
Deceptive Path Planning via Reinforcement Learning
with Graph Neural Networks

Extended Abstract

Michael Y. Fatemi
University of Virginia

Charlottesville, VA, United States
gsk6me@virginia.edu

Wesley A. Suttle
U.S. Army Research Laboratory
Adelphi, MD, United States
wesley.a.suttle.ctr@army.mil

Brian M. Sadler
U.S. Army Research Laboratory
Adelphi, MD, United States

brian.m.sadler6.civ@army.mil

ABSTRACT
Deceptive path planning (DPP) is the problem of designing a path
that hides its true goal from an outside observer. Existing meth-
ods for DPP rely on unrealistic assumptions, such as global state
observability and perfect model knowledge, and therefore do not
generalize to unseen problem instances, lack scalability to realistic
problem sizes, and preclude both on-the-fly tunability of deception
levels and real-time adaptivity to changing environments. In this
paper, we propose a reinforcement learning (RL)-based scheme that
overcomes these issues. Through extensive experimentation we
show that, without additional fine-tuning, at test time the result-
ing policies successfully generalize, scale, enjoy tunable levels of
deception, and adapt in real-time to changes in the environment.

KEYWORDS
reinforcement learning; deception; graph neural networks
ACM Reference Format:
Michael Y. Fatemi, Wesley A. Suttle, and Brian M. Sadler. 2024. Deceptive
Path Planning via Reinforcement Learning with Graph Neural Networks: Ex-
tended Abstract. In Proc. of the 23rd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May
6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
A challenging problem at the intersection of deception and auton-
omy is that of deceptive path planning (DPP): designing a path from
a starting location to a goal location that hides the agent’s true goal
from an external, potentially adversarial observer. The community
has produced a range of methods for solving this problem, includ-
ing classical planning- and control-based methods [13, 15, 19] as
well as efforts at reinforcement learning-based approaches [10, 12].
Unfortunately, these methods all suffer from some combination of
the following: the need for perfect knowledge of the environment,
lack of scalability to realistic problem sizes, excessive computa-
tional overhead, lack of generalizability to unseen problems, and/or
lack of deceptiveness tunability. These drawbacks are primarily
due to the model knowledge requirements of classical planning-
based methods and model-based RL methods, and the inflexible and
problem-specific perception models assumed by previous works.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

Figure 1: After training on only six small gridworld DPP problems,
our GNN-equipped RL agent performs tunably deceptive navigation
through a never-before-seen, continuous forest environment using
only local perception. Deceptiveness is achieved through exagger-
ation towards a decoy goal, tuned by allowing 𝑇𝑚𝑎𝑥 = 15, 20, 25, 30
additional steps of “time-to-deceive” before reaching the goal.

The field of model-free reinforcement learning (RL) [21] has
seen incredible growth in recent years. Methods such as deep Q-
learning (DQN) [14], deep deterministic policy gradient (DDPG)
[11], proximal policy optimization (PPO) [20], and soft actor-critic
(SAC) [7] have achieved impressive performance on a wide range
of challenging control problems. Graph neural networks (GNNs)
are a class of neural network architectures consisting of repeated
composition of graph convolutions and pointwise nonlinearities.
Due to their invariance, stability, and transferability properties
[6, 17, 18], GNNs are particularly well-suited to problems where
generalization and scalability to unseen, large graphs are critical,
and have notched impressive practical successes [1, 3, 9].

In this work, we propose a novel RL scheme leveraging GNNs
that, after training on a small set of simple problems, produces
agents that can perform tunably deceptive DPP in complex, pre-
viously unseen environments. This addresses an open problem in
the DPP literature and lays the groundwork for performing DPP in
real-world scenarios. The core of our approach is the introduction
of a local perception model for the agent, a new state space repre-
sentation of the DPP problem, the use of GNN-based policies for

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2258

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

generalization and scaling, and the introduction of new deception
bonuses to the RL setting. Complete details are provided in the full
paper [5] and the code used for our experiments is available at [4].

2 PROBLEM FORMULATION
Graph-based Environment Model: We represent the environ-
ment to be navigated as an undirected, weighted graphH = (S,A, 𝑐),
where S is the set of states, or nodes, in the graph, A ⊂ S × S
is the set of edges representing accessibility between nodes, and
𝑐 : A → R is the edge weight mapping. For a fixed, prespeci-
fied integer 𝑘 ≥ 0, define the 𝑘-hop neighborhood of 𝑠 ∈ S by
N𝑘 (𝑠) = {𝑠′ ∈ S | 𝑑H (𝑠, 𝑠′) ≤ 𝑘}, where 𝑑H (𝑠, 𝑠′) is the shortest
number of edges that must be traversed to move from 𝑠 to 𝑠′ in H .
These local neighborhoods form the basis for our agent’s perception
model: when the agent is at state 𝑠 , the region N𝑘 (𝑠), or visibility
graph, is visible to it. We associate with each 𝑠𝑡 the vector 𝑣𝑡 of node
attributes,

[
1𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑠𝑡) 𝑑𝑐 (𝑠𝑡 ,𝐺1) . . . 𝑑𝑐 (𝑠𝑡 ,𝐺 | G |) 𝑇𝑚𝑎𝑥 − 𝑡

