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ABSTRACT
In the realm of multi-agent systems, argumentative dialogues for

persuasion and negotiation involve autonomous agents exchang-

ing arguments, necessitating continual re-evaluation of argument

acceptability. This study introduces a novel approach using modern

SAT solving techniques to dynamically reassess the acceptability

status of arguments, aligning with various classical semantics. Our

method uses the assumption mechanism in SAT solvers, distin-

guished by minimal assumptions, ensuring practicality.
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1 INTRODUCTION
Abstract argumentation [10] is a robust tool for modeling conflict-

ing information and providing specialized reasoning methods. Its

versatile applications span various domains, particularly within

multi-agent systems [19]. It serves as a foundation for defining

protocols in multi-agent argument-based dialogues [4], crucial in

automated negotiations [3] and persuasive interactions [5].

An abstract argumentation framework (AF) is a directed graph

F = ⟨A,R⟩ where A is a (non-empty and finite) set of argu-
ments and R ⊆ A × A is the attack relation. Given 𝑎, 𝑏 ∈ A, 𝑎

attacks 𝑏 when (𝑎, 𝑏) ∈ R, and for 𝑆 ⊆ A, 𝑆 attacks 𝑏 if ∃𝑎 ∈ 𝑆

which attacks 𝑏. Finally, 𝑆 defends the argument 𝑐 ∈ A if, for any 𝑏

attacking 𝑐 , 𝑆 attacks 𝑏. Reasoning with AFs typically uses the con-

cept of extensions, i.e. sets of jointly acceptable arguments. These

extension-based semantics are primarily based on two properties:

given F = ⟨A,R⟩, 𝑆 ⊆ A is conflict-free if ∀𝑎, 𝑏 ∈ 𝑆 , (𝑎, 𝑏) ∉ R;
admissible if it is conflict-free and defends all its elements. In this

paper, our primary focus lies on the following two types of exten-

sions: 𝑆 ⊆ A is a complete extension if it is admissible and it defends

no argument in A \ 𝑆 ; a stable extension if it is conflict-free and it

attacks all the arguments in A \ 𝑆 . We write co(F ) (resp. st(F ))
for the set of complete (resp. stable) extensions.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

Given 𝜎 ∈ {co, st}, we focus on solving the decision problems

DC-𝜎 (Decide Credulous acceptability) and DS-𝜎 (Decide Skeptical
acceptability), formally defined respectively by answering the ques-

tion: “Given an AF F = ⟨A,R⟩ and an argument 𝑎 ∈ A, is 𝑎 a

member of some (resp. each) 𝜎-extension of F ? ”

We denote by cred𝜎 (F ) (resp. skep𝜎 (F )) the set of arguments

that are credulously (resp. skeptically) accepted, meaning they lead

to a ’YES’ response in the problem DC-𝜎 (resp. DS-𝜎). Reasoning
with AFs is typically challenging [11]. Specifically, the problems

outlined earlier often reside within the first level of the polyno-

mial hierarchy. To be more precise, both credco (F ) and credst (F )
pose NP-complete challenges, while skepst (F ) represents a coNP-
complete problem. Notably, skepco (F ) can be resolved using a

polynomial algorithm. This paper centers on improving the resolu-

tion of problems that necessitate NP oracles.

Despite theoretical complexity, real-world performance of ab-

stract argumentation solvers remains impressive, even with sub-

stantial problem sizes [22]. These solvers typically address this

challenge by translating the abstract argumentation problem into

a Conjunctive Normal Form (CNF) formula using an updated en-

coding proposed by [8]. Specifically, a semantics 𝜎 and an argu-

mentation framework (AF) F are transformed into a propositional

formula 𝜙𝜎 (F ) such that the formula’s models correspond to the

extensions of the AF. These formulas represent conflict-free sets,

admissible sets, and extensions under both complete and stable

semantics. Details on these encodings and their use in prominent

argumentation solvers can be found in [17, 20]. Once encoded,

modern SAT solvers (see [9] for SAT details) efficiently resolve the

problem [12, 17, 20].

