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ABSTRACT
Cake cutting is a widely studied model for allocating resources

with temporal or spatial structures among agents. Recently, a new

line of research has emerged that focuses on the discrete variant,

where the resources are indivisible and connected by a path. In

some real-world applications, the resources are interdependent,

and dividing the cake may reduce their effectiveness. In this paper,

we introduce a model that captures the effect of division as switch-

ing utility loss and investigate the tradeoff between fairness and

efficiency for various settings. Specifically, we measure fairness

and efficiency using the popular notions of envy-freeness up to one

item (EF1) and social welfare, respectively. The goal of our study

is to understand how much social welfare must be sacrificed to

ensure EF1 allocations and design polynomial-time algorithms that

can compute EF1 allocations with the best possible social welfare

guarantee.
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1 INTRODUCTION
Since the very beginning of fair resource allocation research, cake

cutting has been studied as a canonical model, where a cake, de-

noted by the real interval [0, 1], is to be allocated to 𝑛 agents who

have heterogeneous preferences over different parts of the cake
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[2, 11, 25]. Various solution concepts have been proposed to mea-

sure the fairness of an allocation, and envy-freeness (EF) is among

the most widely accepted ones [15]. Informally, an allocation is EF

if every agent gets the best piece of the cake compared with other

agents evaluated by her own preference. An EF allocation always

exists [11] and can be found in finite steps [2, 3]. One of the various

real-life applications of the cake-cutting problem is to fairly sched-

ule time slots for, for example, online meetings. People, possibly

at different times zones, may have different perspectives on their

preferred time slots, where time is abstracted as the cake [0, 1]. One
key feature of the cake is that it can be arbitrarily divided at any

position. However, as noted by some recent works [5, 17, 18, 21, 26],

this assumption may not hold in practice, including the previous

time scheduling problem. For example, time is usually partitioned

into discrete time slots by hours or half hours, and thus it can only

be divided at the boundaries of these slots. This problem is called

discrete cake cutting, where the cake is modelled as a path, i.e., a line

of vertices (representing the items) that are connected by edges. In

the following, for discrete cake cutting problems, we turn to use

path to refer to the cake.

Motivated by different real-life applications, several variants of

the discrete cake cutting problem have been studied. For example,

Bouveret et al. [9] and follow up works such as [8, 17] imposed con-

nectivity constraints on the allocations, which requires every agent

to receive a set of contiguous vertices. The continuity constraints is

in part motivated by the fact that the division of the cake may suffer

utility loss, and imposing continuity is one simple way to increase

the effectiveness of the allocations. Actually, in many situations, the

utility loss of the division can be quantified. For instance, when a

family doctor (or tutor, housekeeper, etc.) is scheduled to help with

patients A and B between 1 pm and 2 pm and between 3 pm and

4 pm as illustrated in Figure 1, nobody gets the utility from time

slot between 2 pm and 3 pm since the doctor needs to spend time

travelling from A’s place to B’s. When considering the usage of a

hall, the time slot in the middle of two events, which is for cleaning

or setup, will be lost. Motivated by these examples, in this paper,

we consider the discrete cake cutting problem when the utilities at

the switching points decrease to 0.
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Figure 1: The example of moving from one event to another.

Enforcing the allocations to be fair may sacrifice the efficiency,

such as social welfare, inevitably. To understand the effect of fair-

ness, Bertsimas et al. [7] and Caragiannis et al. [13] proposed the

notion of price of fairness (PoF), which quantifies the worst case

ratio between the optimal social welfare without and with fairness

constraints, and later Bei et al. [6] and Barman et al. [4] bounded

the PoF for indivisible items under various fairness notions. The

objectives of our paper are two-fold, namely analyzing the PoF for

the model with switching utility loss and designing polynomial-

time algorithm to compute fair allocations with the guaranteed

social welfare approximation. Higher PoF indicates that the fair-

ness concept is incompatible with efficiency. In this case, we shall

identify valuable cases where we manage to ensure both fairness

and efficiency simultaneously.

1.1 Our Model and Main Results
We model the cake as a path, where the vertices are the items to be

allocated, and the agents have possibly different weight functions

on the edges.1 Upon receiving a set of vertices, an agent’s utility is

decided by the total weight of the edges in the induced subgraph.

Note that one key feature of thismodel is that the agents’ utilities are

determined by the combination of the items, which can be viewed

as a new class of valuation functions in the standard indivisible fair

division problems. Similar to the literature, since an EF allocation

may not exist, our fairness notion is the envy-freeness up to one item
(EF1), which requires that an agent does not envy another agent if

one vertex is removed from the latter’s bundle. The existence (and

efficient computation) of an EF1 allocation is proved by Lipton et al.

[20]. However, an arbitrary EF1 allocation may not be efficient in

terms of social welfare. Our objective is to design algorithms for

various settings to compute EF1 allocations with high social welfare

guarantee.

Our main results are summarized in Table 1. We first observe that

no algorithm can guarantee the social welfare of EF1 allocations to

be better than 1/𝑛 fraction of the optimal social welfare without

any constraints. Then we move to some important and commonly

studied cases for which the efficiency can be significantly improved.

When there are two agents or when the weight functions are binary,

we design polynomial-time algorithms to compute EF1 allocations

that can always achieve at least half of the optimal social welfare.

Further, if both conditions hold (i.e., two agents with binary weight

functions), the social welfare guarantee can be improved to 2/3. We

also consider the homogeneous case when the agents have iden-

tical weight functions. Actually, the approximation of 2/3 cannot
be improved, but can be (almost) achieved no matter how many

1
Equivalently, we can regard the edges as the items to be allocated, but we then need

to impose extra constraints such that if an edge connects two edges that are allocated

to different agents, it must be disposed and cannot be allocated to anyone.

agents and what weight functions we have. Note that all these ap-

proximations are proven to be (almost) the best possible and thus

imply the (almost) tight bounds for PoF regarding EF1 fairness.

In comparison, for the classic additive setting when the values

are on the items instead of the edges, Bei et al. [6] and Barman et al.

[4] proved that the tight bound of PoF regarding EF1 is Θ(1/
√
𝑛)

for scaled valuations and is Θ(1/𝑛) for unscaled valuations. When

𝑛 = 2, it is between 0.865 and 0.875. Obviously, for the homogeneous

or binary case, the PoF is 1.