]𝑇
,

where 1𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (𝑠𝑡) = 1 if the agent has previously visited 𝑠𝑡 and
0 otherwise, 𝑑𝑐 (𝑠𝑡 ,𝐺𝑘) is the minimum distance path from 𝑠𝑡 to
goal 𝐺𝑘 ∈ G, for 𝑘 ∈ {1, . . . , |G|}, and 𝑇𝑚𝑎𝑥 is a user-specified
maximum number of allowable steps by which the agent should
reach 𝐺∗ during an episode. A policy 𝜋 : S → Δ(A) maps states
to probability distributions over A. Let G ⊂ S denote the set of
potential goals and let 𝐺∗ ∈ G denote the agent’s true goal. Let
𝜁 = (𝑠1, 𝑎1, 𝑠2, 𝑎2, . . .) denote a trajectory of state-action pairs and
𝜁1:𝑇 a partial trajectory of length 𝑇 ∈ N. Building on the foregoing,
[19] proposes an observer model enabling the agent to predict the
observer’s belief about its true goal, given its partial trajectory 𝜁1:𝑇
up to time𝑇 . Specifically, the model provides a probability distribu-
tion 𝑃 (𝐺 |𝜁1:𝑇) over all possible goals 𝑔 ∈ G. We adopt this observer
model in our work. See [19] and [5] for details.

Deception Bonuses: The two most common types of deception
considered in the DPP literature are exaggeration and ambiguity [13,
16, 19]. In the exaggeration setting, the agent misleads the observer
about its true goal by navigating towards a decoy goal instead. In
the ambiguity setting, the agent misleads the observer by selecting
paths that remain noncommittal regarding the true goal for as long
as possible. As in previous works, we consider the exaggeration and
ambiguity notions of deception. We define our exaggeration bonus
to be 𝑟𝑒 (𝜁1:𝑡) = max𝐺∈G\𝐺∗ Pr(𝐺 |𝜁1:𝑡)−Pr(𝐺∗ |𝜁1:𝑡). For ambiguity,

we consider the bonus 𝑟𝑎 (𝜁1:𝑡) =
∑
𝐺∈G

(
1 − |𝑑𝑐 (𝑠𝑡 ,𝐺)−𝑑𝑐 (𝑠𝑡 ,𝐺∗) |

𝑑𝑐 (𝐺,𝐺∗)

)
.

To address the DPP problem using RL, we define a reward func-
tion that balances operating deceptively with respect to the decep-
tion bonuses with reaching 𝐺∗ in a timely manner. For 𝑟 ∈ {𝑟𝑒 , 𝑟𝑎},
we achieve this using reward function 𝑅𝑡 defined by: 𝑅𝑡 = 𝑟 (𝜁1:𝑡)
if 𝑠𝑡 ∉ 𝜁1:𝑡−1, 𝑅𝑡 = 1 if 𝑠𝑡 = 𝐺∗, 𝑅𝑡 = −1 if 𝑡 > 𝑇𝑚𝑎𝑥 , and 𝑅𝑡 = 0
otherwise. Using this reward, we will train our agents to find a pol-
icy 𝜋 maximizing the objective 𝐽 (𝜋) = E𝜋

[∑𝑇
𝑡=1 𝛾

𝑡−1𝑅𝑡
]
, where

𝛾 ∈ (0, 1) is a user-specified discount factor and the horizon 𝑇 is
the first timestep at which the agent reaches 𝐺∗.

3 METHOD
GNN Architecture:We use GNNs to infer the best deceptive ac-
tion given the subgraph N𝑘 (𝑠𝑡) of the environment visible to the
agent at each timestep 𝑡 , as they exhibit high generalizability and

applicability to complex environments [2, 22]. We use a 𝑘-layer
GraphSAGE network [8], for various 𝑘 , which is preceded by a
linear layer to project the 4-dimensional node attribute vector as-
sociated with each 𝑠 ∈ N𝑘 (𝑠𝑡) into a 64-dimensional intermediate
feature space. The feature vector associated with state 𝑠 is then up-
dated by sampling several neighbors from N𝑘 (𝑠), and the process
repeats for each layer of the network. See [5] for further discussion
and ablation studies concerning the specific GNNs used.

Training Scheme: Using the reward and GNN architectures
detailed above we trained two policies, one each for exaggeration
and ambiguity, on a small but representative set of training envi-
ronments: three 8 × 8 gridworlds and three 16 × 16 gridworlds. For
simplicity, in this work we focused on the single-decoy goal set-
ting and we assumed that the edge weights 𝑐 of the graph H were
all 1. We trained our policies using PPO on a variety of randomly
generated configurations of start states 𝑠1, true goals 𝐺∗, decoy
goals 𝐺 , and time limits 𝑇𝑚𝑎𝑥 on each of the six environments. By
training across a wide variety of 𝑇𝑚𝑎𝑥 values, we found that we
could control the level of “urgency” the model used when balancing
reaching 𝐺∗ with behaving deceptively.

