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ABSTRACT
Shielding is a popular technique for achieving safe reinforcement

learning (RL). However, classical shielding approaches come with

quite restrictive assumptions making them difficult to deploy in

complex environments, particularly those with continuous state or

action spaces. In this paper we extend the more versatile approxi-
mate model-based shielding (AMBS) framework to the continuous

setting. In particular we use Safety Gym as our test-bed, allowing

for a more direct comparison of AMBS with popular constrained

RL algorithms. We also provide strong probabilistic safety guaran-

tees for the continuous setting. In addition, we propose two novel

penalty techniques that directly modify the policy gradient, which

empirically provide more stable convergence in our experiments.
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1 INTRODUCTION
Derived from formal methods, shielding [2] is a powerful approach
for guaranteeing the safety of reinforcement learning (RL) systems

during training and deployment. In this paper, we leverage Approx-
imate Model-based Shielding (AMBS) [8], which can be applied in

more realistic settings, where the safety-relevant dynamics of the

system are not known in advance. AMBS is a model-based RL algo-

rithm and a general framework for shielding learned RL policies by

simulating possible futures in the latent space of a learned dynam-

ics model or world model [11], in particular we use DreamerV3 [12]
as the stand-in dynamics model. AMBS is an approximate method

that relies on learned components and Monte Carlo sampling, as

such it cannot provide the same safety guarantees that classical

shielding can [2]. That being said, strong probabilistic guarantees

have been established for AMBS in the tabular case [8].
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Figure 1: A simple example in Safety Gym [16]. The reward
policy proposes actions along the optimal trajectory. How-
ever, this trajectory enters an unsafe region, so the shield
overrides these actions with “Break!” actions proposed by the
safe policy. As a result, the safe trajectory is not recovered
and the two policies continuously fight for control.

Naïvely applying AMBS to Safety Gym [16], results in a high-

variance return distribution. We hypothesise that this phenomena

can be explained by the reward policy fighting with the shield to

gain control of the system, see Fig. 1. In our paper we alleviate this

problem by providing the underlying (unshielded) policy with some

safety information by using a simple penalty critic (abbrv. PENL).

We also introduce two more sophisticated penalty methods, the

first based on Probabilistic Logic Shielding [18] (abbrv. PLPG), and
the second loosely inspired by counter-examples (abbrv. COPT), a

familiar concept from model checking [5] and verification [7].

Contributions. We summarise our contributions: (1) we extend

and apply AMBS [8] to the continuous setting, specifically we use

Safety Gym [16] to obtain a meaningful comparison with other

model-based and safety-aware algorithms. (2) We subtly build on

the probabilistic safety guarantees of AMBS, by establishing the

same sample complexity bounds for continuous state and action

spaces. (3) We demonstrate that extending AMBS with safety infor-

mation is crucial for stable convergence to a safe policy. In addition,

we introduce two novel penalty methods that empirically improve

the stability of the learned policy in the later stages of training. (4)

In our experiments we demonstrate that our extended version of

AMBS dramatically reduces the total number of safety-violations,

compared to other safety-aware RL algorithms, while maintaining

good convergence properties and performance w.r.t. episode return.

The full version of our paper is available here [10].
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Table 1: Episode return and cumulative violations at the end of training.

AMBS + PENL AMBS + PLPG AMBS + COPT DreamerV3 + LAG

PointGoal1

(1M)

Episode Return ↑ 17.32 ± 3.29 17.76 ± 2.18 18.19 ± 1.72 19.15 ± 0.92
# Violations ↓ 9354 ± 3734 13937 ± 1722 10766 ± 2877 24996 ± 6627

PointGoal2

(1.5M)

Episode Return ↑ 10.64 ± 2.61 10.30 ± 3.44 9.16 ± 4.07 15.78 ± 1.84
# Violations ↓ 29720 ± 3850 30673 ± 1800 30839 ± 4647 52157 ± 6151

CarGoal1

(1M)

Episode Return ↑ 8.87 ± 2.95 5.86 ± 2.30 5.96 ± 4.15 11.23 ± 4.10
# Violations ↓ 11423 ± 1479 13236 ± 3294 14500 ± 4675 28639 ± 4644

PointGoal1

(10M)

Episode Return ↑ 16.60 ± 2.23 19.45 ± 1.62 18.66 ± 2.15 19.74 ± 1.43
# Violations ↓ 19039 ± 2339 17049 ± 1321 18320 ± 3080 46153 ± 4637

2 PROBLEM SETUP AND PRELIMINARIES
To obtain a meaningful comparison with key prior works [4, 13],

we opt for vision based input. As such we model the environment

as a partially observable Markov decision process (POMDP) [15]. In

addition, we introduce a set of atomic propositions 𝐴𝑃 and a la-
belling function 𝐿 : 𝑆 → 2

