
Distance-Aware Attentive Framework for Multi-Agent
Collaborative Perception in Presence of Pose Error

Extended Abstract

Binyu Zhao
Harbin Institute of Technology

Harbin, China
byzhao@stu.hit.edu.cn

Wei Zhang
Harbin Institute of Technology

Harbin, China
weizhang@hit.edu.cn

Zhaonian Zou
Harbin Institute of Technology

Harbin, China
znzou@hit.edu.cn

ABSTRACT
Multi-agent collaborative perception exchanges information to pro-
mote holistic perception, especially for remote and invisible areas
that are limited by detection range and occlusion. Due to imperfect
localization in practice, it usually suffers from pose estimation error,
which can cause spatial message misalignment and performance
degradation. Unlike most existing methods using additional module
or procedure to correct pose error, we propose a novel framework,
DistAtt, to suppress pose error and mine useful information simul-
taneously. It mainly consists of distance-aware feature sampling
and cross-agent feature aggregation. The former utilizes diverse
pooling kernels to downsample the intermediate features to differ-
ent multiple granularities, and the latter utilizes specially designed
attention mechanism to learn the most critical information. Further-
more, it adopts compensation strategy for more stable optimization.
Experimental results show that DistAtt significantly suppresses the
effect of localization noise and achieves outperformed performance
when pose error exists.
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1 INTRODUCTION
Multi-agent collaborative perception aims at sharing complemen-
tary perceptual information with neighboring agents to overcome
limitations in single-agent view and promote holistic scene com-
prehension, which attracts continuous attention in recent years.
With high-quality supporting datasets emerging [19–22], different
methods have been proposed to handle various problems such as
performance [1, 9, 16, 18, 18, 20, 23], bandwidth trade-off [7, 15, 24],
pose error [10, 13], latency [8] and communication interruption [12].
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Among these issues, localization is usually imperfect and therefore
produces unwanted relative pose error, which is a grand challenge.
To address this problem, previous works often design additional
module or procedure to correct relative pose error [5, 10, 13]. How-
ever, they increase model complexity and might be inconvenient to
follow during inference.

In this paper, we use two alternatives to suppress pose errors
without additional module: i) Reduce the quantity of received per-
ceptual information. It is believed that the pose error is relevant
to relative distance. The uncertainty of pose error increases with
the distance between paired agents. ii) Apply attention mecha-
nism. Self-attention is a popular choice to model global relation-
ships [3, 14, 17] with the drawbacks of computation and modeling
redundancy [2, 4, 6]. Based on these considerations, we propose a
novel Distance-aware Attentive framework, DistAtt, to suppress
the effect of pose error and mine useful information for more ac-
curate and robust collaborative perception. Specifically, we first
use distance-aware feature sampling (DFS) to reduce the quantity
of collaborative features by pooling based on the distance with
ego agent. Since the more distant perceptual information contains
more uncertainty and larger relative pose error. Then we apply
cross-agent feature aggregation (CFA) to assemble and aggregate
lower-resolution spatial features, attentively filtering out the most
suitable features and further reducing the ratio of noisy features.
Furthermore, we adopt compensation strategy (CS) to stabilize the
total number of communicated agents in temporal, which benefits
the network optimization and improves the final performance.

2 METHODOLOGY
Considering 𝑁 agents travels in the scene, let 𝐿𝑖 ∈ R𝑛×3 be the raw
LiDAR data of the 𝑖-th agent, and 𝑌𝑖 be the corresponding ground
truth detection. Firstly, agent extracts bird’s-eyes-view (BEV) fea-
ture F𝑖 ∈ R𝑋×𝑌 from 𝐿𝑖 using an encoder. Then, all feature and
pose pairs {(F𝑗 , 𝜉 𝑗 )} 𝑗∈N𝑖

of neighboring agents are transmitted to
𝑖-th agent, whereN𝑖 is the set of neighboring agents communicated
with 𝑖-th agent. Next, each extracted feature F𝑗 is aligned with the
feature F𝑖 based on their 6 DoF poses 𝜉𝑖 and 𝜉 𝑗 . After transforma-
tion, the 𝑖-th agent aggregates the received features with its own to
conduct intermediate fusion. Finally, a decoder is implemented to
predict the results for a specific task. The objective of collaborative
perception is min

∑
𝑖 𝑔(𝑌𝑖 , 𝑌𝑖 ), where 𝑔(·, ·) is the evaluation metric

of the specific task. The overview of DistAtt is illustrated in Fig 1.
Reduce the effect of relative pose error based on relative

distance. First, we split the BEV feature F𝑖 ∈ R𝑋×𝑌 into win-
dows to reduce huge computation and memory cost. When the size
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Figure 1: The workflow of DistAtt (3-agent scenario, object
detection task). Distance-aware Feature Sampling (DFS) sup-
presses the effect of pose error by using different pooling
kernels to downsample the ego and received features. Then
features are flattened and gathered to conduct Cross-agent
Feature Aggregation (CFA) for further error suppression.

of window is 𝑠 × 𝑠 , we obtain the new feature F𝑠
𝑖
∈ R

ℎ
𝑠
× 𝑤

𝑠
×𝑠×𝑠 .

