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ABSTRACT

Unsupervised Environment Design (UED) employs interactive train-
ing between a teacher agent and a student agent to train generally-
capable student agents. Existing UED methods primarily rely on
regret to progressively introduce curriculum complexity for the
student but often overlook the importance of environment novelty
— a critical element for enhancing an agent’s exploration and gen-
eralization capabilities. There is a substantial lack of investigating
the effects of environment novelty in UED. This paper addresses
this gap by introducing the GMM-based Evaluation of Novelty
In Environments (GENIE) framework. GENIE quantifies environ-
ment novelty within the UED paradigm by using Gaussian Mixture
Models. To assess GENIE’s effectiveness in quantifying novelty
and driving exploration, we integrate it with ACCEL, the state-of-
the-art UED algorithm. Empirical results demonstrate the superior
zero-shot performance of this extended approach over existing
UED algorithms, including its predecessor. By providing a means
to quantify environment novelty, GENIE lays the groundwork for
future UED algorithms to unify novelty-driven exploration and
regret-driven exploitation in curriculum generation.

KEYWORDS

Unsupervised Environment Design, Novelty Quantification, Gauss-
ian Mixture Model

ACM Reference Format:

Jayden Teoh Jing Xiang®, Wenjun Li*, and Pradeep Varakantham. 2024.
Unifying Regret and State-Action Space Coverage for Effective Unsupervised
Environment Design: Extended Abstract. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 — 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION

To train generally-capable RL agents, a surge of interest recently
focused on Unsupervised Environment Design (UED, [2, 4-9, 12,
13]), which formulates a training framework between a teacher
agent and a student agent. In UED, the teacher constantly creates
new training environments (e.g., mazes with varying positions of
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obstacles) to improve the student’s generalization ability such that
it is robust to out-of-distribution (OOD) testing scenarios. UED
algorithms have been empirically shown to help RL agents achieve
state-of-the-art generalization performance.

We introduce the GMM-based Evaluation of Novelty In Envi-
ronments (GENIE) framework, a novel approach to quantifying
environmental novelty within the UED paradigm. GENIE utilises
Gaussian Mixture Models (GMM) to assess the environment’s ca-
pacity to provide novel experiences for the student agent. It’s im-
portant to note that unlike previous works on quantifying novelty
in UED [8, 12, 13], GENIE’s novelty calculation method is scal-
able, domain-agnostic, and incorporates the agent’s policy. We then
empirically show the importance of novelty-based objectives for
generalization by deploying GENIE on top of state-of-the-art [9].

2 APPROACH: GENIE
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Figure 1: An Overview of GENIE when implemented atop
ACCEL, where R and C are regret and novelty respectively.

2.1 Measuring the Novelty of a Level

We first list the notations in this paper. ly refers to the candidate
level which we would like to compute the novelty for and it is
conditioned by an environment encoding vector . We decompose
the trajectory, 7y, of the agent in Iy into a set of state-action pairs,
ie, Xg = {(s,a) ~ 1g}. L is the set of past training levels and T =
{x = (s,a) ~ 71} contains all of the state-action pairs collected in
levels within L. We treat T as the ground truth of the agent’s state-
action space coverage and compare the difference between I' and
the state-action pairs collected from the candidate level, i.e., Xp.
First, we fit an initial GMM on the ground truth data I as such

K
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Figure 2: (A) Aggregate zero-shot performance in Bipedal-Walker Domain. (B) Aggregate zero-shot performance in Minigrid
Domain. (C) Evolution of the state-action space coverage of GENIE! and ACCEL at 1k, 10k, 15k, and 20k policy updates.

where K is the number of Gaussians of the mixture with «; rep-
resenting the weight of each Gaussian component. N (x,|ui, Z;)
is the multi-dimensional Gaussian function with mean vector y;
and covariance matrix %;, and Ar = {(a1, 1, 21), - (@K, 2K 2K)
represents the initial set of parameters of the mixture model.

