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ABSTRACT
Value function factorization has emerged as the prevalent method

for cooperative multi-agent reinforcement learning under the cen-

tralized training and decentralized execution paradigm. Many of

these algorithms ensure the coherence between joint and local ac-

tion selections for decentralized decision-making by factorizing

the optimal joint action-value function using a monotonic mixing

function of agent utilities. Despite this, utilizing monotonic mix-

ing functions also induces representational limitations, and finding

the optimal projection of an unconstrained mixing function onto

monotonic function classes remains an open problem. In this paper,

we propose QPro, which casts this optimal projection problem for

value function factorization as regret minimization over projection

weights of different transitions. This optimization problem can be

relaxed and solved using the Lagrangian multiplier method to ob-

tain the optimal projection weights in a closed form, where we

narrow the gap between optimal and restricted monotonic mix-

ing functions by minimizing the policy regret of expected returns,

thereby enhancing the monotonic value function factorization. Our

experiments demonstrate the effectiveness of our method, indicat-

ing improved performance in environments with non-monotonic

value functions.
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1 INTRODUCTION
In this paper, we propose QPro, formulating the optimal projection

problem for value function factorization as regret minimization

over the projection weights of different state-action values. Our

method involves constructing an optimal policy based on the op-

timal joint action-value function and a restricted policy using its
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projection onto monotonic mixing functions. We then define policy

regret as the difference between the expected discounted reward of

the optimal policy and that of the restricted policy. By minimizing

this policy regret through an upper bound, we can minimize the gap

between the optimal and restricted policies, leading to an optimal

monotonic factorization with minimum regret. Our proposed regret

minimization problem can be solved using the Lagrangian method

considering an upper bound. We derive the optimal projection

weights in closed form by examining a weighted Bellman equation

involving monotonic mixing functions and per-agent critics and

leveraging the implicit function theorem [3] and Karush-Kuhn-

Tucker conditions [1]. Our results shed light on the key principles

that contribute to optimal monotonic value function factorization.

The optimal projection weights consist of four components: Bell-

man error, value underestimation, the gradient of the monotonic

mixing function, and the on-policiness of available transitions. We

note that the first two components are consistent with the weight-

ing heuristics proposed in WQMIX [8] and provide a quantitative

justification for this method. Furthermore, our analysis shows that

an optimal value function factorization should also consider the

gradient of the monotonic mixing function and the positive impact

of more current transitions.

2 BACKGROUND
Partially Observable Markov Decision Process. In decentral-

ized partially observableMarkov decision process (Dec-POMDP) [7],

the task is a tuple 𝐺 = ⟨𝑆,𝑈 , 𝑃, 𝑅, 𝑍,𝑂, 𝑛,𝛾⟩, where 𝑠 ∈ 𝑆 de-

scribes the global state of the environment. Every time, each agent

𝑎 ∈ 𝐴 ≡ {1, . . . , 𝑛} selects an action 𝑢𝑎 ∈ 𝑈 , and all selected actions

are combined to form a joint action 𝒖 ∈ U, which causes a tran-

sition in the environment based on the state transition function

𝑃 (𝑠′ |𝑠, 𝒖) : 𝑆 × U × 𝑆 → [0, 1]. All agents share the same reward

function 𝑟 (𝑠, 𝒖) : 𝑆 × U → R with a discount factor 𝛾 ∈ [0, 1).
In the partially observable environment, the agents’ individual

observations 𝑧 ∈ 𝑍 are generated by the observation function

𝑂 (𝑠,𝑢) : 𝑆 ×𝐴 → 𝑍 . Each agent has an action-observation history

𝜏𝑎 ∈ 𝑇 ≡ (𝑍 ×𝑈 )∗, and the policy 𝜋𝑎 (𝑢𝑎 |𝜏𝑎) : 𝑇 ×𝑈 → [0, 1] is
conditioned on the history. The joint policy 𝝅 has a joint action-

value function: 𝑄𝝅 (𝑠𝑡 , 𝒖𝑡 ) = E𝑠𝑡+1:∞,𝒖𝑡+1:∞ [𝑅𝑡 |𝑠𝑡 , 𝒖𝑡 ], where 𝑡 is the
timestep and 𝑅𝑡 =

∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 is the discounted return.

Regret of Expected Returns. Regret has been widely adopted

in many existing works [2, 4, 6]. In the MARL context, the objective

is to find a joint policy 𝝅 that can maximize the expected return:

𝜂 (𝝅) = E𝝅 [
∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 ]. For a fixed policy, the Markov decision

process becomes a Markov reward process, where the discounted
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(a) No punishment
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(b) Punishment = −2

Figure 1: Average reward per episode on the Predator-Prey tasks for QPro and other baseline algorithms.

state distribution is defined as 𝑑𝜋 (𝑠). Similarly, the discounted state-

action distribution is defined as 𝑑𝝅 (𝑠, 𝒖) = 𝑑𝝅 (𝑠)𝝅 (𝒖 |𝑠). Thus,
we write the expected return 𝜂 (𝝅) as 1

1−𝛾 E𝑑𝝅 (𝑠,𝒖 ) [𝑟 (𝑠, 𝒖)]. We

assume there exists an optimal joint policy 𝝅∗
such that 𝝅∗ =

argmax𝝅 𝜂 (𝝅). The regret of the joint policy𝝅 is defined as𝜂 (𝝅∗)−
𝜂 (𝝅). The policy regret measures the expected loss when following

the current policy 𝝅 instead of optimal policy 𝝅∗
. Since 𝜂 (𝝅∗) is a

constant, minimizing the regret is consistent with maximizing of

expected return 𝜂 (𝝅). By minimizing the regret, the current policy

𝝅𝑘 following a monotonic value factorization will approach the

optimum 𝝅∗
following an unrestricted value function.

