
Simple 𝑘-crashing Plan with a Good Approximation Ratio
Extended Abstract

Ruixi Luo
Shenzhen Campus of Sun Yat-sen

University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China

luorx@mail2.sysu.edu.cn

Kai Jin
Shenzhen Campus of Sun Yat-sen

University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China
cscjjk@gmail.com

Zelin Ye
Shenzhen Campus of Sun Yat-sen

University, No. 66, Gongchang Road,
Guangming District
Shenzhen, China

zlrelay@outlook.com

ABSTRACT
A project is considered as an activity-on-edge network (AOE net-
work, which is a directed acyclic graph) 𝑁 , where each activity /
job of the project is an edge. Some jobs must be finished before
others can be started, as described by the topology structure of 𝑁 .

It is known that job 𝑗𝑖 in normal speed would take 𝑏𝑖 days to
be finished after it is started, and hence the (normal) duration of
the project 𝑁 , denoted by 𝑑 (𝑁), is determined, which equals the
length of the critical path (namely, the longest path) of 𝑁 .

To speed up the project, themanager can crash a few jobs (namely,
reduce the length of the corresponding edges) by investing extra
resources into that job. However, the time for completing 𝑗𝑖 has
a lower bound due to technological limits - it requires at least 𝑎𝑖
days to be completed. Following the convention, assume that the
duration of a job has a linear relation with the extra resources put
into this job; equivalently, there is a parameter 𝑐𝑖 (slope), so that
shortening 𝑗𝑖 by 𝑑 (0 ≤ 𝑑 ≤ 𝑏𝑖 − 𝑎𝑖) days costs 𝑐𝑖 · 𝑑 resources.

Given project 𝑁 and an integer 𝑘 ≥ 1, the 𝑘-crashing problem
asks the minimum cost to speed up the project by 𝑘 days.

In this paper, we present a simple solution with the approxima-
tion ratio 1

1 + . . . +
1
𝑘 . For simplicity, we focus on the linear case

throughout the paper, but our proofs are still correct for the con-
vex case, where shortening an edge becomes more difficult after a
previous shortening.

KEYWORDS
Project duration; Network optimization; Greedy algorithm; Maxi-
mum flow; Critical path

ACM Reference Format:
Ruixi Luo, Kai Jin, and Zelin Ye. 2024. Simple 𝑘-crashing Plan with a Good
Approximation Ratio: Extended Abstract. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

This reasearch was supported by National Natural Science Foundation of
China 62002394 and Shenzhen Science and Technology Program (Grant No.
202206193000001, 20220817175048002). Corresponding author: Kai Jin.

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 –
10, 2024, Auckland, New Zealand. © 2024 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org).

1 RELATEDWORK
The first solution to the 𝑘-crashing problem was given by Fulker-
son [2] and by Kelley [5] respectively in 1961. The results in these
two papers are independent, yet the approaches are essentially the
same, as pointed out in [6]. In both of them, the problem is first for-
mulated into a linear program problem, whose dual problem is a
minimum-cost flow problem, which can then be solved efficiently.

Later in 1977, Phillips and Dessouky [6] reported another clever
approach (denoted by Algorithm PD). Similar as the greedy algo-
rithmmentioned above, Algorithm PD also consists of 𝑘 steps, and
each step it locates a minimal cut in a flow network derived from
the original project network. This minimal cut is then utilized to
identify the jobs which should be expedite or de-expedite in order
to reduce the project reduction. It is however not clear whether
this algorithm can always find an optimal solution. We have a ten-
dency to believe the correctness, yet cannot find a proof in [6].

The greedy algorithm we considered is much simpler and easier
to implement comparing to all the approaches above.

Other approaches for the problem are proposed by Siemens [7]
and Goyal [4], but these are heuristic algorithms without any guar-
antee – approximation ratio are not proved in these papers.

Many variants of the 𝑘-crashing problem have been studied in
the past decades; see [3], [1], and the references within.

2 ALGORITHM AND ANALYSIS
The greedy algorithm in the following (see Algorithm 1) finds a
𝑘-crashing plan efficiently. It finds the plan incrementally – each
time it reduces the duration of the project by 1.

Algorithm 1 Greedy algorithm for finding a 𝑘-crashing plan.
Input: A project 𝑁 = (𝑉 , 𝐸).
Output: A 𝑘-crashing plan 𝐺 .

𝐺 ← ∅;
for 𝑖 = 1 to 𝑘 do

Find the optimum 1-crashing plan of 𝑁 (𝐺), denoted by 𝐴𝑖 ;
𝐺 ← 𝐺 ∪𝐴𝑖 ; (regard as multiset union)

end for

Observe that𝐺 is an 𝑖-crashing plan of network 𝑁 after the 𝑖-th
iteration 𝐺 ← 𝐺 ∪ 𝐴𝑖 , as the duration of 𝑁 (𝐺) is reduced by 1 at
each iteration. Therefore, 𝐺 is a 𝑘-crashing plan at the end.

