Extended Abstract

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Simple k-crashing Plan with a Good Approximation Ratio
Extended Abstract

Ruixi Luo
Shenzhen Campus of Sun Yat-sen
University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
luorx@mail2.sysu.edu.cn

ABSTRACT

A project is considered as an activity-on-edge network (AOE net-
work, which is a directed acyclic graph) N, where each activity /
job of the project is an edge. Some jobs must be finished before
others can be started, as described by the topology structure of N.

It is known that job j; in normal speed would take b; days to
be finished after it is started, and hence the (normal) duration of
the project N, denoted by d(N), is determined, which equals the
length of the critical path (namely, the longest path) of N.

To speed up the project, the manager can crash a few jobs (namely,
reduce the length of the corresponding edges) by investing extra
resources into that job. However, the time for completing j; has
a lower bound due to technological limits - it requires at least a;
days to be completed. Following the convention, assume that the
duration of a job has a linear relation with the extra resources put
into this job; equivalently, there is a parameter c; (slope), so that
shortening j; by d (0 < d < b; — a;) days costs c; - d resources.

Given project N and an integer k > 1, the k-crashing problem
asks the minimum cost to speed up the project by k days.

In this paper, we present a simple solution with the approxima-
tion ratio % +..4+ % For simplicity, we focus on the linear case
throughout the paper, but our proofs are still correct for the con-
vex case, where shortening an edge becomes more difficult after a
previous shortening.

KEYWORDS

Project duration; Network optimization; Greedy algorithm; Maxi-
mum flow; Critical path

ACM Reference Format:

Ruixi Luo, Kai Jin, and Zelin Ye. 2024. Simple k-crashing Plan with a Good
Approximation Ratio: Extended Abstract. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 — 10, 2024, IFAAMAS, 3 pages.

This reasearch was supported by National Natural Science Foundation of
China 62002394 and Shenzhen Science and Technology Program (Grant No.
202206193000001, 20220817175048002). Corresponding author: Kai Jin.

® This work is licensed under a Creative Commons Attribu-
= tion International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, 3.S. Sichman (eds.), May 6 —
10, 2024, Auckland, New Zealand. © 2024 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org).

2366

Kai Jin
Shenzhen Campus of Sun Yat-sen
University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
cscjjk@gmail.com

Zelin Ye
Shenzhen Campus of Sun Yat-sen
University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
zlrelay@outlook.com

1 RELATED WORK

The first solution to the k-crashing problem was given by Fulker-
son [2] and by Kelley [5] respectively in 1961. The results in these
two papers are independent, yet the approaches are essentially the
same, as pointed out in [6]. In both of them, the problem is first for-
mulated into a linear program problem, whose dual problem is a
minimum-cost flow problem, which can then be solved efficiently.

Later in 1977, Phillips and Dessouky [6] reported another clever
approach (denoted by Algorithm PD). Similar as the greedy algo-
rithm mentioned above, Algorithm PD also consists of k steps, and
each step it locates a minimal cut in a flow network derived from
the original project network. This minimal cut is then utilized to
identify the jobs which should be expedite or de-expedite in order
to reduce the project reduction. It is however not clear whether
this algorithm can always find an optimal solution. We have a ten-
dency to believe the correctness, yet cannot find a proof in [6].

The greedy algorithm we considered is much simpler and easier
to implement comparing to all the approaches above.

Other approaches for the problem are proposed by Siemens [7]
and Goyal [4], but these are heuristic algorithms without any guar-
antee — approximation ratio are not proved in these papers.

Many variants of the k-crashing problem have been studied in
the past decades; see [3], [1], and the references within.

2 ALGORITHM AND ANALYSIS

The greedy algorithm in the following (see Algorithm 1) finds a
k-crashing plan efficiently. It finds the plan incrementally - each
time it reduces the duration of the project by 1.

Algorithm 1 Greedy algorithm for finding a k-crashing plan.
Input: A project N = (V,E).
Output: A k-crashing plan G.

G «— ©;

fori=1tok do
Find the optimum 1-crashing plan of N(G), denoted by A;;
G < G U Aj; (regard as multiset union)

end for

Observe that G is an i-crashing plan of network N after the i-th
iteration G «— G U A;, as the duration of N(G) is reduced by 1 at
each iteration. Therefore, G is a k-crashing plan at the end.

In this paper, we mainly prove that

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Extended Abstract

THEOREM 2.1. LetG = A1 U...UAy be the k-crashing plan found
by Algorithm 1. Let OPT denote the optimal k-crashing plan. Then,
k 1
cost(G) < Z —cost(OPT).

i=1 !
By applying the following Lemma 2.2 below in every step of the
greedy algorithm, we can directly have the theorem.

LEMMA 2.2. For any project N, its k-crashing plan (where k <
kmax) costs at least k times the cost of the optimum 1-crashing plan.

2.1 Proof of Lemma 2.2

The critical graph of network H, denoted by H*, is formed by all
the critical edges of H; all the edges not critical are removed in H*.
We first have

PROPOSITION 2.3. A k-crashing plan X of N contains a cut of N*.
In the following, suppose X is a k-crashing plan of N. We intro-

duce a decomposition of X which is crucial to our proof.
First, define

N N,
X; = X, (1)
C1 = mincut(Ny,X1).

Next, for 1 < i < k, define
N; N/ (Ci-1),
Xi = Xi-1\GCi-1. (2)
Ci = mincut(N}, X;).

Note that C; = mincut(N], X;) means C; is this minimum cut
of N} from X;.

