , we define ≻I𝐴

𝑖
and ≻I𝐵

𝑖
as identical to ≻I

𝑖
.

Now let 𝑥 ∈ 𝐶 . The preferences for the agents in 𝑆𝑥 are indicated
in Figure 2. First, the agent 𝑟𝑥 only has one neighbor in 𝐺 ′ and
therefore possesses the trivial preference order only ranking ℓ𝑥 .
Second, we have 𝑥 ≻I𝐴

ℓ𝑥
𝑟𝑥 and 𝑥 ≻I𝐵

ℓ𝑥
𝑟𝑥 .

1The validity of the restriction that the two designated edges can be assumed to be
disjoint immediately follows from the proof by Faenza et al. [13] and simplifies our
reduction a bit.
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𝑎· · · ≻I𝐴
𝑎 ℓ𝑎 𝑏 · · · ≻I𝐴

𝑏
ℓ𝑏

𝑟𝑎 ℓ𝑎 𝑎 ≻I𝐴
ℓ𝑎

𝑟𝑎

𝑟𝑏ℓ𝑏𝑏 ≻I𝐴
ℓ𝑏

𝑟𝑏

𝑎· · · ≻I𝐵
𝑎 ℓ𝑎 ≻I𝐵

𝑎 𝑏 𝑏 · · · ≻I𝐵
𝑏

ℓ𝑏 ≻I𝐵
𝑏

𝑎

𝑟𝑎 ℓ𝑎 𝑎 ≻I𝐵
ℓ𝑎

𝑟𝑎

𝑟𝑏ℓ𝑏𝑏 ≻I𝐵
ℓ𝑏

𝑟𝑏

Figure 2: Key gadget of the reduced instances in the proof of
Theorem 4.9. The preferences in I𝐴 and I𝐵 are described in
the left and right picture, respectively.

The only preference order that differs is for the agent 𝑥 . For
all 𝑦, 𝑧 ∈ 𝑁 ′

𝑥 \ {𝑓 (𝑥), ℓ𝑥 }, we define 𝑦 ≻I𝐴
𝑥 𝑧 and 𝑦 ≻I𝐵

𝑥 𝑧 if and
only if 𝑦 ≻I

𝑥 𝑧. Moreover, we define 𝑦 ≻I𝐴
𝑥 ℓ𝑥 and 𝑦 ≻I𝐵

𝑥 ℓ𝑥 . The
difference in the preferences is concerning the agent 𝑓 (𝑥). For all
𝑦 ∈ 𝑁 ′

𝑥 \ {𝑓 (𝑥), ℓ𝑥 }, we have 𝑦 ≻I𝐴
𝑥 𝑓 (𝑥) if and only if 𝑦 ≻I

𝑥 𝑓 (𝑥)
and, we have 𝑓 (𝑥) ≻I𝐴

𝑥 ℓ𝑥 . However, in I𝐵 , the forbidden partner
𝑓 (𝑥) is pushed to the bottom of the preference order. For all 𝑦 ∈
𝑁 ′
𝑥 \ {𝑓 (𝑥)}, we have 𝑦 ≻I𝐵

𝑥 𝑓 (𝑥).
We are ready to prove the correctness of the reduction. To this

end, we will show that I contains a popular matching 𝑀 with
𝑀 ∩ {𝑒, 𝑒′} = ∅ if and only if the reduced instance contains a
matching popular for both I𝐴 and I𝐵 .

=⇒ Assume first that I contains a popular matching𝑀 with
𝑀∩{𝑒, 𝑒′} = ∅. Let𝑈 ⊆ 𝐶 be the subset of unmatched agents among
𝐶 with respect to𝑀 . We define thematching𝑀′ = 𝑀∪{{𝑥, ℓ𝑥 } : 𝑥 ∈
𝑈 } ∪ {{ℓ𝑥 , 𝑟𝑥 } : 𝑥 ∈ 𝐶 \ 𝑈 }. Assume for contradiction that 𝑀′ is
not popular for instance I𝐴 and that there exists a matching 𝑀̂′ in
𝐺 ′ with ΔI𝐴 (𝑀̂′, 𝑀′) > 0.

