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ABSTRACT

In online Multi-Level Aggregation (MLA) with delays, the input is
an edge-weighted rooted tree T and a sequence of requests arriving
at its vertices (with each vertex representing an independent agent)
that need to be served in an online manner. Each request r is char-
acterized by two parameters: its arrival time #(r) and its location
I(r) (a vertex). Once r arrives, we can either serve it immediately
or postpone this action until any time later. We can serve several
pending requests at the same time, paying a service cost equal to the
weight of the subtree that contains the locations of all the requests
served and the root of T. Postponing the service of a request r to
time ¢ generates an additional delay cost of ¢ — ¢(r). The goal is
to serve all requests in an online manner such that the total cost
(i.e., the total sum of service and delay costs) is minimized. The
MLA problem is a generalization of several well-studied problems,
including the TCP Acknowledgment (depth 1), Joint Replenishment
(depth 2), and Multi-Level Message Aggregation (arbitrary depth).
This problem has only been studied in an adversarial model thus
far, and the current best algorithm for this problem achieves a com-
petitive ratio of O(d?), where d denotes the depth of the tree. We
study a stochastic version of MLA where the requests follow a Pois-
son arrival process. We present a deterministic online algorithm
that achieves a constant ratio of expectations, meaning that the
ratio between the expected costs of the solution generated by our
algorithm and the optimal offline solution is bounded by a constant.
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1 INTRODUCTION

Imagine the manager of a factory needs to deliver products from
the factory to the agents’ locations. Once some products are in
shortage for some agent, then this agent will inform the factory for
replenishment. From the factory’s perspective, each time a service
is created to deliver the products, a truck has to travel from the
factory to go to the locations of the requested agents and then come
back to the factory. A cost proportional to the total distance traveled
has to be paid for this service. For the purpose of saving delivery
costs, it is beneficial to accumulate the replenishment requests from
many stores and then deliver the ordered products altogether in one
service. However, this accumulated delay in delivering products
may cause the agents dissatisfaction, and complaints may nega-
tively influence future contracts between the agents and the factory.
Typically, for each request, the time gap between ordering the prod-
ucts and receiving the products is known as the delay cost (of this
request). The goal of the factory manager is to plan the delivery
schedule in an online manner such that the total service cost and
the total delay cost are minimized.

The above is an example of an online optimization problem called
Multi-level Aggregation (MLA) with linear delays. Formally, the
input is an edge-weighted rooted tree T and a sequence of requests,
with each request r specified by an arrival time #(r) and a location
at a particular vertex I(r). Once r arrives, its service does not have
to be processed immediately but can be delayed to any later time ¢
at a delay cost of t — t(r). The benefit of delaying requests is that
several requests can be served together to save some service costs.
To serve any set of requests R at time ¢, a subtree T’ containing the
tree root and locations of all the requests in R needs to be bought
at a service cost equal to the total weight of edges in T”. The goal
is to serve all requests in an online manner such that the total cost
(i-e., the total service cost plus the total delay cost) is minimized.

The MLA problem has been studied in the adversarial model, and
the current best online algorithm achieves a competitive ratio of
0(d?) [12], where d denotes the depth of the tree. The competitive
ratio is the ratio between the cost of the online solution and the cost
of the optimum offline solution (i.e., knowing in advance all future
requests) for the worst request sequence. Thus, competitive analysis
provides strong bounds on the performance of online algorithms,
but worst-case scenarios rarely arise in practice, which makes these
results inadequate for understanding real-life scenarios. In fact, it is
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often too pessimistic to assume that no stochastic information on
the input is available in practice — again, consider our delivery ex-
ample. The factory knows all the historical orders and can estimate
the request frequencies from all the stores. Thus, it is reasonable to
assume that the requests follow some stochastic distribution. There-
fore, the following question is natural: if stochastic information on
the input is available, can we devise online algorithms for MLA with
better performance guarantees? In this paper, we provide an affirma-
tive answer to this question. We study a stochastic online version of
MLA, assuming that the requests arrive following a Poisson arrival
process [53]. More precisely, the waiting time between any two
consecutive requests arriving at the same vertex u follows an expo-
nential distribution Exp(A(u)) with parameter A(u). In this model,
the goal is to minimize the expected cost produced by an algorithm
ALG for a random input sequence generated in a long time interval
[0, 7]. In order to evaluate the performance of an algorithm ALG
on stochastic inputs, we use the ratio of expectations (RoE), i.e., the
ratio between the expected cost of ALG and the expected cost of
the optimal offline solution OPT. We prove that the performance
guarantee obtained in this model is significantly better compared
with the current best competitiveness obtained in the adversarial
setting. More specifically, we propose a non-trivial deterministic
online algorithm that achieves a constant RoE.

Theorem 1.1. For MLA with linear delays and Poisson arrivals,
there exists a deterministic online algorithm with a constant RoE.

