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ABSTRACT
Aleatoric Logic is the logic of dice, where Boolean propositions

are replaced by independent probabilistic events. In a first order

extension of this notion, Aleatoric predicates are applied to domain

elements selected via independent probabilistic events. An analogy

for this is the classic marbles in an urn problem, where we might

ask the probability of drawing three marbles of the same colour

from an urn, or drawing only black marbles from an urn until a

red marble is drawn. This paper formalises a syntax and semantics

for propositions built from aleatoric predicates, and discusses how

these predicates give a representation of an agent’s beliefs that

come through experience.
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1 INTRODUCTION
Aleatoric logic [5, 6] is a generalisation of propositional logic, where

the Boolean values (true and false) are replaced with probabilities,

in a similar way to fuzzy logics [15]. However, unlike fuzzy logics,

propositions are treated as events (coin flips, or rolls of a dice), so

we can define complex and conditional propositions describing sets

of events, such as rolling the same number in a die three times in a
row. Here we extend that notion to include predicates defined over

some probability space. The analogy is drawing marbles from an

urn, where the marbles have some colour or label. For example, we

may suppose that we have an urn containing marbles labelled with

positive integers. We can draw a marble until we find one whose

label is prime, note its label and replace it, and draw a second. Given

such a process, what is the probability that the second marble has

a label less than the first? If we knew all the marbles in the urn, we

could easily calculate this, but without full knowledge an agentmust

defer to belief. An agentmay have experience drawingmarbles from

this urn, and had only ever seen large prime labels, so may suppose

the chance is quite high. A different agent with no experience may

suppose that the primes become increasingly sparse at high values
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so may reason the chance is small. Importantly, as the outcome of

a predicate may be contingent on the value of some marble drawn

earlier, the probabilities of propositions are no longer independent,

and allow us to express complex dependencies between predicates.

There has been a considerable number of works that have con-

sidered probabilistic semantics and logics. Early work includes Kol-

mogorov [11], Ramsey [13] and de Finetti [2], who produced axioms

for reasoning about probabilities of events, and [7, 9, 10, 12] give an

overview of probabilistic reasoning. The approach presented here

has similarities to fuzzy logic [15], but with a focus on dynamic

belief [1, 3, 8].

2 ALEATORIC PREDICATES
For the syntax we assume a set of domain variablesV , a set of propo-
sitional atoms A, and a set of predicates P where each predicate

𝑃 ∈ P has an arity #𝑃 which is some positive integer.

Definition 1. The syntax for L, the language of aleatoric propo-
sitions, is given by the Backus-Naur form:

𝛼 ::= ⊤ | 𝑋 | 𝑃 (𝑥1, ..., 𝑥#𝑃 ) | ¬𝛼 | (𝛼 ? 𝛼 : 𝛼) | E𝑥 .𝛼 | F𝑋 .𝛼

where 𝑋 ∈ A, 𝑃 ∈ P, 𝑥 ∈ V , and 𝑋 is linear in 𝛼 : an atomic
proposition 𝑋 ∈ A is linear in 𝛼 if and only if for every sub-formula
(𝛽 ? 𝛾1 : 𝛾2) of 𝛼 , there is no occurrence of 𝑋 appearing in 𝛽 .

Wewrite 𝑃 (𝑥) as an abbreviation for 𝑃 (𝑥1, ..., 𝑥#𝑃 ). Each formula

𝛼 ∈ L can be thought of as a proposition describing a set of events.

In this setting a brief description of these operators is as follows:

⊤ is the true event, so it is always true;

𝑋 , where 𝑋 ∈ A is an atomic proposition, which describes some

independent random event, like a coin landing heads;

𝑃 (𝑥) is a predicate over the domain variables 𝑥1, ..., 𝑥#𝑃 , where he

interpretation is fixed, so given 𝑥1, ...𝑥#𝑃 it is either always true or

always false;

¬𝛼 , describes the failure of an event to occur, so the event is explic-

itly tested for, and that test fails;

(𝛼 ? 𝛽 : 𝛾) describes a conditional event where the event described
by 𝛼 is tested (or sampled) and if it occurs, then an event described

by 𝛽 occurs, but if an alpha event does not occur, then an event

described by 𝛾 occurs;

E𝑥 .𝛼 is the expectation operator, and expresses the likelihood 𝛼 will

be true when 𝑥 is drawn randomly from the domain;

F𝑋 .𝛼 is the fixed point operator, and it describes an event with

probability 𝑝 such that if the event corresponding to the atom

𝑋 had likelihood 𝑝 , so would 𝛼 . (See [4] for a discussion of this

operator).