Define 𝑀̂ = {𝑒 ∈ 𝑀̂′ : 𝑒 ⊆ 𝑊 ∪ 𝐹 }, i.e., the matching 𝑀̂′ re-
stricted to agents present in the source instance. We will argue
that ΔI (𝑀̂,𝑀) > 0. Let 𝑖 ∈ (𝑊 ∪ 𝐹 ) \ 𝐶 . Then, it holds that
𝑀̂ (𝑖) = 𝑀̂′ (𝑖) if 𝑖 is matched in 𝑀̂′ or 𝑖 is unmatched in both.
Since the preferences of 𝑖 are identical in I and I𝐴 , we have
that voteI

𝑖
(𝑀̂,𝑀) = voteI𝐴

𝑖
(𝑀̂′, 𝑀′). We refer to this as Obser-

vation (⋄).
Now let 𝑥 ∈ 𝐶 . We claim that voteI𝑥 (𝑀̂,𝑀) ≥ voteI𝐴

𝑆𝑥
(𝑀̂′, 𝑀′)

and we refer to this claim as Observation (⋄⋄). We prove this by a
case distinction with respect to the matching partner of ℓ𝑥 in𝑀′.

First, assume that {𝑥, ℓ𝑥 } ∈ 𝑀′. This means that 𝑥 is un-
matched in 𝑀 . If 𝑀̂′ (𝑥) ∈ 𝑊 ∪ 𝐹 , then 𝑥 is also matched
in 𝑀̂ and voteI𝑥 (𝑀̂,𝑀) = 1 = voteI𝐴𝑥 (𝑀̂′, 𝑀′). Moreover,
then voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) = −1 and voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) ≤ 1 and the

claim is true. If {𝑥, ℓ𝑥 } ∈ 𝑀̂′, then 𝑥 is unmatched in 𝑀̂ and
therefore voteI𝑥 (𝑀̂,𝑀) = 0 = voteI𝐴𝑥 (𝑀̂′, 𝑀′). Moreover, then
voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) = 0 and 𝑟𝑥 is unmatched, hence voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) =

0. Again, the claim is true. Finally, if 𝑥 is unmatched in 𝑀̂′, then
voteI𝑥 (𝑀̂,𝑀) = 0 > −1 = voteI𝐴𝑥 (𝑀̂′, 𝑀′). The claim follows be-
cause voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) = −1 and voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) ≤ 1.

Second, assume that {ℓ𝑥 , 𝑟𝑥 } ∈ 𝑀′, which implies that 𝑥 is
matched in 𝑀 . If 𝑥 is matched in 𝑀̂ , then 𝑥 compares exactly
the same partners in I and I𝐴 and therefore voteI𝑥 (𝑀̂,𝑀) =

voteI𝐴𝑥 (𝑀̂′, 𝑀′). In this case, ℓ𝑥 and 𝑟𝑥 cannot improve in 𝑀̂′ com-
pared to𝑀′, and the claim is true. If {𝑥, ℓ𝑥 } ∈ 𝑀̂′, then 𝑥 is worse off

in 𝑀̂′ compared to𝑀′, but unmatched in 𝑀̂ . Hence, voteI𝑥 (𝑀̂,𝑀) =
−1 = voteI𝐴𝑥 (𝑀̂′, 𝑀′). In this case voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) = 1 but

voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) = −1, and the claim is true. Finally if 𝑥 is un-
matched in 𝑀̂′, then voteI𝑥 (𝑀̂,𝑀) = −1 = voteI𝐴𝑥 (𝑀̂′, 𝑀′), and
none of ℓ𝑥 and 𝑟𝑥 can have improved. This proves the final case of
the claim.

Combining Observations (⋄) and (⋄⋄), we obtain

ΔI (𝑀̂,𝑀) =
∑︁

𝑥∈ (𝑊∪𝐹 )\𝐶
voteI𝑥 (𝑀̂,𝑀) +

∑︁
𝑥∈𝐶

voteI𝑥 (𝑀̂,𝑀)

≥
∑︁

𝑥∈ (𝑊∪𝐹 )\𝐶
voteI𝐴𝑥 (𝑀̂′, 𝑀′) +

∑︁
𝑥∈𝐶

voteI𝐴
𝑆𝑥

(𝑀̂′, 𝑀′)

= ΔI𝐴 (𝑀̂′, 𝑀′) > 0.

This contradicts the popularity of 𝑀 . Hence, we have derived a
contradiction and𝑀′ is popular for I𝐴 .

Now, since I𝐵 only differs from I𝐴 by a downshift of agents
that are not matching partners, we have that for every matching
𝑀̂′ and every agent 𝑥 ∈ 𝑊 ′ ∪ 𝐹 ′, it holds that voteI𝐵𝑥 (𝑀′, 𝑀̂′) ≥
voteI𝐴𝑥 (𝑀′, 𝑀̂′). Therefore, ΔI𝐵 (𝑀′, 𝑀̂′) ≥ ΔI𝐴 (𝑀′, 𝑀̂′). Hence,
the popularity of𝑀′ in I𝐵 follows from the popularity of𝑀′ in I𝐴 .
This concludes the proof of the first implication.