Finally, motivated by the graphic structures of the items, we

generalize our model to graphs beyond paths. Our approaches can

be extended to trees and similar results hold. However, when the

graphs are arbitrary, we find significant difference. First, in trees,

computing a social welfare maximizing allocation can be done in

polynomial time, but it is NP-hard in general graphs. Second, for

general graphs, even when the agents have identical and binary

weight functions, ensuring better than Ω(1/𝑛) fraction of the opti-

mal social welfare by EF1 allocations is not possible.

1.2 Related Works
Cake-Cutting. There are a rich line of works investigating the

cake-cutting problem particularly on ensuring distinct fairness

notions. The classic cake-cutting problem dates back to the seminal

work of [24] in the 1940s. The existence of an envy-free allocation

is guaranteed [1], even with 𝑛 − 1 cuts [14]. Brams and Taylor

[11] presented how to constructively find them, although subtle

complexity questions remain open [23]. With intense efforts over

decades, Aziz andMackenzie [3] proposed the discrete and bounded

EF protocol, which was later extended to the general case for 𝑛

agents [2].

Discrete Cake-Cutting. The prominent model in the discrete cake-

cutting literature assumes that the cake is represented by a path,

which has been considered in [12, 21, 26]. Assume that no two

agents prefer the same items placed at the same position, Marenco

and Tetzlaff [21] proved the existence of an envy-free allocation for

any discrete cake and any number of players. Similar problems on

sequences were analyzed in [12]. Considering the non-existence of

allocation with the classic fairness notions such as proportionality,

envy-freeness and equitability, Suksompong [26] investigated the

approximate counterpart of these notions as well as quantifying

the loss of efficiency.

Graph-Based Fair Division. Also closely related are the works

of fair allocation with graph constraints [9, 10, 18, 19]. Bouveret

et al. [9] initiated the research concerning allocations of indivisible

items under graph-based constraints, and showed that it is NP-

hard to find a complete envy-free allocation. Igarashi and Peters

[18] focused on allocations guaranteeing Pareto-optimality under

connectivity constraints. They showed the hardness of deciding

whether a Pareto-optimal EF1 connected allocation exists, even

when the graph is a path or the weights are binary and additive.

Bouveret et al. [10] dealt with the allocation of chores and showed

the hardness results concerning achieving envy-free or equitable

solutions. Igarashi and Zwicker [19] proposed the model of tangled

cake where multiple copies of the unit intervals are glued together.

They explored the effect of tangles on achieving EF allocations of
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heterogeneous agents homogeneous agents

arbitrary weights binary weights

𝑛 agents & arbitrary weights

𝑛 agents 2 agents 𝑛 agents 2 agents

approx.

ratio

Θ(1/𝑛)
(Thm 3.1)

1/2
(Thm 5.1)

1/3
(Thm 6.1)

2/3
(Thm 5.2)

≈ 2/3
(Thm 4.1 and Thm 4.4)

Table 1: Main Results, where “≈ 2/3” means “2/3” when 𝑛 = 2 and “2/3 − 𝑜 (1)” when 𝑛 ≥ 3.

connected shares and showed that exactly six tangles guarantee

EF fairness. Besides envy-freeness, other classic fairness notions-

maximin share (aka MMS) and proportionality (aka PROP) have

been studied extensively [5, 9, 16, 27]

2 PRELIMINARIES
Denote an instance by I = (𝐺, 𝑁,w) (also rewrite I = (𝐺, 𝑁 ) for
short for homogeneous cases), where𝐺 = (𝑉 , 𝐸) is a path, modeling

the cake to be distributed among a set of agents 𝑁 = {1, . . . , 𝑛}.
𝑉 = {𝑣1, . . . , 𝑣𝑚} is a set of𝑚 vertices (i.e., the items to be allocated),

ordered from left to right, that are connected by edges in 𝐸, i.e.,

𝑣 𝑗 and 𝑣 𝑗+1 are connected by an edge 𝑒 𝑗 = (𝑣 𝑗 , 𝑣 𝑗+1) ∈ 𝐸 for all

1 ≤ 𝑗 < 𝑚. Throughout this paper, 𝑛 and𝑚 are reserved for the

numbers of agents and items. Each agent 𝑖 has a weight function

𝑤𝑖 : 𝐸 → R≥0 on the edges. Let w = {𝑤1, . . . ,𝑤𝑛}. The function
𝑤𝑖 is called binary if𝑤𝑖 (𝑒) ∈ {0, 1} for all 𝑒 ∈ 𝐸. For any bundle of

items 𝑋 ⊆ 𝑉 , let 𝐺 [𝑋 ] be the corresponding induced subgraph of

𝑋 within the original graph 𝐺 . Given any subgraph 𝐺 ′, denote by
𝑉 (𝐺 ′) and 𝐸 (𝐺 ′) the sets of vertices and edges of 𝐺 ′. The agents’
weight functions induce their utility functions. In particular, for

each agent 𝑖 ∈ 𝑁 , her utility function is the mapping 𝑢𝑖 : 2
𝑉 →

R+ ∪ {0} such that 𝑢𝑖 (𝑋 ) for 𝑋 ⊆ 𝑉 equals the weight of all edges

within 𝐺 [𝑋 ], i.e., 𝑢𝑖 (𝑋 ) =
∑

𝑒∈𝐸 (𝐺 [𝑋 ] )
𝑤𝑖 (𝑒). When the agents have

identical weight functions, we omit the subscript and directly write

𝑤 (·) and 𝑢 (·).
Let Π𝑛 (𝑉 ) be the set of all 𝑛-partitions of 𝑉 . An allocation X =

(𝑋1, . . . , 𝑋𝑛) corresponds to a 𝑛-partition in Π𝑛 (𝑉 ), where 𝑋𝑖 ⊆ 𝑉
contains the items allocated to agent 𝑖 ∈ 𝑁 . An allocation X is

called partial if

⋃
𝑖∈𝑁 𝑋𝑖 ⊊ 𝑉 . Our main solution concept is the

following EF1 fairness.

Definition 2.1 (EF1). An allocation X = (𝑋1, . . . , 𝑋𝑛) is called
envy-free up to 1 item (EF1) if for any 𝑖 and 𝑗 with 𝑋 𝑗 ≠ ∅, there
exists 𝑔 ∈ 𝑋 𝑗 such that 𝑢𝑖 (𝑋𝑖 ) ≥ 𝑢𝑖 (𝑋 𝑗 \ {𝑔}).