For an example of the syntax, consider the example from the

introduction, where we have an urn of marbles labelled by integers,
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and we sample from the urn until we have drawn a marble, 𝑥 with

a prime label, and then we draw a second marble, 𝑦, whose label is

less than the label of 𝑥 . This can be represented as

F𝑋 .E𝑥 .(prime(𝑥) ? E𝑦.𝑦 < 𝑥 : 𝑋 ) .
In this case 𝑋 is a fixed point variable, so in the event 𝑥 is sampled

and is not prime, the whole formula is substituted for 𝑋 , which

effectively requires 𝑥 to be resampled.

We interpret aleatoric predicate logic over a first order domain,

where domain elements are sampled from a probability space and

propositional atoms are assigned to probabilities.

Definition 2. An aleatoric interpretation is given by the tuple:
I = (S, Σ, 𝜇, 𝜒, 𝜈) where:
• (S, Σ, 𝜇) is a probability space, consisting of a domain S, a
𝜎-algebra over S, Σ, and a probability measure over Σ, 𝜇.
• 𝜒 ∈ [0, 1]A assigns a probability to each atomic proposition.
• 𝜈 ∈ ℘(S∗)P assigns each predicate 𝑃 ∈ P to a set of tuples
over the S, where all tuples in 𝜈 (𝑃) have length #𝑃 (i.e. for all
𝑤 ∈ 𝜈 (𝑃), |𝑤 | = #𝑃 ).

We note the assignment 𝜈 gives a first order interpretation of

the set of predicates, P, over the domain S. That is, given 𝑃 ∈ P
and some assignment of variables to domain elements 𝑎 ∈ SV , the

predicate 𝑃 (𝑥) holds if (𝑎(𝑥1), . . . , 𝑎(𝑥#𝑃 )) ∈ 𝜈 (𝑃), and S∗ is the
set of finite words over the alphabet S.

Definition 3. Given an interpretation, I = (S, Σ, 𝜇, 𝜒, 𝜈) and
some 𝛼 ∈ L, the likelihood of 𝛼 in I is a function 𝛼I : SV −→
[0, 1], specified inductively as follows. Given some 𝑎 ∈ SV :

⊤I = 1

𝑋 I = 𝜒 (𝑋 )
(𝑃 (𝑥))I (𝑎) = 1 if (𝑎(𝑥1), ..., 𝑎(𝑥#𝑃 )) ∈ 𝜈 (𝑃),

and 0 otherwise

(𝛼 ? 𝛽 : 𝛾)I = 𝛼I · 𝛽I + (1 − 𝛼I ) · 𝛾I

(¬𝛼)I = 1 − 𝛼I

(E𝑥 .𝛼)I =

∫
S
𝛼I𝑑𝜇 (𝑥)

(F𝑋 .𝛼)I =

{
1/2 if (𝛼I )𝑋←1/2 = 1/2,
𝑝 if (𝛼I )𝑋←𝑝 = 𝑝 and 𝑝 ≠ 1/2

We call 𝛼I the descriptive interpretation of 𝛼 . Note only the interpre-
tation of predicates is dependent on the assignment 𝑎 ∈ SV . Where
the assignment 𝑎 ∈ SV is clear from context, we write I(𝛼) in place
of 𝛼I (𝑎).