Then, we generate feature tokens to suppress relative pose error by
using diverse size of pooling kernels. When distance 𝐷𝑖𝑠𝑡 (𝑖, 𝑖) ≤
𝐷𝑖𝑠𝑡 (𝑖, 𝑘) ≤ 𝐷𝑖𝑠𝑡 (𝑖, 𝑙) ≤ ..., we have pooling kernel 𝑝𝑖 ≤ 𝑝𝑘 ≤ 𝑝𝑙 ≤
.... The BEV feature set F = {F𝑖 , F𝑘→𝑖 , F𝑙→𝑖 , ...} are downsampled
using these pooling kernels and then processed by separate fully
connected layers as F𝑝

𝑖
= {F𝑝

𝑖
, F𝑝
𝑘→𝑖

, F𝑝
𝑙→𝑖

, ...}, the size of them is
ℎ
𝑝 𝑗

× 𝑤
𝑝 𝑗
, 𝑗 ∈ 𝑖, 𝑘, 𝑙, .... Finally, we flatten and concatenate these BEV

feature tokens as F
′
𝑖
= 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 (F𝑠𝑖 , F

𝑝

𝑖
, F𝑝
𝑘→𝑖

, F𝑝
𝑙→𝑖

, ...), which covers
multi-agent multi-granularity BEV perceptual information.

Mine useful feature and filter out more error information.
First, we rewrite F

′
𝑖
as F0

𝑖
for convenience. For the 𝑡-th layer of

CFA, the query 𝑄𝑡 , key 𝐾𝑡 , and value 𝑉 𝑡 are computed using fully
connected layers 𝑄𝑡 = 𝑓𝐹𝐶 (F𝑡−1𝑖

), 𝐾𝑡 = 𝑓𝐹𝐶 (F
′
𝑖
),𝑉 𝑡 = 𝑓𝐹𝐶 (F

′
𝑖
)

where 𝑡 ∈ [1, 𝑁 ] and 𝑁 is the total number of attention layers.
Then, we conduct multi-head attention mechanism to continuously
exploit information and suppress error. The updated BEV feature
𝐹 𝑡
𝑖
= 𝑓𝐹𝐶 (𝑓𝑐𝑜𝑛𝑐𝑎𝑡 ({𝐹 𝑡−1𝑖

+ 𝑓𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝑡×𝐾𝑡

√
𝑑

) ×𝑉 𝑡 })) ∈ R
ℎ
𝑠
× 𝑤

𝑠
×𝑠×𝑠 ,

where 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 ( ·) is concatenate operation and 𝑑 is the scale factor.
Performance problem brought by communication setup.

An upperbound 𝑁𝑢 is practically set to limit the number of com-
municated agents and the quantity of message. Correspondingly,
the tensor size applying attention mechanism (including element-
wise addition and matrix product) in CFA and the total number of
used fully connected layers need to be fixed. However, part of the
networks can not be fully optimized under this circumstance and
DistAtt would achieve sub-optimal performance during inference.
To solve this problem, we complement the number of agents so that
the total number of communicated agents always maintains at the
upperbound. The agents to be complemented are the replications of
ego agent. This compensation solution introduces no error informa-
tion for the ego agent comparing with copying information from
neighboring agents. And it enhances the exploration of useful in-
formation from its own. The number of elements in pooling kernel
set is also fixed as 𝑁𝑢 . The smaller kernels are allocated for the 𝑖-th
agent and the copied agents, and the larger kernels are allocated
for neighboring agents.

Figure 2: Robustness to localization error. The robustness to
localization noise follows the setting inV2VNet [16] andV2X-
ViT [20]. Gaussian noise with a mean of 0𝑚 and a standard
deviation of 0𝑚 − 0.6𝑚 is used.

Table 1: Ablation study on the OPV2V dataset.

DFS CFA CS AP@0.5 AP@0.7
(a) % % % 76.12 57.17
(b) % % ! 76.37 60.33
(c) ! % ! 77.96 64.86
(d) ! ! % 77.55 64.67
(e) ! ! ! 79.40 68.17

3 EXPERIMENT
We conduct experiments of 3D object detection task on OPV2V
dataset [21] and DAIR-V2X dataset [22]. We implement the method
based on the pyTorch [11] framework and OpenCOOD [21] code-
base. Weighted cross entropy loss is used for optimization. The de-
tection results are evaluated byAverage Precision (AP) at Intersection-
over-Union (IoU) threshold of 0.50 and 0.70.
PerformanceComparison and robustness to localizationnoise.
Fig 2 shows the detection performance comparisons with state-of-
the-art (SOTA) methods [7, 9, 10, 18, 20] and the robustness to local-
ization noise. It is observed thatDistAtt outperforms previous SOTA
models in both simulated and real-world scenarios, which proves
the effectiveness and rationality of simultaneously considering the
noise suppression and collaboration. Besides, it can be seen that the
performance of all methods consistently deteriorates as localization
error increases continuously. Noticeably, our method consistently
surpasses the previous SOTA models under all noise levels, which
evidently demonstrates the robustness of DistAtt against pose error.
Ablation study. We also conduct ablation study to investigate
the effectiveness of the main components and the necessity of the
different designs in our method. The overall results are presented
in Table 1. The results of (b)/(c), (c)/(e), and (a)/(b) (or (d)/(e)) re-
veal their capability of suppressing localization noises especially
from distant agents and providing more valuable and less error
information for prediction and optimization.
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