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ABSTRACT
Facility location games have been studied extensively but most are
about locating facilities given agents’ profiles. However, in some
real-life scenarios, the facility’s locationmay be fixed already.When
there are multiple facilities the strategic agents will always go to
the closest one, resulting in the remote facilities unused. In this
paper, we introduce the model that includes two facilities and 𝑛
rational agents. There is one task at each facility to be done. Each
agent will select one task and aims to minimize the amount of work
assigned to her. Our goal is to design the allocation rules to achieve
social optimality, i.e., every Nash equilibrium guarantees that every
task can be completed. We show that no allocation rule can achieve
social optimality without positive/negative incentives. For negative
incentives, we propose a class of allocation rules with dummy work,
where social optimality can be achieved, and no worker does the
dummy work. For positive incentives, we first give a simple rule
that achieves social optimality and propose a more complex rule to
achieve the minimum subsidy.
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1 INTRODUCTION
The classic facility location problem has been well studied by re-
searchers since Moulin’s work in 1980 [6]. Procaccia and Tennen-
holtz [7] initiate the approximate mechanism design for various
facility location problems. In most of the studies on facility location
problems, there is a set of agents located in a metric space and the
goal is to locate 𝑘 facilities in the space. Each agent has a cost to be
served by the facilities. They can report some information and aim
to minimize their own cost. The objective is usually to design mech-
anisms that output the location of facilities and minimize the total
cost or maximum cost. At the same time, the mechanism should
not incentivize agents to misreport information. In these settings,
the objective of the mechanism and agents are close to some extent,
both minimizing the cost.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

But in some real-life scenarios, if the facility’s location is fixed
already, then the goal may not be to choose a location to minimize
the cost but rather sacrifice some cost to achieve other objectives.
For example, we consider that there is a company assigning its
employees to work in different branches such as convenience stores.
Each branch has an amount of work to be done. Some branches are
in the city center, but some are far away in the suburbs. But most
employees live in the city. If the company lets employees choose
a branch to work by themselves, then no one will go to the far
away branches. In this case, the work at those far away branches
cannot be done, and the company may get a loss. So the objectives
of the company and employees are incompatible. One possible way
is to assign each employee to a certain branch and then allocate
the work. However, this method is a dictatorship and does not
consider the employees’ will. Therefore, there is a need to design
a mechanism that allows the employees to select the branch by
themselves and achieve the company’s goal at the same time. This
idea also coincides with [4], which studies scientific credit allocation
problems. They found that if the scientific credit is divided equally
among all individuals who joined the project, then the total weight
of completed projects cannot be maximized. This occurs because
individuals are rational and tend to select projects with higher
expected credit, which limits the total weight of completed projects.
Therefore, they proposed two types of mechanisms that re-weight
the projects or give different amounts of credit to the individuals
to ensure every Nash equilibrium to achieve social optimality.

When the allocation rule is given, this problem can be charac-
terized by non-cooperative games and the Nash equilibrium plays
an important role in such a game. For instance, as Figure 1 shows,
suppose all branches and all employees are on a line. There are two
branches with locations 0 and 1 and two employees with locations
1/4. If the company allocates work equally to each employee in
the same branch, all employees will select the leftmost branch, im-
plying that there is a branch with all work undone and the Nash
equilibrium cannot always achieve the social optimal. Hence, that
problem leads to a general question: We need to design some allo-
cation rules so that each facility can attract a share of agents while
the Nash equilibrium can achieve social optimality.

Figure 1: Example of employees and company branches

Therefore, our agenda can be divided into three parts.
• Is there an allocation rule under which every Nash equilib-
rium guarantees that every task can be completed?

• If we increase the amount of work for some tasks, is there a
rule under which every Nash equilibrium guarantees that
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every task can be completed and no one does the unnecessary
work?

• If we leverage subsidies, how to use the minimum subsidy
to make every Nash equilibrium guarantee that every task
can be completed?

In this paper, we study the case where two tasks are going to be
allocated, which is already very challenging.

1.1 Our Contribution
We study facility location games with two-task allocation by propos-
ing a game theoretic model. Our objective is to design allocation
rules (with subsidy or dummy work) to achieve social optimality,
i.e., every Nash equilibrium guarantees that the task at both facili-
ties can be completed. We mainly consider the setting where the
facilities and the agents are in the same location (two-task alloca-
tion games). Based on the model, we study three types of allocation
rules:

Pure Allocation (PA) We show that no allocation rule with-
out leveraging subsidies or adding dummy work to the tasks
can ensure that every Nash equilibrium achieves social opti-
mality.

Allocation with Dummy (DA) We propose a class of alloca-
tion rules, which add dummy work to each task. We show
that a subclass of DA (DA-seq) can achieve social optimality.
We also show that some of the DA-seq rules can guaran-
tee that no one will be allocated dummy work in any Nash
equilibrium.