We optimise our GMM’s parameters using the Expectation Max-
imization (EM) algorithm [3, 10]. The EM algorithm uses the initial
Ar to estimate a new A[. such that P(T|A}) > P(T|Ar), and iterates
this process until convergence to a small threshold.

Next, we estimate the difference of the state-action space cov-
erage between the sample points Xy and ground truth data I' by
computing the likelihood that the sample points in Xy are observed
under our GMM model. The log-likelihood function can be written
as

K
log L(XglAr) = Y logp(xjlAr) = " log( arN (x;lpi, %4)
Jj=1 j=1 i=1

@

We take the negative mean log-likelihood of Xy as the novelty
score of the candidate level, i.e.,
1

Novelty(lg) = - |

log L(Xg|r)- 3)
A higher novelty score means that Xy covers more novel state-
action space compared to the ground truth data and therefore the
candidate level induces more novel experiences for the agent. Con-
sequently, we can compare the novelty of different levels using this

metric.

2.2 State-Action Space Coverage Directed
Training Agent

Now that we have established a method to compute the novelty
of levels, we show its generality and effectiveness by deploying it
on top of the state-of-the-art, i.e., the ACCEL algorithm, to moti-
vate the student agent policy to cover more state-action space. For
convenience, in subsequent sections of this paper, we will refer to
this GENIE-augmented methodology of ACCEL simply as GENIE.
The ACCEL algorithm performs mutation on levels with the lowest
learning potential, essentially moving levels back to the learning
frontier once their learning potential has been reduced. ACCEL
relies solely on the regret of the level to determine its learning
potential. To study the effectiveness of the proposed novelty metric,
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we use novelty alone to evaluate the learning potential of a level
for mutation, i.e., « = 0 in Equation (4).

LearningPotential (1—a) - Novelty + a - Regret  (4)

Figure 1 provides a visual overview of the GENIE-augmented
methodology of ACCEL. Furthermore, to better understand the
coexistence of novelty and regret, we conducted an extended study,
which we will refer to as GENIEZ, that uses an equal weightage of
novelty and regret to select levels for mutation, i.e., set « = 0.5.

3 EXPERIMENTS

We compare GENIE and GENIE" to a set of leading UED algorithms
including ACCEL on two distinct domains, Minigrid and Bipedal-
Walker. Minigrid is a partially-observable navigation problem un-
der discrete control with sparse rewards, while Bipedal-Walker is a
partially-observable walking task under continuous control with
dense rewards. To make the comparison more reliable and straight-
forward, we employ the standardized DRL evaluation metrics [1],
with which we show the aggregate inter-quartile mean (IQM) and
optimality gap plots.

Figure 2A shows that both GENIE and GENIE* outperform all
other benchmarks by a substantial margin, with their performance
surpassing the next best algorithm, ACCEL, by over 30%. Similarly,
Figure 2B demonstrates the superior perforance of both GENIE and
GENIE" over the baseline approaches in the Minigrid domain. The
remarkable performance of GENIE and GENIE in comparison to
its predecessor underscores the significance of novelty in enhancing
agents’ out-of-distribution performance. Additionally, considering
the resemblance in the performance of both GENIE and GENIE", it
suggests that novelty takes precedence over regret as a criterion for
level mutation in both dense rewards and sparse rewards domains.

Finally, to better reveal how the incorporation of a novelty objec-
tive affects the curriculum generation, we also tracked the evolution
of the agents’ state-action space coverage during the training. State-
action pairs encountered by the agent during training are collected
for ACCEL and GENIE? in the Bipedal-Walker domain and pro-
jected onto two-dimensional manifold using t-SNE [11]. Figure 2C
illustrates that GENIE* exhibits significantly broader coverage of
the state-action space compared to the predecessor, ACCEL. This
observation further substantiates the effectiveness of low-novelty
level editing within the GENIE framework in generating curricula
that enhance exploration capabilities for the agent.
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