The social welfare of allocation X = (𝑋1, . . . , 𝑋𝑛) is sw(X) =∑
𝑖∈𝑁 𝑢𝑖 (𝑋𝑖 ), and the optimal social welfare of an instance I is

denoted by

sw∗ (I) = max

X∈Π𝑛 (𝑉 )

∑︁
𝑖∈𝑁

𝑢𝑖 (𝑋𝑖 ) .

If the instance I is clear from the context, we also write sw∗ for
short.

Lipton et al. [20] proposed the envy-cycle elimination (ECE) al-

gorithm, which always returns an EF1 allocation, as long as the

agents’ utility functions are monotone. Informally, given a (partial)

allocation (𝑋1, . . . , 𝑋𝑛), we can construct the corresponding envy
graph G = (𝑁, E), where the nodes are agents (and thus agents

and nodes are used interchangeably) and there is a directed edge

from agent 𝑖 to agent 𝑗 if and only if 𝑢𝑖 (𝑋𝑖 ) < 𝑢𝑖 (𝑋 𝑗 ). The ECE
algorithm runs as follows. We first find an agent who is not envied

by the others, and allocate a new item to her. If there is no such

agent, there must be a cycle in G. Then we resolve this cycle by

reallocating the bundles: every agent gets the bundle of the agent

that she envies in the cycle. We keep resolving cycles until there is

an unenvied agent. Repeat the above procedures until all the items

are allocated. Note that if the agents have identical valuations, then

the ECE algorithm degenerates to a simple greedy algorithm where

the worst-off agent selects a new item without creating any envy

cycles. For simplicity, we continue to call this greedy algorithm

ECE.

Although ECE algorithm ensures EF1, the returned allocation

does not have any social welfare guarantee. Consider the following

simple example. A path of three vertices 𝑣1 − 𝑣2 − 𝑣3 is distributed
among two agents with identical weight functions. By ECE, we allo-

cate 𝑣1 to agent 1 , then 𝑣2 to agent 2 and finally 𝑣3 to agent 1. The

social welfare is 𝑢 ({𝑣1, 𝑣3}) = 𝑢 (𝑣2) = 0. However, the optimal so-

cial welfare is 2 by allocating {𝑣1, 𝑣2, 𝑣3} to agent 1, which is also an

EF1 allocation. Thus, our objective is to design algorithms to com-

pute EF1 allocations with guaranteed social welfare approximation

ratio compared to the optimal social welfare without constraints.

Thanks to the ECE algorithm, to compute an EF1 allocation with

high social welfare, we can first find a partial allocation that is EF1

and ensures the guaranteed social welfare. Then we can run the

ECE algorithm to allocate the remaining unallocated items, where

the social welfare can only increase and the EF1 property retains.

Before the end of this section, we show that the maximum social

welfare can be computed in polynomial time via dynamic program-

ming. Suppose the vertices in 𝑉 = {𝑣1, . . . , 𝑣𝑚} are ordered from

left to right, and thus 𝑣𝑖 and 𝑒𝑖 are the 𝑖-th vertex and 𝑖-th edge. For

subproblem 1 ≤ 𝑘 ≤ 𝑚, let sw(𝑘) and X𝑘 = (𝑋𝑘
1
, . . . , 𝑋𝑘

𝑛 ) respec-
tively denote the maximum social welfare and the corresponding

partial allocation when allocating vertices {𝑣1, . . . , 𝑣𝑘 } among the

𝑛 agents. Denote sw(0) = 0 and it is also clear that sw(1) = 0.

Our objective is to iteratively compute each sw(𝑘) for 𝑘 ≥ 2 until

sw(𝑚). For 1 ≤ 𝑙 ≤ 𝑘 − 1, let 𝑎′
𝑙
be the agent who receives the 𝑙-th

item in the partial welfare maximizing allocation X𝑙
, then we have

the following Bellman equation:

sw(𝑘) = max

1≤𝑙≤𝑘−1
max

{
sw(𝑙) +

𝑘−1∑︁
𝑡=𝑙

𝑤𝑎′
𝑙
(𝑒𝑡 ), sw(𝑙 − 1)

+max

𝑖∈𝑁

𝑘−1∑︁
𝑡=𝑙

𝑤𝑖 (𝑒𝑡 )
}
.
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In the appendix, we provide a formal proof why sw(𝑚) returns the
optimal social welfare in polynomial time. We summarize the result

in the following lemma.

Lemma 2.2. Given any instance I = (𝐺, 𝑁,w), computing an
allocation with maximum social welfare can be done in polynomial
time.

In the appendix, we also show that the dynamic programming al-

gorithm for Lemma 2.2 can be extended to tree structures. However,

for general graphs, computing such an allocation is NP-hard.

3 GENERAL SETTING
We start with the general case, but due to space limit, the results

are formally proven in the appendix. In the following, we briefly

introduce our ideas. We first find that EF1 allocations cannot ensure

better than 1/𝑛 fraction of the optimal social welfare, even for the

bi-valued case. This is not surprising; consider a simple example

with 𝑛 independent edges where one of the agents, say agent 1, has

weight 1 for all edges but all the other agents have arbitrarily small

weights. To ensure EF1, at most one edge can be allocated to agent

1, resulting in a social welfare of approximately 1 but the optimal

social welfare is 𝑛. This hard instance is because of the fact that

the agents’ valuations are not in the same scale. Actually, for EF1

allocations under scaled valuations, the approximation ratio of the

optimal social welfare can be improved to Θ(1/
√
𝑛).

Note that when the graph is a set of disjoint edges, the problem

degenerates (with slight differences) to the classical additive setting,

for which it is NP-hard to find the EF1 allocations with optimal

social welfare. Therefore, we now briefly discuss how to achieve a

good approximation of the optimal social welfare by EF1 allocations.

Since the agents’ valuations depend on their weights on the edges

and the vertices can only be allocated once, the immediate intuition

is to pair up the vertices as independent edges and treat the edges

as items. But we need to be careful. Consider the example in Figure

2 with two agents and agent 1’s weight function is shown above the

edges while agent 2’s is below the edges. Suppose the vertices are

paired as (𝑣1, 𝑣2), (𝑣3, 𝑣4) and (𝑣5, 𝑣6), and some algorithm allocates

edges (𝑣1, 𝑣2) and (𝑣5, 𝑣6) to agent 1. At this moment, agent 2 does

not envy agent 1, then the algorithm may further allocate (𝑣3, 𝑣4)
to agent 1; however, this breaks the EF1 requirement since 𝑣3 and

𝑣4 connect 𝑣2 and 𝑣5 to form edge (𝑣2, 𝑣3) and (𝑣4, 𝑣5), on which

agent 2 has high weights.

