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ABSTRACT
We introduce a formalism called SLAM (Social Laws on ATL Mod-

els) for defining social laws. Such social laws can constrain the

behaviour of a multi-agent system. Importantly, these social laws

can use any ATL formula as the condition under which an action is

allowed. We show that the synthesis problem for these social laws

is NP-complete. This generalizes a known result that synthesis of

social laws that use only Boolean conditions is NP-complete.
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1 INTRODUCTION
In a multi-agent system, the agents typically have the ability to

take actions that would result in an outcome that is considered

detrimental. It is therefore wise to constrain the agents’ behaviour,

using so-called social laws. Simply put, a social law divides the set

of possible actions in any given context into the actions that are

allowed (by the social law) and those that are not.

We can then reason about the effects of a social law. In particular,

if we want the agents to achieve a given goal, we can check whether

that goal will be achieved if the agents follow the law. Or, given the

goal, we can search for a social law that will satisfy that goal.

Multi-agent systems constrained by social laws are also known

as normative systems, see, e.g., [2, 6, 12]. The seminal paper on social

laws is [10], which considers the problem of synthesizing social

laws, i.e., the problem to find a law that will bring about a desired

goal. More precisely, [10] shows that in their definition of social

laws, determining whether a satisfactory law exists is NP-complete.

Here, we use concurrent game models (CGMs) as our model of

agency, and a variant of alternating-time temporal logic (ATL) [7] to
reason about that agency, define goals and social laws. We assume

that social laws describe the condition under which an action may

be taken, with this condition also being defined in ATL. Specifically,

social laws are sets of pairs of (𝑎, 𝜑) with 𝑎 being an action and 𝜑

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

being an ATL formula. The other approach in the literature [2, 11,

12] is to treat social laws as purely a set of permissible actions. We,

however, follow and generalize the approach from [10].

We refer to our formalism as SLAM, which is a backronym for

“social laws on ATL-style models". SLAM is a considerably more

general formalism than that of [10], yet we show that synthesis

remains NP-complete, which is the main technical result of this

work. The result is non-trivial as it requires a novel notion of bisim-

ulation in order to show that we can always construct a sufficiently

succinct law, i.e. of polynomial size. Moreover, our approach to

synthesis allows for synthesizing several social laws at once.

2 SLAM
Let Ag = {1, · · · , 𝑛} be a finite set of agents, At a countable set of
atoms and Act a finite set of actions.

A concurrent game model (CGM) is a tuple 𝑀 = (𝑆, En, 𝜏,𝑉 ),
where 𝑆 is a non-empty set of states, En : 𝑆 ×Ag → 2

Act
is an action

enabling function with the property that En(𝑠, 𝑖) ≠ ∅ for all 𝑠 ∈ 𝑆

and 𝑖 ∈ Ag, 𝜏 : {(𝑠, 𝑎1, · · · , 𝑎𝑛) | 𝑠 ∈ 𝑆, 𝑎𝑖 ∈ En(𝑠, 𝑖)} → 𝑆 is an

outcome function, and 𝑉 : 𝑆 → 2
At

is a valuation function.
Intuitively, En(𝑠, 𝑖) is the set of actions that agent 𝑖 is able to carry

out at state 𝑠 . Note that this set is required to be non-empty. If 𝐺 ⊆
Ag, we write En(𝑠,𝐺) for Π𝑖∈𝐺En(𝑠, 𝑖). Moreover, we denote the set

of all tuples (𝑎1, ..., 𝑎𝑛) as Act𝐺 , and call elements of Act𝐺 action
profiles. An action profile 𝐴 for 𝐺 is enabled in 𝑠 if 𝐴 ∈ En(𝑠,𝐺).

A memoryless strategy profile (or a strategy) for 𝐺 is a function

𝜎𝐺 : 𝑆 → Act𝐺 with 𝜎𝐺 (𝑠, 𝑖) being an action that agent 𝑖 takes in

state 𝑠 according to the strategy profile. A strategy profile 𝜎𝐺 is

enabled if 𝜎𝐺 (𝑠, 𝑖) ∈ En(𝑠, 𝑖) for all 𝑠 and 𝑖 , denoted by 𝜎𝐺 ∈ En(𝐺).
Given a CGM 𝑀 = (𝑆, En, 𝜏,𝑉 ), a state 𝑠0 ∈ 𝑆 and a strategy

profile 𝜎 = (𝜎1, · · · , 𝜎𝑛) for Ag, the outcome 𝑂 (𝑠0, 𝜎) of execut-
ing 𝜎 in 𝑠0 is the sequence 𝑠0, 𝑠1, · · · where for all 𝑡 ∈ N, 𝑠𝑡+1 =

𝜏 (𝑠𝑡 , 𝜎1 (𝑠𝑡 ),· · · , 𝜎𝑛 (𝑠𝑡 )). The 𝑘-th element of 𝑂 (𝑠0, 𝜎) is 𝑂𝑘 (𝑠0, 𝜎).
The language L of SLAM is defined as:

𝜑 ::= 𝑝 | ¬𝜑 | 𝜑 ∨ 𝜑 | ⟨⟨𝑁 : 𝐺⟩⟩ ⃝𝜑 | ⟨⟨𝑁 : 𝐺⟩⟩ □𝜑 |
| ⟨⟨𝑁 : 𝐺⟩⟩𝜑U𝜑 | [𝑁 ]𝜑

𝑁 ::= 𝜂 | 𝑁 | 𝑁 + 𝑁 | 𝑁 × 𝑁 | 𝑁 ◦ 𝑁

where 𝑝 ∈ At and 𝜂 : Ag × Act ↩→ L is a partial function.