3 OPTIMAL PROJECTION ONTO MONOTONIC
VALUE FUNCTIONS

3.1 Problem Formulation
Let 𝑄∗

be the unrestricted joint action value and 𝑓𝑠 (𝑄1, . . . , 𝑄𝑛) be
its estimation obtained through a monotonic mixing function 𝑓𝑠 (·)
of per-agent utilities 𝑄𝑎

for 𝑎 = 1, . . . , 𝑛. To formulate the regret

with respect to this projection, we consider a Boltzmann policy

𝝅𝑘 following the agent’s individual utilities 𝑄𝑎
𝑘
at step 𝑘 obtained

from such monotonic value factorization, as well as a similar policy

𝝅∗
following the unrestricted value function 𝑄∗

defined over joint

actions. Our objective is to minimize the regret 𝜂 (𝝅∗) − 𝜂 (𝝅) over
non-negative projection weights under relevant constraints, i.e.,

min

𝑤𝑘

𝜂 (𝝅∗) − 𝜂 (𝝅𝑘 )

s.t. (𝑄1

𝑘
, . . . , 𝑄𝑛

𝑘
) =

argmin

(𝑄1,...,𝑄𝑛 ) ∈Q
E𝜇 [𝑤𝑘 (𝑠, 𝒖) (𝑓𝑠 (𝑄1, . . . , 𝑄𝑛) − B∗𝑄∗

𝑘−1)
2],

𝝅𝑘 = {𝜋𝑎
𝑘
}𝑛𝑎=1, 𝜋𝑎

𝑘
=

exp(𝑄𝑎
𝑘
(𝜏𝑎, 𝑢𝑎))∑

𝜏𝑎,𝑢
′
𝑎
exp(𝑄𝑎

𝑘
(𝜏𝑎, 𝑢′𝑎))

,

E𝜇 [𝑤𝑘 (𝑠, 𝒖)] = 1, 𝑤𝑘 (𝑠, 𝒖) ≥ 0

3.2 Optimal Projection Weights
We can solve the proposed regret minimization problem and obtain

optimal projection weights in closed form in Theorem 1. The proof

is provided in the full version of our paper [5].

Theorem 1 (Optimal weighting scheme). The optimal weight
𝑤𝑘 (𝑠, 𝒖) to a relaxation of the regret minimization problem with

discrete action space is given by:

𝑤𝑘 (𝑠, 𝒖) =
1

𝑍 ∗ (𝐸𝑘 (𝑠, 𝒖) + 𝜖𝑘 (𝑠, 𝒖)),

where when 𝑄𝑘 ≤ B∗𝑄∗
𝑘−1, we have:

𝐸𝑘 (𝑠, 𝒖) =
𝑑𝝅𝑘 (𝑠, 𝒖)
𝜇 (𝑠, 𝒖) (B∗𝑄∗

𝑘−1 −𝑄𝑘 ) exp(𝑄∗
𝑘−1 −𝑄𝑘 )

©­«
𝑛∑︁
𝑗=1

1 − 𝜋 𝑗

𝑓 ′
𝑠,𝑄 𝑗

− 1
ª®¬ ,

and when 𝑄𝑘 > B∗𝑄∗
𝑘−1, we have 𝐸𝑘 (𝑠, 𝒖) = 0, where 𝑍 ∗ is the

normalization factor, and 𝜖𝑘 (𝑠, 𝒖) is a negligible term.

The theoretical results shed light on the key factors determining

an optimal projection onto monotonic mixing functions. Specifi-

cally, when the Bellman errorB∗𝑄∗
𝑘−1−𝑄𝑘 of a particular transition

is high indicating a wide gap, we consider assigning a larger weight

to it. Similarly, value underestimation exp(𝑄∗
𝑘−1 −𝑄𝑘 ) works as a

correction term for incoming transitions, which compensates the

underestimated 𝑄𝑘 with larger importance while penalizing over-

estimated 𝑄𝑘 with a smaller weighting modifier. Additionally, our

analysis identifies two new terms: the gradient of the monotonic

mixing function

∑𝑛
𝑗=1 (1 − 𝜋 𝑗 ) 𝑓 ′−1

𝑠,𝑄 𝑗 − 1 and measurement of on-

policy transitions 𝑑𝝅𝑘 (𝑠, 𝒖)𝜇 (𝑠, 𝒖)−1, which are crucial in obtaining

an optimal projection onto monotonic value function factorization.

4 EXPERIMENTS
Predator-Prey. We present results in Predator-Prey environ-

ment as the demonstration. Figure 1 shows the performance of

seven algorithms with two punishments, where all results demon-

strate the superiority of QPro over others. Besides, regarding effi-

ciency, we can spot that QPro has the fastest convergence speed

in seeking the best policy. In Figure 1b, QPro significantly outper-

forms other algorithms in a hard setting requiring a higher level

of coordination among agents as learning the best policy with im-

proved joint action representation is required in this setting. Most

algorithms, such as QMIX [9], ResQ [10], and DOP [11], end up

learning a sub-optimal policy where agents learn to work together

with limited coordination. Although QPro andWQMIX [8] acquired

good results eventually, compared to the latter, QPro achieves better

performance and converges to the optimal policy profoundly faster.
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