4 RESULTS
We evaluated the performance of the agents trained using the meth-
ods described in the foregoing section on a variety of DPP problems
over graphs. In all cases, the policies we trained were applied to
previously unseen problems without any additional training or
fine-tuning. We provide a high-level overview in this section; a
complete description of the experiments can be found in [5] and
the experimental framework is publicly available at [4].

The first set of experiments illustrates the ability of our DPP
policies to generalize to previously unseen problems and to scale to
larger problems (including 32 × 32 and 100 × 100 grids) than those
encountered encountered during training. Both policies were able
to effectively balance the incentive to move towards the true goal
with their respective deception incentives. Importantly, equipped
with only local observability ofN𝑘 (𝑠𝑡) at each timestep, the policies
were able to design paths whose deceptiveness is only perceptible
at a scale beyond that allowed by the agent’s limited, local percep-
tion model. Our second set of experiments demonstrates that the
deceptiveness level of a policy can be tuned without retraining by
dynamically altering the time constraint 𝑇𝑚𝑎𝑥 . As 𝑇𝑚𝑎𝑥 grows, the
policy yielded progressively more deceptive motion. We emphasize
that 𝑇𝑚𝑎𝑥 may be altered at any time by the agent, enabling online
tunability of deception level without the need for replanning. The
third set of experiments (see Figure 1) evaluates the performance of
our deceptive agents in a continuous “forest” navigation problem,
where the objective is to navigate through a continuous, 2-D region
populated by “tree” obstacles. These experiments further illustrate
the tunability of our agents, as well as their ability to dynamically
adapt to time-varying goal and decoy positions.

ACKNOWLEDGMENTS
M. Y. Fatemi gratefully acknowledges the support of the University
of Maryland’s 2023 National Security Scholars Summer Internship
Program, a cooperative agreement with the U.S. Army Research
Laboratory.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2259

REFERENCES
[1] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[2] Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang, and
Pushmeet Kohli. 2019. Learning Transferable Graph Exploration. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
afe434653a898da20044041262b3ac74-Paper.pdf

[3] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[4] Michael Y. Fatemi. 2023. https://github.com/myfatemi04/rl-deceptive-graph-
planning.

[5] Michael Y. Fatemi, Wesley A. Suttle, and Brian M. Sadler. 2024. Decep-
tive Path Planning via Reinforcement Learning with Graph Neural Networks.
arXiv:2402.06552

[6] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. 2020. Stability properties
of graph neural networks. IEEE Transactions on Signal Processing 68 (2020),
5680–5695.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International Conference on Machine Learning. PMLR, 1861–
1870.

[8] William L. Hamilton, Rex Ying, and Jure Leskovec. 2018. Inductive Representation
Learning on Large Graphs. arXiv:1706.02216 [cs.SI]

[9] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[10] Alan Lewis and Tim Miller. 2023. Deceptive Reinforcement Learning in Model-
Free Domains. Proceedings of the International Conference on Automated Planning
and Scheduling 33 (2023), 587–595.

[11] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[12] Zhengshang Liu, Yue Yang, Tim Miller, and Peta Masters. 2021. Deceptive Rein-
forcement Learning for Privacy-Preserving Planning. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems. 818–826.

[13] PetaMasters and Sebastian Sardina. 2017. Deceptive path-planning. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence. 4368–4375.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. 2015. Human-level
control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

[15] Melkior Ornik and Ufuk Topcu. 2018. Deception in optimal control. In 2018 56th
Annual Allerton Conference on Communication, Control, and Computing (Allerton).
IEEE, 821–828.

[16] Adrian Price, Ramon Fraga Pereira, Peta Masters, and Mor Vered. 2023. Domain-
Independent Deceptive Planning. In Proceedings of the 2023 International Confer-
ence on Autonomous Agents and Multiagent Systems. 95–103.

[17] Luana Ruiz, Luiz FO Chamon, and Alejandro Ribeiro. 2023. Transferability
properties of graph neural networks. IEEE Transactions on Signal Processing
(2023).

[18] Luana Ruiz, Fernando Gama, Antonio García Marques, and Alejandro Ribeiro.
2019. Invariance-preserving localized activation functions for graph neural
networks. IEEE Transactions on Signal Processing 68 (2019), 127–141.

[19] Yagiz Savas, Christos K Verginis, and Ufuk Topcu. 2022. Deceptive decision-
making under uncertainty. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 5332–5340.

[20] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[21] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT Press.

[22] Chenning Yu and Sicun Gao. 2021. Reducing Collision Checking for Sampling-
Based Motion Planning Using Graph Neural Networks. In Proceedings of the 35rd
International Conference on Neural Information Processing Systems.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2260

https://proceedings.neurips.cc/paper_files/paper/2019/file/afe434653a898da20044041262b3ac74-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/afe434653a898da20044041262b3ac74-Paper.pdf
https://github.com/myfatemi04/rl-deceptive-graph-planning
https://github.com/myfatemi04/rl-deceptive-graph-planning
https://arxiv.org/abs/2402.06552
https://arxiv.org/abs/1706.02216

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Method
	4 Results
	Acknowledgments
	References