We refer to 𝜂 as atomic laws. If 𝜂 (𝑖, 𝑎) = 𝜑 , then agent 𝑖 is allowed

to take action 𝑎 in exactly those states where 𝜑 is true. The reason

we use a partial function is that a laws may constrain only cer-

tain agents and actions. We assume every action is allowed unless

explicitly forbidden, so if 𝜂 (𝑖, 𝑎) is undefined then 𝑖 may perform 𝑎.

Atomic laws can then be combined into complex laws, which we

generally denote by 𝑁 . The negation 𝑁 allows an action if and only
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if it is disallowed by 𝑁 , the addition 𝑁1 +𝑁2 allows an action if and

only if it is allowed by either 𝑁1 or 𝑁2, and the product 𝑁1 × 𝑁2

allows an action if and only if it is allowed by both 𝑁1 and 𝑁2.

Finally, 𝑁1 ◦ 𝑁2 allows an action if and only if (i) it is allowed by

𝑁1, and (ii) it is allowed by 𝑁2 after 𝑁1 has been applied.

Given a CGM𝑀 = (𝑆, En, 𝜏,𝑉 ) and 𝑠 ∈ 𝑆 , the satisfaction relation
|= is defined similarly to the one for ATL with the only difference

that En(𝐺) is now parametrized by 𝑁 . We provide the definition of

only ⟨⟨𝑁 : 𝐺⟩⟩ ⃝𝜑 as an example.

𝑀, 𝑠 |= ⟨⟨𝑁 : 𝐺⟩⟩ ⃝𝜑 iff ∃𝜎𝐺 ∈ En𝑁 (𝐺),∀𝜎−𝐺 ∈ En𝑁 (Ag \𝐺) :
𝑀,𝑂1 (𝑠, 𝜎𝐺 ∪ 𝜎−𝐺 ) |= 𝜑

𝑀, 𝑠 |= [𝑁 ]𝜑 iff 𝑀𝑁 , 𝑠 |= 𝜑

Where, given a model𝑀 = (𝑆, En, 𝜏,𝑉 ), the updated model𝑀𝑁 =

(𝑆, En𝑁 , 𝜏𝑁 ,𝑉 ) is as follows.
• If 𝑁 = 𝜂, then for every 𝑎, 𝑎 ∈ En𝑁 (𝑠, 𝑖) if and only if

𝑎 ∈ En(𝑠, 𝑖) and one of the following: (1) 𝜂 (𝑖, 𝑎) is undefined,
(2)𝑀, 𝑠 |= 𝜂 (𝑖, 𝑎), (3) for every𝑏 ∈ En𝑁 (𝑠, 𝑖),𝜂 (𝑖, 𝑏) is defined
and𝑀, 𝑠 ̸ |= 𝜂 (𝑖, 𝑏).

• If 𝑁 = 𝑁1 then

En𝑁 (𝑠, 𝑖) =
{

En(𝑠, 𝑖) if En(𝑠, 𝑖) = En𝑁1 (𝑠, 𝑖)
En(𝑠, 𝑖) \ En𝑁1 (𝑠, 𝑖) otherwise

• If 𝑁 = 𝑁1 + 𝑁2 then En𝑁 (𝑠, 𝑖) = En𝑁1 (𝑠, 𝑖) ∪ En𝑁2 (𝑠, 𝑖).
• If 𝑁 = 𝑁1 × 𝑁2 then

En𝑁 (𝑠, 𝑖) =
{

En𝑁1 (𝑠, 𝑖) ∩ En𝑁2 (𝑠, 𝑖) if En𝑁1 (𝑠, 𝑖) ∩ En𝑁2 (𝑠, 𝑖) ≠ ∅
En(𝑠, 𝑖) otherwise

• If 𝑁 = 𝑁1 ◦ 𝑁2 then En𝑁 (𝑠, 𝑖) = (En𝑁1 )𝑁2
.

Furthermore, 𝜏𝑁 is the restriction of 𝜏 to En𝑁 .

The case distinctions in the definition of En𝑁 are required be-

cause we assume that every social law will inherently allow at

least one action for each agent in each state. This assumption is

often called reasonableness [2–5]. If, in a state 𝑠 , a law forbids every

possible action that an agent 𝑖 could take (subcase (3)), then that

law is considered inapplicable to that agent in that state, and thus

that agent may instead take any action.