⇐= Conversely, assume that𝑀′ is a matching that is popular
for both I𝐴 and I𝐵 . Define the matching𝑀 = {𝑒 ∈ 𝑀′ : 𝑒 ⊆𝑊 ∪𝐹 }.
We will first show that 𝑀 is popular in the source instance and
subsequently that it does not contain the forbidden edges.

Assume for contradiction that there exists a matching 𝑀̂ on
I with ΔI (𝑀̂,𝑀) > 0. Let 𝑈 ⊆ 𝐶 be the subset of unmatched
agents among 𝐶 with respect to 𝑀̂ and consider the matching
𝑀̂′ = 𝑀̂ ∪ {{𝑥, ℓ𝑥 } : 𝑥 ∈ 𝑈 } ∪ {{ℓ𝑥 , 𝑟𝑥 } : 𝑥 ∈ 𝐶 \𝑈 }.

We will show that ΔI𝐴 (𝑀̂′, 𝑀′) > 0. Let 𝑥 ∈ (𝑊 ∪ 𝐹 ) \ 𝐶 .
Then, it holds that 𝑀̂ (𝑥) = 𝑀̂′ (𝑥) if 𝑥 is matched in 𝑀̂′ or 𝑥 is
unmatched in both. Since the preferences of 𝑥 are identical in I
and I𝐴 , we have that voteI𝑥 (𝑀̂,𝑀) = voteI𝐴𝑥 (𝑀̂′, 𝑀′). We refer to
this as Observation (★).

Now, let 𝑥 ∈ 𝐶 . We claim that voteI𝐴
𝑆𝑥

(𝑀̂′, 𝑀′) ≥ voteI𝑥 (𝑀̂,𝑀)
and we refer to this claim as Observation (★★). We make a case
distinction with respect to the matching status of agent 𝑥 .

First, if 𝑥 is matched in 𝑀 and 𝑀̂ , then, since the prefer-
ences of 𝑥 for agents in 𝑊 ∪ 𝐹 coincide in I and I𝐴 , it holds
that voteI𝐴𝑥 (𝑀̂′, 𝑀′) = voteI𝑥 (𝑀̂,𝑀). Moreover, since {ℓ𝑥 , 𝑟𝑥 } ∈
𝑀̂′, none of these agents can be worse off than in 𝑀′, i.e.,
voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) ≥ 0 and voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) ≥ 0. Together, the claim

follows for this case.
Second, assume that 𝑥 is unmatched in 𝑀 but matched in 𝑀̂ .

Then, 𝑥 is either unmatched in 𝑀′ or matched with ℓ𝑥 . In both
cases, their partner in 𝑀̂′ is preferred to their situation in𝑀′ and it
holds that voteI𝐴𝑥 (𝑀̂′, 𝑀′) = 1. If {ℓ𝑥 , 𝑟𝑥 } ∈ 𝑀′, then ℓ𝑥 and 𝑟𝑥 have
the same partners in 𝑀̂′ and𝑀′ and the claim follows. Otherwise,
voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) = 1 and voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) ≥ −1, and the claim is

also true.
Third, assume that 𝑥 is matched in𝑀 but unmatched in 𝑀̂ . Then,

voteI𝑥 (𝑀̂,𝑀) = −1. Moreover, ℓ𝑥 cannot have been matched with
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𝑥 in𝑀′ and it follows that voteI𝐴
ℓ𝑥

(𝑀̂′, 𝑀′) = 1. The claim follows

since voteI𝐴𝑥 (𝑀̂′, 𝑀′) ≥ −1 and voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) ≥ −1.
Finally, assume that 𝑥 is unmatched in both 𝑀 and 𝑀̂ . Then,

voteI𝑥 (𝑀̂,𝑀) = 0. If {𝑥, ℓ𝑥 } ∈ 𝑀′, then all agents in 𝑆𝑥 have
their identical partners in 𝑀′ and 𝑀̂′ and the claim follows. Oth-
erwise, 𝑥 is unmatched in 𝑀′ and matched in 𝑀̂′ and therefore
voteI𝐴𝑥 (𝑀̂′, 𝑀′) = 1. In addition, voteI𝐴

ℓ𝑥
(𝑀̂′, 𝑀′) = 1. The claim

follows since voteI𝐴𝑟𝑥 (𝑀̂′, 𝑀′) ≥ −1. Since we have exhausted all
cases, Observation (★★) follows.