In this paper, we mainly prove that

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2366

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

TheoRem 2.1. Let𝐺 = 𝐴1∪ . . .∪𝐴𝑘 be the 𝑘-crashing plan found
by Algorithm 1. Let OPT denote the optimal 𝑘-crashing plan. Then,

cost(𝐺) ≤
𝑘∑
𝑖=1

1
𝑖
cost(OPT).

By applying the following Lemma 2.2 below in every step of the
greedy algorithm, we can directly have the theorem.

Lemma 2.2. For any project 𝑁 , its 𝑘-crashing plan (where 𝑘 ≤
𝑘𝑚𝑎𝑥) costs at least 𝑘 times the cost of the optimum 1-crashing plan.

2.1 Proof of Lemma 2.2
The critical graph of network 𝐻 , denoted by 𝐻∗, is formed by all
the critical edges of 𝐻 ; all the edges not critical are removed in 𝐻∗.

We first have
PRoposition 2.3. A 𝑘-crashing plan 𝑋 of 𝑁 contains a cut of 𝑁 ∗.

In the following, suppose 𝑋 is a 𝑘-crashing plan of 𝑁 . We intro-
duce a decomposition of 𝑋 which is crucial to our proof.

First, define 
𝑁1 = 𝑁,
𝑋1 = 𝑋,
𝐶1 = mincut(𝑁 ∗1 , 𝑋1).

(1)

Next, for 1 < 𝑖 ≤ 𝑘 , define
𝑁𝑖 = 𝑁 ∗𝑖−1 (𝐶𝑖−1),
𝑋𝑖 = 𝑋𝑖−1 \𝐶𝑖−1 .
𝐶𝑖 = mincut(𝑁 ∗𝑖 , 𝑋𝑖) .

(2)

Note that 𝐶𝑖 = mincut(𝑁 ∗𝑖 , 𝑋𝑖) means 𝐶𝑖 is this minimum cut
of 𝑁 ∗𝑖 from 𝑋𝑖 .

The following lemma easily implies Lemma 2.2.
Lemma 2.4. cost(𝐶𝑖) ≤ cost(𝐶𝑖+1) for any 𝑖 (1 ≤ 𝑖 < 𝑘).
We show how to prove Lemma 2.2 in the following. The proof

of Lemma 2.4 will be shown in the next subsection.

PRoof of Lemma 2.2. Suppose 𝑋 is 𝑘-crashing to 𝑁 .
By Lemma 2.4, we know cost(𝐶1) ≤ cost(𝐶𝑖) (1 ≤ 𝑖 ≤ 𝑘).
Further since

∪𝑘
𝑖=1𝐶𝑖 ⊆ 𝑋 ,

𝑘 · cost(𝐶1) ≤ cost(
𝑘∪
𝑖=1

𝐶𝑖) ≤ cost(𝑋).

Because 𝐶1 is the minimum cut of 𝑁 ∗ that is contained in 𝑋 ,
whereas𝐴1 is theminimum cut of𝑁 ∗ among all, cost(𝐴1) ≤ cost(𝐶1).
To sum up, we have 𝑘 · cost(𝐴1) ≤ cost(𝑋).

□

2.2 Proof of Lemma 2.4
Assume 𝑖 (1 ≤ 𝑖 < 𝑘) is fixed. In the following we prove that
cost(𝐶𝑖) ≤ cost(𝐶𝑖+1), as stated in Lemma 2.4, which is a core
result.

Assume the cut 𝐶𝑖 of 𝑁 ∗𝑖 divides the vertices of 𝑁 ∗𝑖 into two
parts,𝑈𝑖 ,𝑊𝑖 , where 𝑠 ∈ 𝑈𝑖 and 𝑡 ∈𝑊𝑖 . The edges of 𝑁 ∗𝑖 are divided
into four parts: 1. 𝑆𝑖 – the edges within𝑈𝑖 ; 2.𝑇𝑖 – the edges within
𝑊𝑖 ; 3. 𝐶𝑖 – the edges from 𝑈𝑖 to𝑊𝑖 ; 4. 𝑅𝐶𝑖 – the edges from𝑊𝑖 to
𝑈𝑖 .

We can prove that

PRoposition 2.5. (1) 𝐶𝑖+1 ∩ 𝑅𝐶𝑖 = ∅ and (2) 𝐶𝑖 ⊆ 𝑁 ∗𝑖+1.

Because 𝐶𝑖+1 is a subset of the edges of 𝑁 ∗𝑖+1, and the edges of
𝑁 ∗𝑖+1 are also in 𝑁 ∗𝑖 , we see𝐶𝑖+1 ⊆ 𝑇𝑖 ∪𝑆𝑖 ∪𝐶𝑖 ∪𝑅𝐶𝑖 . Further since
𝐶𝑖+1 ∩ 𝑅𝐶𝑖 = ∅ (proposition 2.5), set 𝐶𝑖+1 consists of three disjoint
parts: 

𝐶+𝑖+1 = 𝐶𝑖+1 ∩𝑇𝑖 ;
𝐶0
𝑖+1 = 𝐶𝑖+1 ∩𝐶𝑖 ;

𝐶−𝑖+1 = 𝐶𝑖+1 ∩ 𝑆𝑖 .
(3)