𝐴𝑃
[5]. The full POMDP tuple is defined

as followsM = ⟨𝑆,𝐴, 𝑝, 𝜄𝑖𝑛𝑖𝑡 , 𝑅,𝛾,Ω,𝑂,𝐴𝑃, 𝐿⟩. In addition to max-

imising reward (i.e. 𝜋∗ = argmax𝜋 E[
∑∞
𝑡=1 𝛾

𝑡−1 · 𝑟𝑡 ]), we are given
a propositional safety-formula Ψ, and we seek a policy that also

achieves the minimum rate of violations of the safety-formula Ψ.
At each timestep AMBS [8] checks the PCTL [5] property Δ-

bounded safety [8, 9]. A given state 𝑠 ∈ 𝑆 satisfies Δ-bounded
safety, or formally, 𝑠 |= P≥1−Δ (□≤𝑛Ψ), iff,

𝜇𝑠 ({𝜏 | 𝜏 [0] = 𝑠,∀𝑖 0 ≤ 𝑖 ≤ 𝑛, 𝜏 [𝑖] |= Ψ}) ∈ [1 − Δ, 1] (1)

where 𝜇𝑠 is a well defined probability measure on the set of traces

𝜏 = 𝑠0 → 𝑠1 → · · · → 𝑠𝑛 → . . ., with 𝜏 [𝑖] = 𝑠𝑖 , from the state 𝑠 . We

let 𝜇𝑠 |=𝜙 be short-hand for this measure.

3 SAFETY GUARANTEES
Let T denote the true transition system T : 𝑆 × 𝑆 → [0, 1] induced
by a fixed policy 𝜋 in the MDP (or POMDP), and let T̂ denote the

approximate transition system T̂ : 𝑆 × 𝑆 → [0, 1] induced by the

same fixed policy 𝜋 in a learned approximation of the dynamics of

the MDP. We state the following main result.

Theorem 1. Suppose that for all 𝑠 ∈ 𝑆 , the Kullback-Leibler (KL)
divergence between the distributions T (· | 𝑠) and T̂ (· | 𝑠) is upper-
bounded by some 𝛼 ≤ 𝜖2/(2𝑛2). That is,

𝐷𝐾𝐿

(
T (· | 𝑠)




 T̂ (· | 𝑠)
)
≤ 𝛼 ∀𝑠 ∈ 𝑆 (2)

Now fix an 𝑠 ∈ 𝑆 and let 𝜖 > 0, 𝛿 > 0 be given. With probability 1−𝛿

we can obtain an 𝜖-approximate estimate of the measure 𝜇𝑠 |=𝜙 , by
sampling𝑚 traces 𝜏 ∼ T̂ , provided that,

𝑚 ≥ 2

𝜖2
log

(
2

𝛿

)
(3)

In the partially observable setting, world models [11], such as

DreamerV3 [12] have already been theoretically motivated [8] and

the extension of these results to the continuous setting is simple.

4 EXPERIMENTAL RESULTS
Setup. We evaluate AMBS [8] with each of the three penalty tech-

niques separately (i.e. PENL, PLPG and COPT) , as a baseline with

use a version of DreamerV3 [12] that implements the Augmented

Lagrangian [4, 17]. We use the following three vision based environ-

ments from Safety Gym [16]: PointGoal1, PointGoal2 and CarGoal1.
Observations correspond to 3× 64× 64 dimensional tensors and the

action space is [−1, +1]2 for all environments. The implementation

details can be found here at: https://github.com/sacktock/AMBS.

Discussion. We see that across all environments our methods out

perform the baseline w.r.t. the cumulative number of violations, see

Tab. 1. In terms of episode return our methods do exhibit slower

convergence – this is a trade-off we would expect in these environ-

ments. In the PointGoal1 environment all algorithms appear to have

converged within 1M frames. However, for longer training runs

(10M frames) it appears that without the more principled penalty

techniques, i.e. PLPG and COPT, then AMBS diverges. More work

is required to understand the convergence properties of PLPG and

COPT, although empirically they maintain more stable convergence

than the simple penalty critic (PENL).

5 CONCLUSION
In our paper we successfully extended AMBS [8] to the continuous

setting and we proposed three penalty techniques that are crucial

for the convergence of AMBS in environments that have an inherent

trade-off between safety and reward, e.g. those in Safety Gym [16].

Compared with CMDP [3], shielding approaches for safe RL are

policy agnostic, i.e. the safety of the system depends on entirely on

the shield, rather than the convergence of the learned policy. We

stress the importance of results such as Thm. 1, since it allows prac-

titioners to have good statistical confidence in their systems. While

Thm. 1 does make non-trivial assumptions, for particular settings

we know when these assumptions are satisfied from previously

established sample complexity bounds [1, 6, 14].

Important future work includes, a more thorough investigation

into the convergence properties of PLPG [18] and COPT, and the

key components of AMBS [8]. It may also be interesting to establish

stronger theoretical claims for common continuous settings, for

which sample complexity bounds already exist, and present it in a

way that is compatible with AMBS.
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