Combining Observations (★) and (★★), we obtain

ΔI𝐴 (𝑀̂′, 𝑀′) =
∑︁

𝑥∈ (𝑊∪𝐹 )\𝐶
voteI𝐴𝑥 (𝑀̂′, 𝑀′) +

∑︁
𝑥∈𝐶

voteI𝐴
𝑆𝑥

(𝑀̂′, 𝑀′)

≥
∑︁

𝑥∈ (𝑊∪𝐹 )\𝐶
voteI𝑥 (𝑀̂,𝑀) +

∑︁
𝑥∈𝐶

voteI𝑥 (𝑀̂,𝑀)

= ΔI (𝑀̂,𝑀) > 0.

This contradicts the popularity of 𝑀′. Hence, we have derived a
contradiction and𝑀 is popular for I.

It remains to show that𝑀 does not contain 𝑒 and 𝑒′. Wewill show
this fact for 𝑒 . The proof for 𝑒′ is completely analogous. Assume
for contradiction that 𝑒 ∈ 𝑀 , which implies that 𝑒 ∈ 𝑀′.

Define the matching 𝑀̂′ = {𝑔 ∈ 𝑀′ : 𝑔 ⊆ (𝑊 ′∪𝐹 ′) \ (𝑆𝑎∪𝑆𝑏 )}∪
{{𝑎, ℓ𝑎}, {𝑏, ℓ𝑏 }}. In other words, 𝑀̂′ differs from𝑀′ by dissolving
the edge {𝑎, 𝑏} and potentially edges {ℓ𝑎, 𝑟𝑎} and {ℓ𝑏 , 𝑟𝑏 }, and by cre-
ating edges of 𝑎 and 𝑏 with ℓ𝑎 and ℓ𝑏 , respectively. We will compare
𝑀̂′ with𝑀′ inI𝐵 . Let 𝑥 ∈ {𝑎, 𝑏}. Then, voteI𝐵𝑥 (𝑀̂′, 𝑀′) = 1 because
they improved from their worst to their second-worst partner. More-
over, voteI𝐵

ℓ𝑥
(𝑀̂′, 𝑀′) = 1 because ℓ𝑥 is matched with their most pre-

ferred matching partner in 𝑀̂′ but not in𝑀′. In addition, all agents
𝑦 ∈ (𝑊 ′ ∪ 𝐹 ′) \ (𝑆𝑎 ∪𝑆𝑏 ) are matched to the same agent in both𝑀′

and 𝑀̂′, or unmached in both. Hence, voteI𝐵𝑦 (𝑀̂′, 𝑀′) = 0. Together,
ΔI𝐵 (𝑀̂′, 𝑀′) = ∑

𝑧∈𝑆𝑎∪𝑆𝑏 vote
I𝐵
𝑧 (𝑀̂′, 𝑀′) = 4 + voteI𝐵𝑟𝑎 (𝑀̂′, 𝑀′) +

voteI𝐵𝑟𝑏 (𝑀̂′, 𝑀′) ≥ 2 > 0. Hence,𝑀′ is not popular for I𝐵 . This is a
contradiction and hence 𝑒 ∉ 𝑀′, which concludes the proof. □

4.3 Unpopular Agents
We continue the consideration of instances of RobustPopular-
Matching with a common underlying graph, but from a different
angle. In this section, we consider agents that are not matched by
any popular matching. We refer to such an agent as an unpopular

agent. All other agents are called popular agents. Given an instance
I of MP, let UI denote the set of unpopular agents in I. The
consideration of unpopular agents leads to a class of instances of
RobustPopularMatching that are trivially Yes-instances because
popular matchings are maintained.

Proposition 4.10. Consider an instance (I𝐴,I𝐵) of RobustPop-
ularMatching where only the preference orders of agents inUI𝐴

,

i.e., of unpopular agents in I𝐴 , differ in the perturbed instance. Then,

(I𝐴,I𝐵) is a Yes-instance of RobustPopularMatching.

Proof. Let (I𝐴,I𝐵) be an instance of RobustPopularMatch-
ing where I𝐴 and I𝐵 only differ with respect to the preference

orders of agents in UI𝐴 . Let 𝑀 be a popular matching in I𝐴 . We
claim that𝑀 is also popular for I𝐵 .