Figure 2: Hard instance for allocating edges.

To address the above issue, we can give up one vertex between

two consecutive pairs of vertices. For example, the vertices can be

paired as (𝑣1, 𝑣2), (𝑣4, 𝑣5), (𝑣7, 𝑣8), etc., and vertices 𝑣3, 𝑣6, etc., are

abandoned. In this way, we can regard these pairs as imaginary

items whose addition does not affect others (the bad situation in

Figure 2 will not happen) and the removal of one endpoint in each

pair destroys the edge. Thus running a standard EF1 algorithm (for

additive valuations), such as ECE, gives an EF1 (partial) allocation

in our problem. To extend the partial allocation to a complete allo-

cation, we can continue to run the ECE algorithm on the abandoned

vertices.

Since nobody gains utility at the broken edge between two ver-

tices, to ensure high social welfare of the allocation, we would

like to allocate relatively longer sub paths (instead of independent

edges) in order to reduce the number of divisions. Since we need

to maintain the property that the removal of one vertex also re-

moves the entire sub path, we can group every three consecutive

vertices, where each triplet is an imaginary item, such as (𝑣1, 𝑣2, 𝑣3).
Then the removal of the middle vertex in each triplet destroys both

incident edges, and thus removes the complete sub path.

Combining the above two ideas, we consider two partitions of the

vertices,𝑀1 = {(𝑣1, 𝑣2, 𝑣3), (𝑣5, 𝑣6, 𝑣7), . . .} and𝑀2 = {(𝑣3, 𝑣4, 𝑣5), (
𝑣7, 𝑣8, 𝑣9), . . .}. It can be shown that the partition with higher social

welfare can ensure at least a half of the optimal social welfare. Then

we can use this partition to allocate its triplets and our problem

essentially degenerates to the classic additive setting. In particular,

we run the ALG-EF1-ABS algorithm proposed in [4] which ensures

1/(2𝑛) fraction of the optimal social welfare, and thus we have the

following result.

Theorem 3.1. Given any discrete cake cutting instance I, an EF1
allocation with social welfare at least 1/(4𝑛)·sw∗ (I) can be computed
in polynomial time; There is an instance I such that no EF1 allocation
can guarantee a social welfare better than 1/𝑛 · sw∗ (I).

Similarly, we can obtain the result for the scaled valuations,

proved in the appendix.

Theorem 3.2. Given any discrete cake cutting instance I with
scaled valuations, an EF1 allocationwith social welfare at leastΘ(1/

√
𝑛)·

sw∗ (I) can be computed in polynomial time.

In the following sections, we show how to improve the approxi-

mation ratios for some specific, yet important, settings.

4 IMPROVED APPROXIMATION FOR
HOMOGENEOUS AGENTS

In this section, we consider the homogeneous case when all agents

have identical valuations (but the weights can be arbitrary). As we

will see, we can always compute an EF1 allocation guaranteeing

almost 2/3 fraction of the optimal social welfare in polynomial time,

and 2/3 is the best guarantee we can obtain even if the valuations

are binary and there are only two agents.

The algorithm is formally introduced in Algorithm 1. Similarly, it

tries to partition the items into bundles and regards each bundle as

an imaginary item. However, different from the algorithm designed

in Theorem 3.1, we do not want to give up any vertex between

two bundles since the utilities on the incident edges would be very

likely sacrificed. Thus we partition the vertices into contiguous

triplets such as as (𝑣1, 𝑣2, 𝑣3), (𝑣4, 𝑣5, 𝑣6), (𝑣7, 𝑣8, 𝑣9), etc. Recall the
bad situation discussed in Figure 2. If we happen to allocate two

adjacent triplets to the same agent who is currently the worst-off

one, the resulting allocation may not be EF1, and thus the main

difficulty in Algorithm 1 is how to avoid such bad situations.

Before proceeding, we first briefly discuss our ideas. Suppose

𝑖 is the worst-off agent in the current round and the remaining

triplets are {Θ𝑗 ,Θ𝑗+1, . . .} ordered from left to right. We would like
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Algorithm 1 Approximation Algorithm for 𝑛 Homogeneous

Agents

Input: Instance I = (𝐺, 𝑁 ) with 𝐺 = (𝑉 , 𝐸;𝑤).
Output: Allocation X = (𝑋1, . . . , 𝑋𝑛).
1: Initialize 𝑋𝑖 ← ∅ for all 𝑖 ∈ 𝑁 .

2: Consider the three sets of triplets𝑀1, 𝑀2, 𝑀3 defined in Equa-

tion (1), and let 𝑀 ← argmax𝑀∈{𝑀1,𝑀2,𝑀3 } 𝑢 (𝑉 (𝑀𝑖 )) be the
one with maxium social welfare.

3: Denote by 𝑀 = {Θ1, . . . ,Θ |𝑀 | } and assume the triplets in 𝑀

are ordered from left to right.

4: Let 𝑖∗ be the last agent who receives a triplet in𝑀 in previous

rounds. Initialize 𝑖∗ ← 0.

5: Let 𝑃 contain the triplets that are adjacent to the vertices allo-

cated to the agent who has smallest utility. Initialize 𝑃 ← ∅.
6: Let𝑄 contain the vertices in a triplet that is going to be broken.

Initialize 𝑄 ← ∅.
7: // Phase 1: Allocating the triplets in𝑀 .

8: while𝑀 ≠ ∅ do
9: Let 𝑖 be the agent with smallest utility.

10: Case 1(a). If 𝑖 ≠ 𝑖∗ and 𝑃 ≠ ∅, let Θ be one triplet in 𝑃 . Set

𝑋𝑖 ← 𝑋𝑖 ∪ {Θ} and 𝑃 ← 𝑃 \ {Θ}.
11: Case 1(b). If 𝑖 ≠ 𝑖∗ and 𝑃 = ∅, let Θ be the first triplet in𝑀 .

Set 𝑋𝑖 ← 𝑋𝑖 ∪ {Θ},𝑀 ← 𝑀 \ {Θ}, and 𝑖∗ = 𝑖 .

