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ABSTRACT
Modern Reinforcement Learning (RL) algorithms are able to outper-
form humans in a wide variety of tasks. Multi-agent reinforcement
learning (MARL) settings present additional challenges around co-
operation in mixed-motive groups. Social conventions and norms,
often inspired by human institutions, are used as tools for striking
the balance between individual and group objectives.

We examine a fundamental social convention that underlies
cooperation in animal and human societies: dominance hierarchies.

We adapt the ethological theory of dominance hierarchies to
artificial agents, borrowing established terminology and definitions.
We provide an environment we call Chicken Coop, and we demon-
strate that populations of RL agents in that environment can invent,
learn, enforce, and transmit a dominance hierarchy to new popula-
tions. The dominance hierarchies that emerge in it have a similar
structure to those studied in chickens, mice, fish, and other species.
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1 INTRODUCTION
Research in the paradigm of Cooperative AI highlights the potential
of AI agents that interact with each other in ways that are inspired
by the interaction of biological life forms [7, 9, 36]. The social struc-
tures observed in animal and human societies allow the effective
cooperation of groups comprised of wildly different personalities

∗See additional definitions, plots, and discussion in Rachum et al. [26]
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Figure 1: Top: Aggressiveness of 4 Leghorn chickens in 14
populations [4]. Bottom: Aggressiveness of 6 Chicken Coop
RL agents across 300 populations, filtered to linear DHs. Re-
sults are averaged using each agent’s rank as its identity.

[42]. MARL presents an opportunity to implement simplified ver-
sions of those social structures (also labeled institutions), where the
environment is closed and controlled, and humans are replaced by
artificial agents [1, 17, 25].

In this work we study a primordial institution that underlies
cooperation in animal and human societies: dominance hierarchies.

The field of dominance hierarchies began with Schjelderup-Ebbe
[31], which described pecking orders in captive chicken societies.
Over the past century, dominance hierarchies have been studied in
canines [2, 13], birds [37], fish [10], primates [14, 30], and others,
uncovering commonalities in conflict resolution and resource allo-
cation across taxa [4]. In humans, dominance hierarchies appear
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in both explicit and implicit forms [15, 18, 23]. The “chain of com-
mand” that underpins large-scale human enterprise is an extension
of human dominance behavior to groups that are far too large for
any single individual to comprehend [6, 24].

We adapt the ethological theory of dominance hierarchies to
artificial agents by modelling agonistic behavior in an 𝑁 -player
variant of the game of Chicken [27] that we call Chicken Coop. We
borrow established terminology from animal study to allow the
measurement of dominance behavior. We release the Chicken Coop
environment under the MIT open-source license.1 We train RL
agents on the Chicken Coop environment to optimize their reward,
observing three emergent phenomena:

(1) Agents collaboratively invent dominance hierarchies.
(2) Agents enforce dominance hierarchies on other agents.
(3) Agents transmit dominance hierarchies to new populations.
Vezhnevets et al. [35] and Wu et al. [39] study the efficacy of hi-

erarchies of agents powered by Large Language Models (LLMs) [40]
working together on a common task.With the advent of multimodal
foundation models [21] and their seamless integration with LLMs,
the potential usefulness of hierarchies of such agents is tremendous;
we suggest that it may be maximized by a formal understanding
and terminology of agent hierarchies.

2 DEFINITIONS
We assume a partially-observable stochastic game (POSG) [16, 41],
such that for any two agents, there are two stable Nash equilibria
𝑁𝐸𝑖 and 𝑁𝐸 𝑗 such that agent 𝑖’s reward at 𝑁𝐸𝑖 is bigger than its
reward at𝑁𝐸 𝑗 , and vice versa for agent 𝑗 [19]. T is a set of timesteps.

We define dominance relationships between agents as a function
of their aggressiveness levels towards each other. Similarly to Leibo
et al. [20], we define an agent’s aggressiveness by how frequently
it chooses an action that reduces another agent’s reward:

Definition 2.1 (Aggressiveness). Agent 𝑖’s aggressiveness 𝑔T
𝑖
is the

portion of timesteps out of T in which it played 𝑎𝑖 ∈ 𝑁𝐸𝑖 .