Let𝑀′ be any other matching. Let 𝑥 ∈ (𝑊 ∪ 𝐹 ) \ UI𝐴 be a pop-
ular agent. Then, because the preferences of 𝑥 are the same in both
instances, voteI𝐵𝑥 (𝑀′, 𝑀) = voteI𝐴𝑥 (𝑀′, 𝑀). Now, let 𝑥 ∈ UI𝐴 .
Since 𝑥 is unmatched in𝑀 , 𝑥 votes in favor of𝑀′ in both I𝐴 and
I𝐵 if 𝑥 is matched in𝑀′ and is indifferent between the two match-
ings if 𝑥 remains unmatched. Hence, once again voteI𝐵𝑥 (𝑀′, 𝑀) =
voteI𝐴𝑥 (𝑀′, 𝑀). Together, ΔI𝐵 (𝑀′, 𝑀) = ΔI𝐴 (𝑀′, 𝑀). Hence, the
popularity of𝑀 in I𝐵 follows from the popularity of𝑀 in I𝐴 . □

Put differently, the computation of robust matchings is not sensi-
tive to perturbances of agents that do not matter to popularity in the
first place. Notably, the set of unpopular agents can be computed
efficiently: We can compute their complement, i.e., the set of pop-
ular agents, by simply checking an instance of PopularEdge for
every available edge. Moreover, like for perturbations of one agent
in Theorem 4.8, Proposition 4.10 extends to multiple instances if
these only differ with respect to perturbances of the preferences of
the unpopular agents in one of these instances.

4.4 Reduced Availability
We turn to the consideration of RobustPopularMatching for
the case of alternated availability, i.e., the underlying graph may
change while maintaining preference orders among common edges.
In particular, we consider the special case where the underlying
graph is complete. To this end, an instance I of MP is said to be
complete if𝐺I is the complete bipartite graph on vertex set𝑊 ∪ 𝐹 ,
i.e., the edge set is the Cartesian product of the set of workers
and firms 𝐸I =𝑊 × 𝐹 . Note that if one of the MP instances of a
RobustPopularMatching instance is complete, then alternated
availability is identical to reduced availability. Our first result is an
efficient algorithm for this case.

Proposition 4.11. RobustPopularMatching can be solved in

polynomial time for input instances (I𝐴,I𝐵) where I𝐵 evolves from

I𝐴 by reducing availability and I𝐴 is complete.

Proof. We show how to solve the problem by solving a maxi-
mumweight popular matching problem. Consider an instance I for
MP and assume that we are given a weight function𝑤 : 𝐸I → Q.
The weight of a matching is defined as 𝑤 (𝑀) := ∑

𝑒∈𝑀 𝑤 (𝑒). It is
known that the problem of computing a matching of maximum
weight among popular matchings can be solved in polynomial time
for complete instances of MP [11].

Now, consider an instance (I𝐴,I𝐵) for RobustPopularMatch-
ing where I𝐵 evolves from I𝐴 by reducing availability and I𝐴 is
complete. We define the weight function 𝑤 : 𝐸I𝐴 → {−1, 0} by
𝑤 (𝑒) = 0 if 𝑒 ∈ 𝐸I𝐵 and𝑤 (𝑒) = −1, otherwise.

We claim that (I𝐴,I𝐵) is a Yes-instance of RobustPopular-
Matching if and only if the maximum weight popular matching
in I𝐴 with respect to𝑤 has a weight of 0.

First, assume that𝑀 is a popular matching for both I𝐴 and I𝐵 .
Then,𝑀 ⊆ 𝐸I𝐵 and𝑀 is a popular matching for I𝐴 with𝑤 (𝑀) = 0.

Conversely, if 𝑀 is a popular matching for I𝐴 with 𝑤 (𝑀) = 0.
Then, 𝑀 ⊆ 𝐸I𝐵 . Moreover, any other matching for I𝐵 is also a
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matching in I𝐴 with the identical popularity margin. Hence, the
popularity of𝑀 for I𝐵 follows from the popularity of𝑀 for I𝐴 . □

Interestingly, we can still extend Proposition 4.11 to the case of
multiple instances. As long as one instance is complete, all other
instances may differ by arbitrary altered availability. For a proof,
we can simply adjust the weight function in the proof of Proposi-
tion 4.11 to be 0 for edges present in all instances. However, the
restriction thatI𝐴 is a complete instance is vital for Proposition 4.11.
As we show next, we obtain a computational intractability if we
drop this assumption. We provide the proof in the full version [8].