12: Case 1(c). If 𝑖 = 𝑖∗, move the first triplet in 𝑀 to 𝑃 . If 𝑀

still contains at least one triplet, let Θ be the first one. Set

𝑋𝑖 ← 𝑋𝑖 ∪ {Θ} and𝑀 ← 𝑀 \ {Θ}.
13: end while
14: // If 𝑃 ≠ ∅, then all triplets in 𝑃 can only be adjacent to the

vertices allocated to agent 𝑖∗.
15: // Phase 2: Allocating the triplets in 𝑃 .

16: while 𝑃 ≠ ∅ do
17: Let 𝑖 be the agent with smallest utility.

18: Case 2(a). If 𝑖 ≠ 𝑖∗, let Θ be one triplet in 𝑃 . Set 𝑋𝑖 ←
𝑋𝑖 ∪ {Θ} and 𝑃 ← 𝑃 \ {Θ}.

19: Case 2(b). If 𝑖 = 𝑖∗ and 𝑄 ≠ ∅, let 𝑣 be one vertex in 𝑄 . Set

𝑋𝑖 ← 𝑋𝑖 ∪ {𝑣} and 𝑄 ← 𝑄 \ {𝑣}.
20: Case 2(c). If 𝑖 = 𝑖∗ and 𝑄 = ∅, remove one triplet Θ∗ in 𝑃

and put all its vertices to𝑄 . Let 𝑣 be one vertex in𝑄 , and set

𝑋𝑖 ← 𝑋𝑖 ∪ {𝑣} and 𝑄 ← 𝑄 \ {𝑣}.
21: end while
22: // If 𝑄 ≠ ∅, then the vertices in 𝑄 are from the same triplet Θ∗.
23: // Phase 3: Allocating the vertices in 𝑄 .

24: if 𝑄 ≠ ∅ and 𝑢 (𝑉 (Θ∗)) ≥ 𝑢 (𝑋𝑖∗ \𝑉 (Θ∗)) then
25: Set 𝑄 ← 𝑋𝑖∗ \𝑉 (Θ∗) and 𝑋𝑖∗ ← 𝑉 (Θ∗).
26: end if
27: Execute ECE on 𝑄 .

28: return Allocation X = (𝑋1, . . . , 𝑋𝑛).

to allocate the first triplet Θ𝑗 to 𝑖 , but 𝑖 already has Θ𝑗−1 in her

bundle, which is adjacent to Θ𝑗 in the path. Then, we create a pool

𝑃 to temporarily store Θ𝑗 , and give Θ𝑗+1 to agent 𝑖 . In later rounds,

we always try to allocate the triplets in 𝑃 first and if 𝑃 = ∅, we
go back to check the path. When all the triplets have been either

allocated to the agents or stored in 𝑃 , we complete the first phase,

which is the firstwhile loop in Algorithm 1. Note that if 𝑃 ≠ ∅, then

we can show that all triplets in 𝑃 can only be adjacent to the vertices

allocated to a single agent, say 𝑖∗. In phase 2 (the second while
loop in Algorithm 1), we continue to ask the worst-off agent to pick

items in rounds. If the agent is not 𝑖∗, she can get a triplet in 𝑃 . If

the agent is 𝑖∗, we only allocate one vertex to her, which can always

preserve EF1. To this end, we reserve a triplet in 𝑃 and allocate one

of the three vertices to 𝑖∗. The remaining vertices are temporarily

stored in a new pool 𝑄 that cannot be given to any other agents

except 𝑖∗ in the second phase. In the later rounds, when 𝑖∗ becomes

the worst-off agent again, we continue to allocate one vertex in 𝑄

to her, and if 𝑄 becomes empty, we repeat the reservation process.

Finally, when 𝑃 becomes empty, we can use the ECE algorithm to

allocate the remaining items.

There are two more issues that need to be addressed in order

to guarantee high social welfare. First, in the partition (𝑣1, 𝑣2, 𝑣3),
(𝑣4, 𝑣5, 𝑣6), etc., the broken edges such as (𝑣3, 𝑣4) and (𝑣6, 𝑣7) may

bring very high utility to the agents and thus the sacrificed social

welfare can be unbounded. Hence, instead of using one prefixed

partition, we consider three shifted ones:

𝑀1 = {(𝑣1, 𝑣2, 𝑣3), (𝑣4, 𝑣5, 𝑣6), (𝑣7, 𝑣8, 𝑣9), · · · }
𝑀2 = {(𝑣1), (𝑣2, 𝑣3, 𝑣4), (𝑣5, 𝑣6, 𝑣7), · · · } (1)

𝑀3 = {(𝑣1, 𝑣2), (𝑣3, 𝑣4, 𝑣5), (𝑣6, 𝑣7, 𝑣8), · · · }

The best of these three partitions ensures that we can preserve at

least 2/3 fraction of the optimal social welfare in the corresponding

triplets. The second issue is that, we may break one triplet (say Θ∗

from which the vertices in𝑄 are selected) in phase 2, and this triplet

may bring high utility to the agents. Hence, before moving to the

ECE algorithm, we first check whether Θ∗ or 𝑖∗’s partial allocation
before she breaks Θ∗ brings her higher utility. If Θ∗ is better, we
exchange 𝑖∗’s entire allocation by Θ∗. Attentive readers may note

that after this exchange, the allocation may not be EF1 any more.

Note that other agents do not envy agent 𝑖∗ by more than one

item, since Θ∗ contains only one triplet, which can be destroyed

by eliminating the middle vertex. However, agent 𝑖∗ might envy

others by more than one item. This is true, but fortunately, the later

ECE algorithm can always compensate 𝑖∗’s loss and ensure EF1 for

the final allocation.

Combining these two tricks with phases 1 and 2, we finally obtain

the following result.

Theorem 4.1. For any instance I with 𝑛 homogeneous agents,
Algorithm 1 returns in polynomial time an EF1 allocation with at
least 2/3 − 2/(3(𝑛 + 1)) fraction of the optimal social welfare.

Before proving Theorem 4.1, we first present several useful lem-

mas. For each𝑀𝑙 , 𝑙 = 1, 2, 3, let sw(𝑀𝑙 ) be the optimal social welfare

by allocating the triples to the agents without EF1 constraints, dis-

regarding all the utilities on the edges connecting different triples.

We have the following lemma, which is proved in the appendix.