3 ALEATORIC LEARNING THEORY
An interpretation (Definition 2) represents an agent’s subjective

beliefs, so the evaluations of propositions as events may be thought

of as imagined events, or simulations derived from an agent’s beliefs

(see [14]). These beliefs are built through experience, where an

agent observes some external event, and this observation is then

incorporated into their experience, and affects their beliefs. The

observation is a query: 𝛼 (𝑥), by which we suppose that a single

element is sampled from the domain, and 𝛼 (𝑥) is tested, so it either
happened, or it did not. This is a single bit of information and is

akin to looking out of a window to see if it is raining. Aleatoric

learning occurs via the probability measure 𝜇 in the interpretation

I = (S, Σ, 𝜇, 𝜒, 𝜈), and all other parts of the interpretation are fixed.

To give the basic principle, let us return to the metaphor of

the urn of labelled marbles. The observations come from an envi-

ronment, which we suppose behaves just like an (external) urn of

marbles, while the agent (the observer) has their own set of beliefs,

which we consider to be an internal urn of marbles. The agent

would like to condition their beliefs given their observations

Suppose that there is a very large number of marbles in the

agent’s internal urn, and the agent is able to draw a marble and test

whether 𝛼 (𝑥) holds for that marble. The agent can also observe the

environment which gives them one bit of information at a time:

whether 𝛼 (𝑥) was true for a marble randomly sampled from the

external urn. The learning operation is as follows.

1. Take two empty urns, and sample a large number of marbles

from the full urn, in such a way that marbles satisfying 𝛼 (𝑥) are
more likely to be in the left urn, (it is 𝛼-supportive) while marbles

not satisfying 𝛼 (𝑥) are more likely to be in the right urn (it is

𝛼-sceptical).
2. Suppose a process where the agent flips a coin and: if it lands

heads, they draw a single marble from the left urn and test whether

𝛼 is true for that marble; and if it lands tails, they draw a single

marble from the right urn and test whether 𝛼 is true for that marble.

3. The agent makes an observation of the environment and applies

Bayesian conditioning to estimate the probability 𝑝ℓ that the marble

came from the left urn (so the chance the marble came from the

right urn is 1 − 𝑝ℓ ).
4. To update the agent’s beliefs they empty the marbles from the

original urn, and now fill it with marbles taken from the left and

right urn, where there is a 𝑝ℓ chance that each next marble is taken

from the left urn.

The original urn now contains a subset of marbles which rep-

resents the agent’s learnt interpretation I𝛼 given the observation

𝛼 . Now, given an observation 𝛼 (𝑥) we can syntactically evaluate a

formula, 𝛽 in the two subdomains weighted by how likely 𝛼 (𝑥) is
in each subdomain.

Definition 4. Given an observation of 𝛼 (𝑥), the conditioning of
𝛽 by 𝛼 (𝑥) is the proposition:

𝛽𝛼 = 𝛽 [E𝑥 .𝛾 (𝑥)\F𝑋 .(1/2 ? (𝛼ℓ ? 𝛾 ℓ : 𝑋 ) : (𝛼𝑟 ? 𝛾𝑟 : 𝑋 ))]

where for any proposition 𝛿 , 𝛿𝑟 = 𝛿 [E𝑥 .𝛾\E𝑥 .(𝛼 ? E𝑥 .𝛾 : 𝛾)] and
𝛿ℓ = 𝛿 [E𝑥 .𝛾\E𝑥 .(𝛼 ? 𝛾 : E𝑥 .𝛾)].

In this definition 𝛽𝑟 favours the part of the domain where𝛼 is less

likely by, whenever sampling some 𝑥 to evaluate 𝛾 , first testing 𝛼 ,

and if 𝛼 is true, requiring that 𝑥 should be resampled before testing

𝛾 . Similarly 𝛽ℓ favour the part of the domain where 𝛼 is more likely,

by first testing 𝛼 and only resampling if 𝛼 is false. In this way we

simulate conditioning the two subdomains on the observation of 𝛼 ,

so given any aleatoric proposition 𝛽 there is a computable aleatoric

proposition 𝛼𝛽 such that the following theorem holds.

Theorem 5. Given some interpretation I, an aleatoric proposition
𝛼with one free domain variable 𝑥 , and an aleatoric proposition 𝛽 :
(𝛽𝛼 )I = (𝛽)I𝛼
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