Proposition 4.12. RobustPopularMatching is NP-complete

for input instances (I𝐴,I𝐵) where I𝐵 evolves from I𝐴 by reducing

availability.

Notably, by inspection of the proof, RobustPopularMatching
is alreadyNP-complete if the input instances only differ by reducing
availability where two edges are removed. By contrast, if only one
edge is removed, the problem is equivalent to computing a popular
matching with a single forbidden edge. This problem can be solved
in polynomial time [13].

4.5 Robust Popular Matchings in Related
Models

We conclude our result section by discussing robustness of popu-
larity in related models.

First, robustness of matchings can be defined for other models
of popularity. As mentioned earlier, there exists the concept of
strongly popular matchings, which have a strictly positive popu-
larity margin against any other matching. Since strongly popular
matchings are unique and can be computed in polynomial time [4],
robust strongly popular matchings can also be computed in poly-
nomial time, whenever they exist: One can simply check if strongly
popular matchings exist in all input instances and compare them.

Second, one can consider popularity for mixed matchings, which
are probability distributions over deterministic matchings, and pop-
ularity is then defined as popularity in expectation [21]. Popular
mixed matchings correspond to the points of a tractable polytope
for which feasible points can be identified in polynomial time. One
can intersect the polytopes for multiple instances and still obtain a
tractable polytope. This approach yields a polynomial time algo-
rithm to solve RobustPopularMatching for mixed matchings and
can even be applied for roommate games. In these games, the input
graph is not required to be bipartite anymore and the linear pro-
gramming method can still be applied [6]. Notably, this approach
cannot be used to determine deterministic matchings. Even if the
polytopes for all input instances are integral, the intersection of
the polytopes may be nonempty but not contain integral points
anymore. We discuss technical details concerning mixed popularity
including such an example in the full version of the paper [8].

Finally, one can consider popularity for more general input in-
stances. However, this quickly leads to intractabilities because the
existence of popular matchings may not be guaranteed any more.
For example, it is NP-hard to decide whether a popular matching
exists if we consider roommate games [13] or if we have bipartite
graphs but weak preferences [4]. These results immediately imply

NP-hardness of RobustPopularMatching because one can sim-
ply duplicate the source instance, and a robust popular matching
exists if and only if the source instance admits a popular matching.

5 CONCLUSION
We have initiated the study of robustness for popular matchings
by considering the algorithmic question of determining a popular
matching in the intersection of two given instances of matching
under preferences. We investigate this problem for two restrictions.
First, we assume that agents only perturb their preferences over
a static set of available matching partners. When only one agent
perturbs their preference order, we present a polynomial-time al-
gorithm for solving RobustPopularMatching that is based on
solving PopularEdge on suitably defined hybrid instances. By con-
trast, we encounter NP-completeness already for the case where
only four agents perform a downward shift. Moreover, we identify
a class of Yes-instances to RobustPopularMatching, where only
unpopular agents perturb their preference orders.

In addition, we consider RobustPopularMatching for reduced
availability. We encounter a complexity dichotomy based on pref-
erence completeness. If one input instance is complete, we can
efficiently solve RobustPopularMatching by solving a maximum
weight popular matching problem. However, if this is not the case,
we once again obtain an NP-completeness.

We believe that our research paves the path for various exciting
research directions, and we conclude by discussing some of these.
First, an immediate open problem is to close the gap in the complex-
ity of RobustPopularMatching between the feasibility for one
agent and intractability for four agents changing their preference
orders, i.e., determining the complexity of RobustPopularMatch-
ing if two or three agents perturb their preference orders. Another
specific open problem concerns the complexity of RobustPopu-
larMatching if only one side of the agents is allowed to change
their preferences. As we have mentioned earlier, a polynomial-time
algorithm exists for this problem when considering stable match-
ings [18]. However, our approach defining hybrid instances already
has limitations if only two agents from the same side swap the
preference order for a pair of other agents. Since popular matchings
seem not to possess the lattice structure that was used for tackling
stable matchings, we conjecture NP-hardness for popularity.

On a different note, it would be interesting to explore escape
routes to our discovered hardness results. For this, one could try to
efficiently find matchings offering a compromise between popular-
ity in each of the input instances. For instance, one could attempt
to find popular matchings in the second instance that have a large
overlap with a given popular matching in the first instance. For
complete instances, this can be done by finding a maximum weight
popular matching problem similar to the approach for Proposi-
tion 4.11. In general, defining and investigating other notions of
compromise matchings may lead to intriguing further discoveries.
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