While SAT solvers excel in handling various problems, chal-

lenges persist, particularly in dynamic AFs requiring updates. Reg-

ularly invoking a SAT solver during complex debates with evolving

argumentation structures can lead to significant runtime costs, es-

pecially when resetting the solver after each modification [1, 2]. In

this work, we advance this context using sophisticated SAT-based

techniques to compute solutions for DC and DS problems (NP- or
coNP-complete). Our approach relies on incremental SAT solving

[13] and assumptions [6, 13, 16], enabling the use of prior computa-

tions to expedite acceptability determination following framework

modifications. Empirical comparisons with other state-of-the-art

methods in dynamic AFs, including a naive baseline solving the

problem from scratch after each update, highlight the superior

performance of our approach.

2 THE CRUSTABRI SOLVER
SAT solvers deduce clauses from the initial problem [9]. In dynamic

argumentation, our goal is to retain the same SAT solver and its
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learned clauses while adjusting the constraints to align with the

evolving AF. If the clauses remains unchanged or becomes more

refined, the previously learned clauses can assist in future decision-

making. However, relaxing the clauses in the SAT solver makes it

uncertain if the previously learned clauses are still consequences

of the problem, except when new free variables are introduced.

To address this, assumption variables [13] are employed. Already

used in static argumentation [17, 21], it encodes a relaxed version

of the problem with additional (assumption) variables, allowing

the representation of any set of constraints considered later. When

assumption literals are set, the solver learns clauses as if these

variables were determined by its internal decision-making process.

Consequently, if a learned clause results from these artificial deci-

sions, it becomes a consequence of the conjunction of the original

formula and the assumption literals, enabling the utilization of

learned clauses under assumptions in subsequent computations.

Employing assumptions in a dynamic context demands a metic-

ulous formulation. If a state cannot be accurately encoded with a

set of assumptions, it may necessitate a new encoding, rendering

previous clauses obsolete. An excessively relaxed initial formula

could also inflate the number of clauses and auxiliary variables for

assumptions, introducing unnecessary computational overhead.

Attacks as assumptions. In an AF with a constant set of argu-

ments, a practical approach involves assigning assumptions 𝑠𝑎,𝑏 for

each pair (𝑎, 𝑏) ∈ A. For instance, stable semantics requires |A|2 as-
sumptions and𝑂 ( |A|2) clauses:𝜓 ′

st (F ) = ∧
𝑎∈A (𝑎∨∨

𝑏∈A (𝑠𝑏,𝑎∧
𝑏)) ∧ ∧

𝑎∈A (∧𝑏∈A (¬𝑠𝑏,𝑎 ∨ ¬𝑎 ∨ ¬𝑏)). However, introducing a

new argument weakens specific clauses, making this encoding un-

suitable for dynamics. 𝜇-toksia reserves fresh variables for future

arguments by temporarily setting them to false using assumptions,

with constraints determined by the current and reserved arguments.

Disjunction of attackers as assumptions. We present two en-

codings that exploit the unique structure of stable and complete

semantics in a dynamic context, connecting assumptions to the

disjunction of attackers (𝑃𝑎 variables of [17]). They use a minimal

number of active assumptions, limited by the current number of ar-

guments. The count of active clauses matches the number of clauses

in static encodings. Assumptions link sets of attacks targeting a

common argument. When attackers change, the previous set is

deactivated by fixing the related assumption, while a new one is

generated to validate the updated set of attackers.