Previous works. The MLA problem was first introduced by Bi-
enkowski et al. [15] where they study a more general version where
the cost of delaying a request r by a duration ¢ is some function
£+(t). They gave an O(d*2%)-competitive online algorithm where
d denotes the depth of the given tree. This was later improved to
0(d?) [12]. A deadline version of MLA is studied in [15], where each
request r has a time window (between its arrival and its deadline),
and it has to be served no later than its deadline, and the target
is to minimize the total service cost for serving all the requests.
For this deadline version, they gave an online algorithm with a
competitive ratio d?24 which was later improved to O(d) [24, 50].
The current best lower bound on the competitiveness of MLA with
delays is only 2 + ¢ ~ 3.618, restricted to a path case with linear
delays [19]. In the offline setting, MLA is NP-hard in both delay
and deadline versions [3, 14], and a 2-approximation algorithm is
known for the deadline version [14]. When the tree is a path and
delay costs are linear functions, the competitiveness is between
3.618 and 5 [19], improving on an earlier 8-competitive algorithm
[23]. Thus far, no previous work has studied MLA in the stochastic
input model, no matter the delay or deadline versions. Two special
cases of MLA with linear delays, one called TCP-acknowledgement
(d = 1) and one called Joint Replenishment (JRP, d = 2), are of
particular interest: TCP-acknowledgement (a.k.a. single item lot-
sizing problem, [22, 26, 38, 40]) models the data transmission issue
from sensor networks [44, 58], while JRP models the inventory
control issue from supply chain management [4, 34, 39, 42]. For
TCP-acknowledgement, there exists an optimal 2-competitive de-
terministic algorithm [29] and an optimal e/(e — 1)-competitive
randomized algorithm [41, 54] in the online setting, and it can be
solved in polynomial time in the offline setting [1]. For JRP, the
competitiveness is between 3 [25] and 2.754 [18]; in the offline
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setting, JRP is NP-hard [3] and also APX-hard [17, 52]. The current
best approximation ratio for JRP is 1.791 [18, 45-47]. For a deadline
version of JRP, there exists an optimal 2-competitive algorithm [18].
Recently, many other online problems with delays/deadline have
also drawn a lot of attention besides MLA, such as online matching
with delays [5, 8, 9, 11, 20, 21, 28, 30, 31, 48, 49, 51], online service
with delays [8, 12, 56, 57], facility location with delays/deadline
[12, 13, 16], Steiner tree with delays/deadline [13], bin packing with
delays [2, 7, 32, 33], set cover with delays [6, 43, 55], paging with
delays/deadline [35, 36], list update with delays/deadline [10], and
many others [27, 37, 51, 56].

2 THE ALGORITHM: MAIN IDEA

Warm-up: a single edge case. We first consider a single-edge tree
case to provide some intuitive ideas. That is, T consists an edge
e = (u,y) of weight w > 0 and the arrival rate of u is A > 0. There
exist two opposite strategies for this case. The first strategy, called
the instant strategy, is to serve each request as soon as it arrives.
Intuitively, this approach is efficient when the requests are not so
frequent so that, on average, the cost of delaying a request to the
arrival time of the next request is enough to compensate for the
service cost. The second strategy, called the periodic approach, is
meant to work in the opposite case where requests are frequent
enough so that it is worth grouping several of them for the same
service. In this way, the weight cost of a service can be shared
between the requests served. Assuming that requests follow some
stochastic assumptions, it makes sense to enforce that services are
ordered at regular time steps, where the time between any two
consecutive services is a fixed number p, which depends only on
the instance’s parameters. There are two challenges here: (i) when
to use each strategy? (ii) what is the value of p that optimizes the
performance of the periodic strategy? For the first one, it depends
on the value of 7 := wA that we call the heaviness of the instance: if
7 > 1, i.e, the instance is heavy, and the periodic strategy is more
efficient; if 7 < 1, the instance is light, and the instant strategy is
essentially better. For the second one, the right value for the period,
up to a constant in the ratio of expectations, is p = y/2w/A.
Overview of an online algorithm for a general MLA instance (T, A).
We generalize the concepts of “light” and “heavy” for trees in a way
that the instant and the periodic strategies still essentially work:
- A light instance has 7(T, 1) = Yyev(r) Aw) -d(uy) < 1,
where d(u, y) is the total edges weight on the path from u to
v; for this case, each request is served instantly at its arrival.
- A heavy instance has wy, > 1/A(u) for all u € V(T) with
A(u) > 0, where wy, is the weight of the edge incident to u
on the path from u to the root y; for this case, a period is de-
termined for each u and the requests are served periodically.

Unfortunately, some instances are neither light nor heavy! To deal
with such instances, we give an algorithm to partition the tree into
two groups of vertices so that the first group essentially corresponds
to a light instance (where the instant strategy is applied) while the
second group corresponds to a heavy instance (periodic strategy).
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