Definition 2.2 (Dominance relationship, dominant, subordinate).
If the difference between agent 𝑖’s aggressiveness and agent 𝑗 ’s
aggressiveness is above a certain threshold, we say that the two
agents are in a dominance relationship (DR), with agent 𝑖 being
dominant and agent 𝑗 being subordinate:

𝑖 → 𝑗 iff 𝑔T𝑖 − 𝑔T𝑗 > 𝜂, 𝜂 ∈ (0, 1]

Definition 2.3 (Dominance hierarchy). A dominance hierarchy H
is a complete, directed graph where agents are represented as nodes
and dominance relationships are represented as directed edges.

To investigate dominance hierarchies in groups of more than
two individuals, we introduce the Chicken Coop environment:

Definition 2.4 (Chicken Coop). Chicken Coop is a POSG with
𝑁 players. In each episode, agents are divided into random pairs.
Each pair of agents plays one round of Chicken against each other,
choosing either hawk or dove and receiving a reward in {𝑊,𝑇, 𝐿,𝐶}.
Each agent’s sole observation is the identity of their opponent agent.

Additional definitions are made in Rachum et al. [26].
1Code and usage instructions are available at https://github.com/cool-RR/chicken-coop

3 EMPIRICAL RESULTS
We run experiments on the Chicken Coop environment using
the PPO algorithm [32]. We use 𝑁 ∈ [6, 20], 𝐿 ∈ [10, 300], 𝛼 ∈
[2−6, 3−5], 𝛾 = 0.99, 𝜖 = 0.3.

Each of the 𝐿 = 300 runs of our experiment resulted in agents
converging to a dominance hierarchy; between these 300 popula-
tions the hierarchies were divergent, as most populations developed
a hierarchy that is unique to them. Similarly to animal groups, some
of the formed hierarchies were linear (transitive), and some were
non-linear [5, 11, 29]. In linear hierarchies, agents tend to maintain
similarly-sized intervals in their mean aggressiveness (Figure 1.)

Inspired by the geometric study of intransitive policies in Czar-
necki et al. [8], we note a resemblance in the occurrence of intran-
sitive components (cycles) between Chicken Coop populations and
those found in experiments with populations of CD-1 mice [33, 38].

Lastly, we run a two-stage experiment, where agents learn a
dominance hierarchy in one Chicken Coop environment, and then
a subset of them are transplanted into a new Chicken Coop environ-
ment with untrained agents, also known as naive agents [12]. We
show that the experienced agents are able to teach the naive agents
the same hierarchy that they’ve learned, showing cultural evolu-
tion similar to that presented in CGI Team [3], except in a much
simpler environment with modest computational demands. This
experiment may be repeated with the naive agents functioning as
experienced agents in a new, third population, and so on to an indef-
inite string of populations, untethering the concept of dominance
hierarchies from dependence on any specific host agents.

4 FUTUREWORK
Future work may explore the impact of various algorithms and pa-
rameters on the properties of dominance hierarchies. Preliminary
experiments suggest that higher learning rates result in unstable
dominance hierarchies, a phenomenon akin to rank change in ani-
mal societies [4, 28, 34]. We suggest that Opponent Shaping algo-
rithms such as M-FOS [22], which consider the learning processes
of other agents, could promote second-order dominance-seeking
strategies, e.g., agent 𝑖 may consider how to behave as to encourage
agent 𝑗 to place agent 𝑖 at a high rank in the dominance hierarchy.

When humans work on problems as a group, we balance in-
group intrigues against external pressures. This interplay between
individual and group needs may play a crucial role in the success
of our collective intelligence. Therefore, we propose augmenting a
population of dominance-seeking agents with multimodal founda-
tion models [21], and giving them real-world tasks to collaborate
on. We hypothesize that the decisions made by such agents may
be interpretable and corrigible, as human operators may recognize
that the agents’ decision process reflects their own.
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