Allocation with Subsidy (SA) We introduce a class of allo-
cation rules that subsidize some workers. We first propose
a special subclass of SA (SA-1), which only subsidizes one
worker to achieve social optimality. Then we design a more
complex allocation rule (SA-X), which first calculates the
amount of subsidy that will be introduced to make a state a
Nash equilibrium, and then assigns and tunes the subsidies
cleverly to make the state that uses the minimum subsidy
the only Nash equilibrium.

Besides, We also extended the model to a more general setting
where the agents and facilities can be at any location on a line. We
found that allocation rules DA-Seq and SA-X still work when the
distance between two facilities is small.

1.2 Related Work
The classic facility location problem arises in the combinatorial op-
timization field. Moulin [6] proposed the median-point mechanism
which places the facility at the median interval of all agents and
shows it is strategy-proof and optimal for the social cost objective.
After that, Procaccia and Tennenholtz [7] studied the approximate
mechanism design without money for facility location problems.
More works on facility location games can be found in a recent
survey [1].

Kleinberg and Ore [4] studied the scientific credit allocation
problems. In their model, each individual in scientific communities
can choose some projects to work on. However, they found that if
the credit is divided equally among all individuals who joined the
project after succeeding, then the total weight of completed projects

cannot be maximized. Therefore, they propose two types of mecha-
nisms that re-weight the projects so that every Nash equilibrium
achieves social optimality.

If we consider two-task allocation games, our problem shares
some similarities with the crowdsourcing problem. Crowdsourcing
was introduced by [3] and has become a popular research topic
within the artificial intelligence research community. There are
many crowdsourcing models that use monetary incentives such as
cash or coupons to encourage workers ([2] [5] [10] [8] [9]). The
monetary incentive is similar to the subsidy given to workers in
our model.

2 PRELIMINARIES
We first develop a model with two facilities. Let 𝑁 = {1, . . . , 𝑛}
be a set of workers. There are two different facilities, and each
has an amount of task 𝑝 𝑗 to be allocated to the workers where
𝑗 ∈ {1, 2} = 𝑆 . Let 𝑃 = {𝑝1, 𝑝2} be the task profile. The facilities and
workers are located on a line interval (0, 𝐿). Let X = {𝑥1, 𝑥2, ...𝑥𝑛}
be the location profile of workers and 𝑌 = {𝑦1, 𝑦2} be the location
profile of facilities. When 𝑥1 = 𝑥2 = ...𝑥𝑛 = 𝑦1 = 𝑦2, we call it a
two-task allocation game.

Each worker has a strategy 𝑠𝑖 ∈ 𝑆 , corresponding to the task she
will select. We denote the strategies of all workers by a strategy
profile s = {𝑠1, ..., 𝑠𝑛} and denote the strategies of all workers ex-
cept 𝑖 by s−𝑖 . We use 𝐾𝑗 (s) to denote the number of workers with
𝑠𝑖 = 𝑗 in strategy profile s. We consider three types of allocation
rules R. Pure Allocation (PA) Given a task profile 𝑃 and a strategy
profile s, output an allocation 𝐴 = {𝐴1, · · · , 𝐴𝑛} where 𝐴𝑖 is the
amount of work allocated to worker 𝑖 . Allocation with Dummy
(DA) Given a task profile 𝑃 and a strategy profile s, output a dummy
profile 𝐷 = {𝑑1, 𝑑2}, an allocation 𝐴 = {𝐴1, · · · , 𝐴𝑛} and a dummy
allocation 𝐴+ = {𝐴+

1 , · · · , 𝐴
+
𝑛} where 𝑑 𝑗 is the amount of dummy

work introduced to task 𝑗 , 𝐴𝑖 is the amount of work allocated to
worker 𝑖 , 𝐴+

𝑖
is the amount of dummy work allocated to worker 𝑖 .

Subsidy Allocation (SA) Given a task profile 𝑃 and a strategy profile
s, output an allocation 𝐴 = {𝐴1, · · · , 𝐴𝑛} and a subsidy allocation
𝐴− = {𝐴−

1 , · · · , 𝐴
−
𝑛 } where 𝐴𝑖 is the amount of work allocated to

worker 𝑖 , and 𝐴−
𝑖
is the amount of subsidy allocated to worker 𝑖 .

In a facility location game with two tasks, which is formed by
(𝑁, 𝑃,R), the cost of worker 𝑖 ∈ 𝑁 is defined as

𝑐𝑖 (R(𝑃, s)) =


|𝑦𝑠𝑖 − 𝑥𝑖 | +𝐴𝑖 R ∈ 𝑃𝐴
|𝑦𝑠𝑖 − 𝑥𝑖 | +𝐴𝑖 +𝐴+

𝑖
R ∈ 𝐷𝐴

|𝑦𝑠𝑖 − 𝑥𝑖 | +𝐴𝑖 −𝐴−
𝑖

R ∈ 𝑆𝐴
.

Each worker is rational and aims to minimize her cost. Our goal is
designing allocation rules R∗ so that in any facility location game
with two tasks (𝑁, 𝑃,R∗), everyNash equilibrium can achieve social
optimality, i.e., both tasks can be completed.
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