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ABSTRACT
Weighted voting games are an important class of simple games

that can be compactly represented and have many real-world ap-

plications. Rey and Rothe [14] introduced the notion of structural

control by adding players to or deleting them from weighted voting

games, with the goal to either change or maintain a given player’s

power in a given game with respect to the (probabilistic) Penrose–

Banzhaf power index [4] or the Shapley–Shubik power index [17].

For control by adding players, they showed PP-hardness as the

best known lower bound and an upper bound of NP
PP
, where PP is

“probabilistic polynomial time.” We optimally improve their results

by establishing NP
PP
-hardness (and thus NP

PP
-completeness) of all

problems related to the Penrose–Banzhaf index and for the problem

of maintaining the Shapley–Shubik index when players are added.
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1 INTRODUCTION
Weighted voting games, an important class of simple, compactly rep-

resentable coalitional games, have many real-world applications.

For instance, one can use them to model and analyze collective

decision-making in legislative bodies and in parliamentary vot-

ing [16], such as the European Union or the International Monetary

Fund [5], in joint stock companies, etc.

A very important subject of the research on weighted voting

games is the analysis of how significant players are in these games,

i.e., what their impact is in forming winning coalitions. To mea-

sure this impact, power indices have been proposed, including

the normalized Penrose–Banzhaf index due to Penrose [12] and

Banzhaf [2], the probabilistic Penrose–Banzhaf index due to Dubey
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and Shubik [4], and the Shapley–Shubik index due to Shapley and

Shubik [17]. We are concerned with the latter two power indices.

Various ways of how to rig a given player’s power in a weighted

voting game have been studied. For example, Aziz et al. [1] and

Rey and Rothe [13] investigated the impact of merging or splitting

players, the latter being also known as “false-name manipulation.”

Zuckerman et al. [18] studied how to influence the power of players

by manipulating the quota in weighted voting games. Later on,

Rey and Rothe [14] introduced control by adding players to or

by deleting them from a weighted voting game. Recently, their

complexity results have been improved by Kaczmarek and Rothe [8].

Kaczmarek et al. [9] studied control by adding or deleting edges in

graph-restricted weighted voting games.

Continuing the work of Rey and Rothe [14] on the complexity of

control by adding players to a weighted voting game, we optimally

improve their PP-hardness for these problems to NP
PP
-hardness,

thus obtaining a lower bound that matches their upper bound of

NP
PP
. This establishes NP

PP
-completeness for the problems with

the goal of increasing, nondecreasing, decreasing, nonincreasing,

or maintaining the probabilistic Penrose–Banzhaf index and for the

problem with the goal of maintaining the Shapley–Shubik index.

Note that the problems related to merging players in weighted

voting games were shown to be PP-complete [13]. However, the

complexity gap between PP-hardness and membership in NP
PP

also persists for false-name manipulation [13] as well as for some

of the problems related to control by adding or deleting edges in

graph-restricted weighted voting games [9]. Thus the techniques

we developed may turn out useful for these open problems as well.

2 PRELIMINARIES
A coalitional game is a pair (N ,v), where N = {1, . . . ,n} is a set of
players andv : 2

N → R≥0 is the characteristic function. A coalition

is a subset of N . (N ,v) is said to be simple if v is monotonic (i.e.,

v(C) ≤ v(D) for all C,D with C ⊆ D ⊆ N ), and v(C) ∈ {0, 1} for

eachC ⊆ N . A weighted voting game (WVG) G = (w1, . . . ,wn ;q) is
a simple coalitional game (N ,v) that is represented by the players’

weights, with wi being the weight of player i ∈ N , and a non-

negative integer quota q. For each coalition C ⊆ N , we say C is

a winning coalition if v(C) = 1 (i.e., wC ≥ q), and C is a losing

coalition if v(C) = 0 (i.e.,wC < q), wherewC =
∑
i ∈C wi . We call a

player i ∈ N pivotal for coalitionC ⊆ N \{i} ifv(C∪{i})−v(C) = 1.

The influence or significance of players in a given game is usually

measured by so-called power indices. Two of the most popular and

well-known power indices are the probabilistic Penrose–Banzhaf
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power index (introduced by Dubey and Shapley [4] as an alter-

native to the original normalized Penrose–Banzhaf index [2, 12])

and the Shapley–Shubik power index (introduced by Shapley and

Shubik [17]). For any player i in G, the former is defined by

β(G, i) =

∑
S ⊆N \{i }(v(S ∪ {i}) −v(S))

2
n−1 ,

and the latter is defined by

φ(G, i) =

∑
S ⊆N \{i } |S |!(n − 1 − |S |)!(v(S ∪ {i}) −v(S))

n!
.

We assume the reader to be familiar with the fundamental con-

cepts of computational complexity theory (see, e.g., [6, 11, 15]), such

as the well-known complexity classes P (deterministic polynomial

time), NP (nondeterministic polynomial time), and PP (probabilistic

polynomial time [7]), and with the notions of completeness and

hardness for a complexity class with respect to the polynomial-time

many-one reducibility. NP
PP

is the class of problems solvable by

an NP oracle Turing machine that has access to a PP oracle.