The following lemma easily implies Lemma 2.2.

LEMMA 2.4. cost(C;) < cost(Ciy1) foranyi (1 <i<k).

We show how to prove Lemma 2.2 in the following. The proof
of Lemma 2.4 will be shown in the next subsection.

Proor oF LEMMA 2.2. Suppose X is k-crashing to N.
By Lemma 2.4, we know cost(C;) < cost(C;) (1 <i < k).
Further since Ule Ci € X,

k
k- cost(Cy) < cost(U Cj) < cost(X).
i=1
Because C; is the minimum cut of N* that is contained in X,

whereas A; is the minimum cut of N* among all, cost(A;) < cost(Cy).

To sum up, we have k - cost(A;) < cost(X).
m|

2.2 Proof of Lemma 2.4

Assume i (1 < i < k) is fixed. In the following we prove that
cost(C;j) < cost(Ci4+1), as stated in Lemma 2.4, which is a core
result.

Assume the cut C; of N divides the vertices of N} into two
parts, U;, W;, where s € U; and t € W;. The edges ofNi* are divided
into four parts: 1. S; — the edges within Uj; 2. T; — the edges within
Wi; 3. C; — the edges from U; to W;; 4. RC; - the edges from W; to
Ui.

We can prove that

2367

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

ProrosITION 2.5. (1) Ciy1 NRC; = 0 and (2) C; € N},

Because Cj1 is a subset of the edges of N/, |, and the edges of
N7}, are also in N}, we see Ciy1 C T; US; U C; U RC;. Further since
Ci+1 NRC; = 0 (proposition 2.5), set Cj;1 consists of three disjoint
parts:

C;L+1 =Cit1 NTj;
Ciy = Cir1 N Cis
C;l =Ciy1 N S;.

(proposition 2.5), set C; consists of four dis-

®)

Due to C; € N},
joint parts:

Cf =CiNTin
C?=CiNCi
C; =CiNSin
CR =i nRCi

©)

Figure 1: Key notation used in the proof of Lemma 2.4.

CO

Note that C? = Cj,,> We can prove that

PROPOSITION 2.6.
1.Cf, UCY U C] contains a cut of N}

i+1
2.C, U C? U C; contains a cut of N;.

i+1

We are ready to prove Lemma 2.4. By proposition 2.6 and C;
mincut(N/, X;), we derive that
cost(C;) = cost(C;f U C? ucC;y v Cf) < cost(C},; U C? uch

cost(C;) = cost(C; UCY UC; U CR) < cost(Cr,, U cducy)
By adding the inequalities above, we obtain Lemma 2.4 cost(C;) <
cost(Cijt+1), completing the proof.

3 SUMMARY & FUTURE WORK

We have shown that simple greedy algorithms achieve pretty small
approximation ratio in k-crashing problems. And the analysis is
non-trivial.

Hopefully, the techniques developed in this paper can be used
for analyzing greedy algorithms of other related problems.

We would like to end up this paper with one challenging prob-
lem: Can we prove a constant approximation ratio for Algorithm 1?

Extended Abstract

REFERENCES

[1] Pablo Ballesteros-Pérez, Kamel Mohamed Elamrousy, and M* Carmen Gonzalez-
Cruz. 2019. Non-linear time-cost trade-off models of activity crashing: Appli-
cation to construction scheduling and project compression with fast-tracking.
Automation in Construction 97 (2019), 229-240. https://doi.org/10.1016/j.autcon.
2018.11.001

Delbert Ray Fulkerson. 1961. A Network Flow Computation for Project Cost
Curves. Management Science 7, 2 (1961), 167-178. http://www.jstor.org/stable/
2627099

JosE Eduardo Vinhaes Gerk and Raad Yahya Qassim. 2008. Project Acceleration
via Activity Crashing, Overlapping, and Substitution. IEEE Transactions on En-
gineering Management 55, 4 (2008), 590-601. https://doi.org/10.1109/TEM.2008.

o)

(3

2368

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

927786

[4] SureshK.Goyal. 1996. A simple time-cost tradeoff algorithm. Production Planning
& Control 7,1 (1996), 104-106. https://doi.org/10.1080/09537289608930331

[5] James E.Kelley. 1961. Critical-Path Planning and Scheduling: Mathematical Basis.
Operations Research 9, 3 (1961), 296-320. http://www.jstor.org/stable/167563

[6] Steve Phillips and Mohamed I. Dessouky. 1977. Solving the Project Time/Cost
Tradeoff Problem Using the Minimal Cut Concept. Management Science 24, 4
(1977), 393-400. http://www.jstor.org/stable/2630261

[7] Nicolai Siemens. 1971. A Simple CPM Time-Cost Tradeoff Algorithm. Manage-
ment Science 17, 6 (1971), B354-B363. http://www.jstor.org/stable/2629138

https://doi.org/10.1016/j.autcon.2018.11.001
https://doi.org/10.1016/j.autcon.2018.11.001
http://www.jstor.org/stable/2627099
http://www.jstor.org/stable/2627099
https://doi.org/10.1109/TEM.2008.927786
https://doi.org/10.1109/TEM.2008.927786
https://doi.org/10.1080/09537289608930331
http://www.jstor.org/stable/167563
http://www.jstor.org/stable/2630261
http://www.jstor.org/stable/2629138

	Abstract
	1 Related work
	2 Algorithm and Analysis
	2.1 Proof of Lemma 2.2
	2.2 Proof of Lemma 2.4

	3 Summary & future work
	References