Lemma 4.2. For any instance I,

max{sw(𝑀1), sw(𝑀2), sw(𝑀3)} ≥
2

3

sw∗ (I)

By Lemma 4.2, to ensure a good approximation of sw∗ (I), it suf-
fices to approximate the optimal social welfare of the best partition

in𝑀1, 𝑀2, 𝑀3.
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Lemma 4.3. During the execution of Algorithm 1, all triplets in 𝑃

are adjacent to the vertices assigned to the same agent. If 𝑀 ≠ ∅ or
𝑃 ≠ ∅, the partial allocation maintains EF1.

Proof. Note that a triplet is put into the set 𝑃 only when𝑀 ≠ ∅.
As shown in Algorithm 1, in each round of the first while loop

(Step 8-13), an agent with the smallest utility is selected (say agent

𝑖). We compare agent 𝑖 with the agent (say 𝑖∗) who receives a triplet
in𝑀 in previous rounds. If they are the same agent, i.e., 𝑖 = 𝑖∗, the
leftmost triplet in𝑀 is put into P and the right contiguous triplet, if

it exists, is allocated to the agent 𝑖 = 𝑖∗. Therefore, all triplets within
𝑃 connect the vertices assigned to the same agent. In what follows,

we prove that during the execution of two while loops (Step 8-13

and Step 16-21, respectively), the partial allocation guarantees EF1

fairness. We begin with the analysis of the first while loop, which
we move into only when 𝑀 ≠ ∅. Observe that in such case, we

traverse the path. There are three cases:

• Case 1(a). 𝑖 ≠ 𝑖∗ and 𝑃 ≠ ∅;
• Case 1(b). 𝑖 ≠ 𝑖∗ and 𝑃 = ∅;
• Case 1(c). 𝑖 = 𝑖∗.

Consider Case 1(a), where a tripletΘ ∈ 𝑃 is picked by agent 𝑖 . Recall

that all the triplets within 𝑃 connect the vertices assigned to agent

𝑖∗ ≠ 𝑖 . Therefore the allocation of a triplet Θ ∈ 𝑃 can be regarded

as allocating an imaginary item. Combining with the fact that 𝑖 is

the agent with the smallest utility before allocating the triplet Θ,
allocating Θ still guarantees EF1 fairness. The similar reasoning

can also be applied to Case 1(b), since the left contiguous triplet of

Θ is allocated to agent 𝑖∗ ≠ 𝑖 and thus Θ can still be regarded as a

single imaginary item. For Case 1(c), the leftmost triplets within

𝑀 is temporarily put into set 𝑃 so that the next triplet allocated to

agent 𝑖 connects no vertices of agent 𝑖’s previous bundle. Hence, the

next triplet within𝑀 is allocated to agent 𝑖 , which can be regarded

as an imaginary item and therefore does not break EF1 requirement.

Next, we analyze the case of𝑀 = ∅ and 𝑃 ≠ ∅, for which we move

into the second while loop. We discuss the following three cases:

• Case 2(a). 𝑖 ≠ 𝑖∗;
• Case 2(b). 𝑖 = 𝑖∗ and 𝑄 ≠ ∅;
• Case 2(c). 𝑖 = 𝑖∗ and 𝑄 = ∅.

We first consider Case 2(a). Based on the previous analysis that all

triplets within set 𝑃 connects agent 𝑖∗’s assigned vertices, allocating
a triplet within 𝑃 to agent 𝑖 ≠ 𝑖∗ can be regarded as allocating a

single item. Combining with the fact that agent 𝑖 is the one with

the smallest utility, we know that such allocation maintains EF1.

Observe that in Case 2(b) a single item is allocated and in Case

2(c) no item is allocated to any agent, both of which maintains EF1

fairness. We complete the proof. □

Now, we are ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. Recall that Lemma 4.3 completes the

proof of maintaining EF1 fairness during the execution of the two

while loops (Step 8-13 and Step 16-21, respectively). Moveover,

although the bundle-exchanging procedure in Step 24 might break

EF1 requirement, the later ECE procedure can compensate the wel-

fare loss in the previous bundle-exchanging procedure and guaran-

tee EF1 fairness for the final allocation. Next, we prove the social

welfare guarantee. Observe that when we move out of the two

while loops in Algorithm 1, there is at most one triplet (say Θ∗)
being destroyed, i.e., part of vertices of Θ∗ are allocated to an agent

(say 𝑖∗) with the smallest utility and other vertices are temporarily

stored in set 𝑄 . Consider the allocation X′ = (𝑋 ′
1
, . . . , 𝑋𝑛) before

agent 𝑖∗ picks the vertices from Θ∗. By Algorithm 1, we know that

agent 𝑖∗ is the worst-off one. Hence,

𝑢 (𝑋 ′𝑖∗ ) ≤
1

𝑛
(𝑢 (𝑋 ′𝑖∗ ) +

∑︁
𝑖∈𝑁,𝑖≠𝑖∗

𝑢 (𝑋 ′𝑖 ))

≤ 1

𝑛
(𝑢 (𝑋 ′𝑖∗ ) +

∑︁
𝑖∈𝑁,𝑖≠𝑖∗

𝑢 (𝑋𝑖 ))

=
1

𝑛
(
∑︁
Θ∈𝑀

𝑢 (𝑉 (Θ)) − 𝑢 (𝑉 (Θ∗)))

=
1

𝑛
(sw(𝑀) − 𝑢 (𝑉 (Θ∗))),

where the second inequality holds because 𝑢 (𝑋 ′
𝑖
) ≤ 𝑢 (𝑋𝑖 ), 𝑖 ∈ 𝑁 .