3 SYNTHESIS OF SOCIAL LAWS
The social law synthesis problem takes as input a CGM 𝑀 , a state

𝑠 of 𝑀 , and a goal formula 𝜑 with variables 𝑋1, · · · , 𝑋𝑘 . It has as
output either a collection 𝑁1, · · · , 𝑁𝑘 of social laws such that

𝑀, 𝑠 |= 𝜑 (𝑋1 ↦→ 𝑁1, · · · , 𝑋𝑘 ↦→ 𝑁𝑘 )
or, if no such social laws exist, output “NO”.

Our definition of the synthesis problem is quite general, and it

allows synthesizing multiple social laws at once that can occur in

any place inside the goal formula. We show that even with this

more flexible definition, social law existence is NP-complete.

First, observe that model checking SLAM can be done by a mod-

ification of the classic algorithm [7] for ATL.

Theorem 3.1. Model checking SLAM is P-complete.

We can also show the NP-hardness of the synthesis problem by

a reduction from 3-SAT.

Lemma 3.2. The social law synthesis problem is NP-hard.

Membership inNP takes a little bit morework. First, we introduce

a novel notion of bisimulation that is aware of action names.

Let 𝑀1 = (𝑆1, En1, 𝜏1,𝑉1) and 𝑀2 = (𝑆2, En2, 𝜏2,𝑉2) be CGMs. A

relation ∼ ⊆ 𝑆1 × 𝑆2 is a bisimulation if for every 𝑠1 ∼ 𝑠2 there is a

partition Ag = Ag+ ∪ Ag− such that,

Atomic agreement 𝑉1 (𝑠1) = 𝑉2 (𝑠2),
Action agreement for every 𝑖 ∈ Ag+, En1 (𝑠1, 𝑖) = En2 (𝑠2, 𝑖),
Forth and Back For all action profiles 𝐴+ ∈ En1 (𝑠1,Ag+),

𝐴− ∈ En1 (𝑠1,Ag−) and 𝐵− ∈ En2 (𝑠2,Ag−), we have that

𝜏1 (𝑠1, 𝐴+ ∪𝐴−) ∼ 𝜏2 (𝑠2, 𝐴+ ∪ 𝐵−).
If there is a bisimulation ∼ such that 𝑀1, 𝑠1 ∼ 𝑀2, 𝑠2 we say that

they are bisimilar, denoted𝑀1, 𝑠1 ≈𝑀2, 𝑠2.

This definition of bisimulation is rather unusual, and differs from

the classic one for ATL [1]. We have a special condition, action
agreement, because the labels of actions are relevant, if the agent
has a meaningful choice. We therefore partition Ag into the agents

that have a meaningful choice, Ag+, and the agents that do not,

Ag− . An agent 𝑖 has a meaningful choice if there are an action

profile 𝐴−𝑖 ∈ En(𝑠,Ag \ {𝑖}) and actions 𝑎, 𝑏 ∈ En(𝑠, 𝑖) such that

𝐴−𝑖 ∪ {𝑎} and 𝐴−𝑖 ∪ {𝑏} have non-bisimilar outcomes.

While our definition of bisimulation is non-standard, it does

satisfy the properties one would expect: the bisimulation relation

is an equivalence relation, and bisimilar states satisfy the same

formulas. Moreover, it plays the crucial role in the next theorem.

Theorem 3.3. Let𝑀1 and𝑀2 be finite CGMs. If𝑀1, 𝑠1 0 𝑀2, 𝑠2,
then there is a formula 𝜑 ∈ L such that𝑀1, 𝑠1 |= 𝜑 ,𝑀2, 𝑠2 ̸ |= 𝜑 and
|𝜑 | is of polynomial size with respect to |𝑀1 | + |𝑀2 |.

The proof is by a variation of the Paige-Tarjan algorithm [9],

where while computing refinements we also simultaneously gener-

ate sets of formulas that uniquely identify each bisimulation class.

The size of 𝜑 is taken as the size of the corresponding DAG. To-

gether, Theorem 3.3 and Lemma 3.2, imply the desired result.

Theorem 3.4. The social law synthesis problem is NP-complete.

4 DISCUSSION
We have introduced SLAM, a formalism for reasoning about social

laws, where both the goals to be achieved by the laws and the

laws themselves are formulated in ATL. We have shown that model

checking for SLAM is in P, while the social law existence problem

is NP-complete, which considerably generalizes the classic result

[10] that deals with social laws that use only Boolean conditions.

Themain direction for further research is generalizations tomore

expressive languages. Goals and laws expressed in ATL suffice for

memoryless agents, but for more capable agents other languages

may be useful. In particular, ATL
∗
for goals and LTL

−
(i.e. LTL

with past [8, Chapter 6.5]) for social laws. We expect, however, that

synthesis for such social laws to be far harder than for ATL.

Given that social law existence is already NP-complete for the

much simpler social laws from [10], there does not seem to be a

pressing need to further investigate the complexity of reasoning

about social laws for languages that are less expressive than ATL.

Another interesting direction is global synthesis. In that problem,

we search for a social law that makes a goal true not merely in a

single given model, but in every model. This is likely to be far more

computationally expensive than the problem discussed here.
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