𝜓𝐷
st (F ) = ∧

𝑎∈A (¬𝑠𝑎 ∨ 𝑎 ∨∨
(𝑏,𝑎) ∈R 𝑏) (1.1)∧

𝑎∈A (∧(𝑏,𝑎) ∈R (¬𝑠𝑎 ∨ ¬𝑎 ∨ ¬𝑏)) (1.2)

𝜓𝐷
co (F ) = ∧

𝑎∈A (¬𝑎 ∨ ¬𝑃𝑎) (2.1)∧
𝑎∈A (¬𝑠𝑎 ∨ 𝑎 ∨∨

(𝑏,𝑎) ∈R ¬𝑃𝑏 ) (2.2)∧
𝑎∈A (∧(𝑏,𝑎) ∈R (¬𝑠𝑎 ∨ ¬𝑎 ∨ 𝑃𝑏 )) (2.3)∧
𝑎∈A (¬𝑠𝑎 ∨ ¬𝑃𝑎 ∨∨

(𝑏,𝑎) ∈R 𝑏) (2.4)∧
𝑎∈A (∧(𝑏,𝑎) ∈R (¬𝑠𝑎 ∨ 𝑃𝑎 ∨ ¬𝑏)) (2.5)

𝜓st (F ) ≡ 𝜓𝐷
st (F ) ∧∧

𝑎∈A 𝑠𝑎 and𝜓co (F ) ≡ 𝜓𝐷
co (F ) ∧∧

𝑎∈A 𝑠𝑎
show the correctness of our encodings. For stable semantics, han-

dling attacks involving a specific argument 𝑎 is efficient. Setting

𝑠𝑎 suffices for adding or removing an attack. Introducing a new

variable 𝑠′𝑎 encodes the new attack set (¬𝑠′𝑎 ∨ 𝑎 ∨∨
(𝑏,𝑎) ∈R 𝑏, and

∧
(𝑏,𝑎) ∈R (¬𝑠′𝑎 ∨ ¬𝑎 ∨ ¬𝑏)). Replacing 𝑠𝑎 with 𝑠′𝑎 in the assump-

tion set passed to the solver accounts for these changes. Adding

a new argument 𝑎 involves declaring 𝑎 and 𝑠𝑎 in the SAT solver

and including 𝑠𝑎 in the assumption set. Removing an argument

entails eliminating all attacks involving it and setting its value with

a unit clause. Concerning complete semantics, reencoding is nec-

essary when a set of attacks change, following rules (2.2) to (2.5).

Introducing a new variable 𝑎 requires declaring 𝑃𝑎 and adding (2.1).

3 EXPERIMENTAL EVALUATION
We compare our new approach (dyn_att_disj) with the dynamic

attack assumptions method (dyn_att) and a baseline that creates a

new AF for every state evolution (static). These were implemented

in Crustabri [18] and evaluated by replaying the 5
th

ICCMA com-

petition [14] on machines with Intel Xeon E5-2637 v4 processors

and 128GB RAM (details at [15]). The dyn_att encoding introduces

a key parameter: the number of arguments reserved for future ad-

ditions during reencoding. In 𝜇-toksia, this number is set to 2 (for 𝑛

arguments at encoding time, 𝑛 additional arguments are reserved).

Recognizing its importance, we experimented with factors such

as 2, 1.5, and 1.25. The results, presented in the following figure,

categorize the approaches into three distinct groups based on PAR-2

scores (as in the competition).
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Our approach, dyn_att_disj, achieved the top position across all

tracks, highlighting its effectiveness. The static approach secured

second place, consistently demonstrating strong performance. The

various iterations of dyn_att approaches, using different factors,

yielded comparable results in the third group. Interestingly, the

impact of the factor in dyn_att encoding was less substantial than
anticipated. Regardless of the factor, the static approach consis-

tently outperformed dyn_att, emphasizing the insufficient benefits

to compensate for encoding overhead. Focusing on the number of

instances solved led to the same conclusions. Our dyn_att_disj ap-
proach showcased remarkable ability in leveraging past knowledge,

aligning with amortization in modern SAT solvers [7].

4 CONCLUSION
This paper explores incremental SAT solving in dynamic argu-

mentation, focusing on efficiently determining argument statuses

during updates. Our novel encoding method proves more space-

efficient than existing approaches, requiring fewer assumptions.

Empirical evaluations demonstrate its clear superiority over the

naive baseline and the current state-of-the-art method.
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