Recall that whenwemove out of the secondwhile loop, we compare

Θ with agent 𝑖∗’s assigned bundle 𝑋 ′
𝑖
before she breaks Θ∗. If Θ∗

brings her larger utility, we exchange Θ∗ with𝑋 ′
𝑖
. Later we proceed

with the ECE algorithm running on the remaining items which

ensures a final EF1 allocation. Note that the ECE algorithm might

not increase any utility. Therefore, the welfare loss would be no

more than the utility of the smaller bundle within {Θ∗, 𝑋 ′
𝑖∗ }. If

𝑢 (𝑉 (Θ∗)) ≥ 𝑢 (𝑋 ′
𝑖∗ ), the welfare loss is 𝑢 (𝑋

′
𝑖∗ ). We have

𝑢 (𝑋𝑖∗ ) ≤ min{𝑢 (𝑉 (Θ∗)), 1
𝑛
(sw(𝑀) − 𝑢 (𝑉 (Θ∗)))}

≤ sw(𝑀)
𝑛 + 1 ,

where the equation of the second inequality holds only when

𝑢 (𝑉 (Θ∗)) = sw(𝑀 )
𝑛+1 . Next, we deal with the case of 𝑢 (𝑉 (Θ∗)) ≤

𝑢 (𝑋 ′
𝑖∗ ), where the welfare loss is 𝑢 (𝑉 (Θ

∗)). Thus,

𝑢 (𝑉 (Θ∗)) ≤ 𝑢 (𝑋 ′𝑖∗ ) ≤
1

𝑛
(sw(𝑀) − 𝑢 (𝑉 (Θ∗))),

Furthermore, we derive

𝑢 (𝑉 (Θ∗)) ≤ sw(𝑀)
𝑛 + 1 .

Based on the analysis above, we know that the welfare loss is

restricted to be less than
sw(𝑀 )
𝑛+1 . The total welfare is∑︁

𝑖∈𝑁
𝑢 (𝑋𝑖 ) ≥ sw(𝑀) − sw(𝑀)

𝑛 + 1 ≥
2

3

(1 − 1

𝑛 + 1 )sw
∗,

where the second inequality holds because sw(𝑀) ≥ (2/3)sw∗,
proved in Lemma 4.2. Since in each round of the two while loops,
exactly one triple or one item is allocated, and the envy-cycle elimi-

nation completes in𝑂 ( |𝑉 |) time, the algorithm runs in𝑂 ( |𝑉 |) time.

We complete the proof of the theorem. □

The ratio of 2/3 is actually the best possible guarantee even if

the valuations are unary and there are only two agents. Consider

a simple instance of allocating a path with four vertices and both

agents have value 1 on all three edges. The optimal social welfare

is 3 by allocating the entire path to one agent, but this allocation

is not EF1. Thus any EF1 allocation will destroy at least one edge

resulting in a social welfare of at most 2. In the appendix, we show
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that when there are only two agents, the approximation ratio of

2/3 can be achieved.

Theorem 4.4. For any instance I with two homogeneous agents,
we can compute an EF1 allocation with at least 2/3 fraction of the
optimal social welfare in polynomial time.

5 IMPROVED APPROXIMATION FOR TWO
HETEROGENEOUS AGENTS

In this section, we consider the case of two heterogeneous agents,

and present a variant of the algorithm of Oh et al. [22] that achieves

the best possible approximation ratio of the optimal social welfare.

To ensure a good approximation, we first compute an allocation

X = (𝑋1, 𝑋2) that maximizes the social welfare. By Lemma 2.2, such

an allocation can be found in polynomial time. If X is already EF1,

then we are done. Otherwise, without loss of generality, assume

𝑢1 (𝑋1) < 𝑢2 (𝑋2). In the following, we show how to move vertices

from𝑋2 to𝑋1 so that agent 1’s utility can only increase and agent 2’s

utility cannot decrease by more than a half, and thus the remaining

social welfare will be at least half of the optimal solution. First,

we find an edge 𝑒 = (𝑣1, 𝑣2) in 𝑋2 whose removal divides 𝑋2 into

two bundles, the left bundle 𝑋𝐿 and the right bundle 𝑋𝑅 , such that

max{𝑢2 (𝑋𝐿), 𝑢2 (𝑋𝑅)} < 1/2 ·𝑢2 (𝑋2). This can be done by checking

the edges one by one starting from the leftmost and the first edge

which makes the total weight be greater than 1/2 · 𝑢2 (𝑋2) suffices.

Next, we choose one of 𝑋𝐿 and 𝑋𝑅 whichever brings higher utility

to agent 1, say 𝑋𝐿 , and move vertices from 𝑋𝐿 (and thus also from

𝑋2) to 𝑋1 one by one, until (1) agent 1 does not envy agent 2 by

more than one vertex or (2) the two agents envy each other. If (1)

happens, we can stop the algorithm, and if (2) happens, we can

simply exchange their bundles. As shown by the hard instance in

Theorem 3.1, this simple algorithm is actually the best possible.

Algorithm 2 Approximation Algorithm for Two Heterogeneous

Agents

Input: Instance I = (𝐺, 𝑁,w) with 𝐺 = (𝑉 , 𝐸).
Output: Allocation X = (𝑋1, 𝑋2).
1: Compute a welfare maximizing allocation (𝑀1, 𝑀2) and assume

𝑢1 (𝑀1) ≤ 𝑢2 (𝑀2).
2: Initialize 𝑋𝑖 ← 𝑀𝑖 , 𝑖 ∈ {1, 2}.
3: Partition 𝑋2 as 𝑋𝐿 ∪ 𝑋𝑅 ∪ {𝑣1, 𝑣2} such that

max{𝑢2 (𝑋𝐿), 𝑢2 (𝑋𝑅)} < 1/2 · 𝑢2 (𝑋2). Without loss of

generality, suppose 𝑢1 (𝑋𝑅) ≤ 𝑢1 (𝑋𝐿).
4: while agent 1 envies agent 2 by more than one item do
5: Let 𝑣 be a vertex in𝑋𝐿 , and set𝑋1 ← 𝑋1∪{𝑣},𝑋𝐿 ← 𝑋𝐿\{𝑣},

𝑋2 ← 𝑋2 \ {𝑣}.
6: if agent 2 envies agent 1 then
7: Exchange two agents’ bundles, i.e., 𝑋2 ⇌ 𝑋1.

8: end if
9: end while
10: Output allocation X = (𝑋1, 𝑋2).

The formal algorithm is shown in Algorithm 2, and we prove

Theorem 5.1 in the appendix.

Theorem 5.1. For any instance I with two heterogeneous agents,
Algorithm 2 returns an EF1 allocation with at least 1/2 of the optimal
social welfare in polynomial time.

In the appendix, we also prove that, when the two agents’ weights

are binary, we can refine Algorithm 2 and achieve 2/3 approxima-

tion, as shown in Theorem 5.2. Recall the hard instance below

Theorem 4.1, 2/3 is the best possible approximation ratio.

Theorem 5.2. For any instance I with two heterogeneous agents
whose weight functions are binary, an EF1 allocation with at least
2/3 of the maximum social welfare can be found in polynomial time.