Due to 𝐶𝑖 ⊆ 𝑁 ∗𝑖+1 (proposition 2.5), set 𝐶𝑖 consists of four dis-
joint parts: 

𝐶+𝑖 = 𝐶𝑖 ∩𝑇𝑖+1
𝐶0
𝑖 = 𝐶𝑖 ∩𝐶𝑖+1

𝐶−𝑖 = 𝐶𝑖 ∩ 𝑆𝑖+1
𝐶𝑅
𝑖 = 𝐶𝑖 ∩ 𝑅𝐶𝑖+1

(4)

𝐶𝑖

s t

𝐶𝑖+1

𝐶𝑖−

𝐶𝑖0=

𝐶𝑖+

𝐶𝑖+1+

𝐶𝑖+10

𝐶𝑖+1−

…

…
𝐶𝑖𝑅

Figure 1: Key notation used in the proof of Lemma 2.4.

Note that 𝐶0
𝑖 = 𝐶0

𝑖+1, we can prove that
PRoposition 2.6.
1. 𝐶+𝑖+1 ∪𝐶

0
𝑖 ∪𝐶

+
𝑖 contains a cut of 𝑁 ∗𝑖 .

2. 𝐶−𝑖+1 ∪𝐶
0
𝑖 ∪𝐶

−
𝑖 contains a cut of 𝑁 ∗𝑖 .

We are ready to prove Lemma 2.4. By proposition 2.6 and 𝐶𝑖 =
mincut(𝑁 ∗𝑖 , 𝑋𝑖), we derive that

cost(𝐶𝑖) = cost(𝐶+𝑖 ∪𝐶
0
𝑖 ∪𝐶

−
𝑖 ∪𝐶

𝑅
𝑖) ≤ cost(𝐶+𝑖+1 ∪𝐶

0
𝑖 ∪𝐶

+
𝑖)

cost(𝐶𝑖) = cost(𝐶+𝑖 ∪𝐶
0
𝑖 ∪𝐶

−
𝑖 ∪𝐶

𝑅
𝑖) ≤ cost(𝐶−𝑖+1 ∪𝐶

0
𝑖 ∪𝐶

−
𝑖)

By adding the inequalities above, we obtain Lemma 2.4 cost(𝐶𝑖) ≤
cost(𝐶𝑖+1), completing the proof.

3 SUMMARY & FUTUREWORK
We have shown that simple greedy algorithms achieve pretty small
approximation ratio in 𝑘-crashing problems. And the analysis is
non-trivial.

Hopefully, the techniques developed in this paper can be used
for analyzing greedy algorithms of other related problems.

We would like to end up this paper with one challenging prob-
lem: Canwe prove a constant approximation ratio for Algorithm 1?

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2367

REFERENCES
[1] Pablo Ballesteros-Pérez, Kamel Mohamed Elamrousy, and Mª Carmen González-

Cruz. 2019. Non-linear time-cost trade-off models of activity crashing: Appli-
cation to construction scheduling and project compression with fast-tracking.
Automation in Construction 97 (2019), 229–240. https://doi.org/10.1016/j.autcon.
2018.11.001

[2] Delbert Ray Fulkerson. 1961. A Network Flow Computation for Project Cost
Curves. Management Science 7, 2 (1961), 167–178. http://www.jstor.org/stable/
2627099

[3] JosÉ Eduardo Vinhaes Gerk and Raad Yahya Qassim. 2008. Project Acceleration
via Activity Crashing, Overlapping, and Substitution. IEEE Transactions on En-
gineering Management 55, 4 (2008), 590–601. https://doi.org/10.1109/TEM.2008.

927786
[4] Suresh K. Goyal. 1996. A simple time-cost tradeoff algorithm. Production Planning

& Control 7, 1 (1996), 104–106. https://doi.org/10.1080/09537289608930331
[5] James E. Kelley. 1961. Critical-Path Planning and Scheduling: Mathematical Basis.

Operations Research 9, 3 (1961), 296–320. http://www.jstor.org/stable/167563
[6] Steve Phillips and Mohamed I. Dessouky. 1977. Solving the Project Time/Cost

Tradeoff Problem Using the Minimal Cut Concept. Management Science 24, 4
(1977), 393–400. http://www.jstor.org/stable/2630261

[7] Nicolai Siemens. 1971. A Simple CPM Time-Cost Tradeoff Algorithm. Manage-
ment Science 17, 6 (1971), B354–B363. http://www.jstor.org/stable/2629138

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2368

https://doi.org/10.1016/j.autcon.2018.11.001
https://doi.org/10.1016/j.autcon.2018.11.001
http://www.jstor.org/stable/2627099
http://www.jstor.org/stable/2627099
https://doi.org/10.1109/TEM.2008.927786
https://doi.org/10.1109/TEM.2008.927786
https://doi.org/10.1080/09537289608930331
http://www.jstor.org/stable/167563
http://www.jstor.org/stable/2630261
http://www.jstor.org/stable/2629138

	Abstract
	1 Related work
	2 Algorithm and Analysis
	2.1 Proof of Lemma 2.2
	2.2 Proof of Lemma 2.4

	3 Summary & future work
	References