While Gill [7] proved that MajSAT = {ϕ | ϕ is a boolean for-

mula satisfied by a majority of truth assignments} is a standard

PP-complete problem, Littman et al. [10] introduced the following

problem and proved that it is NP
PP
-complete:

E-Majority-SAT (E-MajSAT)

Given: A boolean formula ϕ with n variables x1, . . . , xn and an

integer k , 1 ≤ k ≤ n.
Question: Does there exist an assignment to the first k variables

x1, . . . , xk such that a majority of assignments to the re-

maining n − k variables xk+1, . . . , xn satisfies ϕ?

If we change “a majority” into “at most half” in the question

above, we obtain another NP
PP
-complete problem, E-Minority-

SAT (E-MinSAT), which was introduced by de Campos et al. [3].

Rey and Rothe [14] defined problems capturing control by adding

players to a given WVG so as to change a given player’s power

in the modified game. To increase this power for an index PI, the

control problem is defined as follows:

Control-by-Adding-Players-to-Increase-PI

Given: A WVG G with a set N of players, a set M of players (given

by their weights) that can be added to G, a distinguished

player p ∈ N , and a positive integer k ≤ |M |.

Question: Can at most k players M ′ ⊆ M be added to G such that for

the new game G∪M ′ , it holds that PI(G∪M ′ , p) > PI(G, p)?

Changing “>” in the question above to “<,” “≤,” “≥,” and “=,” re-

spectively, we analogously obtain the corresponding control prob-

lems for decreasing, nonincreasing, nondecreasing, andmaintaining

PI. In case of nondecreasing, nonincreasing, and maintaining PI we

additionally assume that at least one new player is added.

Rey and Rothe [14] showed PP-hardness of these five control

problems for both the Penrose–Banzhaf and the Shapley–Shubik

power index, and they identified NP
PP

as their best known upper

bound. We aim at raising their PP-hardness lower bound to NP
PP
-

hardness, thus establishing their completeness in this class.

Finally, we introduce yet another NP
PP
-complete problem, which

we use in our proofs:

E-Exact-SAT

Given: A boolean formula ϕ with n variables x1, . . . , xn , an inte-

ger k , 1 ≤ k ≤ n, and an integer ℓ.

Question: Is there an assignment to the first k variables x1, . . . , xk
such that exactly ℓ assignments to the remaining n − k
variables xk+1, . . . , xn satisfy ϕ?

Lemma 1. E-Exact-SAT is NP
PP
-complete.

3 NPPP-HARDNESS OF CONTROL BY ADDING
PLAYERS TO AWEIGHTED VOTING GAME

To show NP
PP
-hardness of our control problems, we use some

functions that convert an input of E-MajSAT, E-MinSAT, or E-

Exact-SAT into weight vectors for some of the players defined for

an input of one of our control problems. We present an example of

such a conversion in the definition and its properties used in our

proofs as follows: Let ϕ be a boolean formula in CNF with variables

x1, . . . , xn andm clauses. Let k be an integer with 1 ≤ k ≤ n and

set r = ⌈log
2
n⌉ − 1. For some integer t satisfying 10t > 2

⌈log
2
n ⌉+1

,

we define the function F mapping ϕ to the (2n +m(r + 1))-tuple

(a1, . . . ,an,b1, . . . ,bn, c1,0, . . . , c1,r , . . . cm,0, . . . , cm,r ), where for

each variable xi , i ∈ {1, . . . ,n},

ai = 10
t (m+1)+i +

∑
j : clause j
contains xi

10
t j ,

bi = 10
t (m+1)+i +

∑
j : clause j
contains ¬xi

10
t j

and each j ∈ {1, . . . ,m} and each s ∈ {0, . . . , r }, c j ,s = 2
s · 10t j .

Moreover, let qF =
(∑n

i=1 10
t (m+1)+i

)
+ 2

⌈log
2
n ⌉ ∑m

j=1 10
t j
. The

conversion has the following property.

Lemma 2. Letϕ be a boolean formula in CNF withn variables. There

exists a bijection from the set of truth assignments to the variables

x1, . . . , xn satisfying ϕ into the set of sublists of F (ϕ) whose total
value is qF .

Theorem 1. The problems of control by adding players to a given

WVG so as to increase, nondecrease, decrease, nonincrease, or maintain

a given player’s Penrose–Banzhaf index or to maintain her Shapley–

Shubik index are NP
PP
-hard.

4 CONCLUSIONS
We have shown that control by adding players to WVGs so as to in-

crease, nondecrease, decrease, nonincrease, or maintain a given

player’s Penrose–Banzhaf power index or to maintain a given

player’s Shapley–Shubik power index is complete for NP
PP
, thus

settling the complexity of these problems by raising their lower

bound so as to match their upper bound. Some cases are still open

that we are confident to solve with similar techniques.
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