6 IMPROVED APPROXIMATION FOR
HETEROGENEOUS BINARYWEIGHT
FUNCTIONS

Finally, we study the case with arbitrary number of agents whose

weight functions are heterogeneous and binary.

Let us start with the following instance with 𝑛 agents. We have

𝑛 identical gadgets, where each gadget 𝑘 = 1, . . . , 𝑛 contains four

vertices 𝑣𝑘1, 𝑣𝑘2, 𝑣𝑘3, 𝑣𝑘4. Agent 1 has weight 1 on the three edges

(𝑣𝑘1, 𝑣𝑘2), (𝑣𝑘2, 𝑣𝑘3), (𝑣𝑘3, 𝑣𝑘4) and all the other agents 𝑖 ≥ 2 has

weight 1 on (𝑣𝑘2, 𝑣𝑘3) but 0 on (𝑣𝑘1, 𝑣𝑘2) and (𝑣𝑘3, 𝑣𝑘4). All gadgets
are connected as a path, as shown in Figure 3, and all 𝑛 agents have

weight 0 on the connecting edges (𝑣𝑘4, 𝑣𝑘+1,1) for 𝑘 = 1, . . . , 𝑛 −
1. It is easy to see that the optimal social welfare is achieved by

allocating the whole graph to agent 1 and sw∗ = 3𝑛. However,

in any EF1 allocation, agent 1 cannot have utility greater than

3. Suppose otherwise, then agent 1 must receive edges from at

least two different gadgets, and no other agent 𝑖 ≥ 2 can obtain

positive utilities from these two gadgets. Since there are at most

𝑛 − 2 gadgets that have not been allocated to agent 1, there must

be some agent 𝑖 ≥ 2 who envies agent 1 by more than one item,

and thus the allocation is not EF1. Combining with the fact that

the maximum partial social welfare of agents 2, . . . , 𝑛 is no greater

than 𝑛 − 1, the maximum social welfare that can be obtained by

EF1 allocations is 𝑛 + 2. Thus, when 𝑛 goes to infinity, we conclude

that no EF1 allocation can guarantee strictly more than 1/3 fraction
of the optimal social welfare. Remaining unassigned vertices are

Figure 3: Hard instance for binary weight functions.

allocated by the envy-cycle elimination procedure [20], which still

maintains the EF1 fairness and does not decrease any social welfare.

Now, we provide the intuition behind Algorithm 3, which processes

the vertices one by one. As illustrated in Figure 4, in each round we

try to find the leftmost remaining edge 𝑒𝑘 = (𝑣𝑘 , 𝑣𝑘+1) with weight

1 for at least one agent. Consider a set 𝑆 of agents who have weight

1 on edge 𝑒𝑘 . We allocate the two endpoints {𝑣𝑘 , 𝑣𝑘+1} to one agent
𝑖 ∈ 𝑆 with the smallest bundle. In the next round, if {𝑣𝑘+2, 𝑣𝑘+3}
is the next pair to be assigned, a tricky case might happen which

cannot guarantee EF1 fairness. Let 𝑆 ′ be the set of agents with

weight 1 on edge (𝑣𝑘+2, 𝑣𝑘+3). If we try to allocate {𝑣𝑘+2, 𝑣𝑘+3} to
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Algorithm 3 Approximation Algorithm for Binary Weights

Input: Instance I = (𝐺, 𝑁,w) with 𝐺 = (𝑉 , 𝐸).
Output: Allocation X = (𝑋1, . . . , 𝑋𝑛).
1: Initialize 𝑋𝑖 ← ∅ for all 𝑖 ∈ 𝑁 .

2: Let 𝑃 be the set of unallocated vertices. Initialize 𝑃 ← 𝑉 .

3: Initialize 𝑘 ← 1.

4: while 𝑘 ≤ |𝑉 | − 1 do
5: Let 𝑆 be the set of agents who have weight 1 on the 𝑘-th

edge 𝑒𝑘 = (𝑣𝑘 , 𝑣𝑘+1).
6: if 𝑆 = ∅ then
7: 𝑘 ← 𝑘 + 1.
8: else
9: Let 𝑖∗ ∈ argmin𝑖∈𝑆 |𝑋𝑖 | be an agent who has smallest

bundle in 𝑆 .

10: Set 𝑋𝑖∗ ← 𝑋𝑖∗ ∪ {𝑣𝑘 , 𝑣𝑘+1}, 𝑃 ← 𝑃 \ {𝑣𝑘 , 𝑣𝑘+1}, 𝑘 ← 𝑘 + 3.
11: end if
12: end while
13: Execute ECE on 𝑃 .

14: Return Allocation (𝑋1, . . . , 𝑋𝑛).

an agent 𝑖′ ∈ 𝑆 ′ (weights are above the edges) with the smallest

bundle. There might exist an agent 𝑖 ∈ 𝑁 \ 𝑆 ′ (weights are below
the edges) who envies agent 𝑖′ up to one item before allocating

{𝑣𝑘+2, 𝑣𝑘+3} and has weight 1 on edge (𝑣𝑘+1, 𝑣𝑘+2). Therefore, the
EF1 fairness is broken after allocating {𝑣𝑘+2, 𝑣𝑘+3}. To circumvent

this obstacle, we temporarily abandon the node 𝑣𝑘+2 and consider

edge (𝑣𝑘+3, 𝑣𝑘+4) so that each allocated pairs can be regarded as an

imaginary item. If no agent has weight 1 on edge (𝑣𝑘+3, 𝑣𝑘+4), we
skip node 𝑣𝑘+3 and consider the next edge (𝑣𝑘+4, 𝑣𝑘+5). Otherwise,
we assign {𝑣𝑘+3, 𝑣𝑘+4} to an agent to increase the total welfare by

1. Since the agent receiving {𝑣𝑘+3, 𝑣𝑘+4} is not envied by any other

agent with weight 1 on this edge and the allocation has no effect

on those agents with weight 0, such allocation still guarantees EF1

fairness. Repeating the process above until the whole path has been

traversed, we obtain a partial EF1 allocation. Whenever we allocate

a pair of vertices to increase the total welfare by 1, there are at

most two consecutive edges being abandoned. Furthermore, the

ECE procedure does not decrease any social welfare. Therefore,

we retain at least 1/3 of the optimal social welfare. Thus, we have

Theorem 6.1, proved in the appendix.

Figure 4: A path is distributed among 𝑛 agents with binary
weights.

Theorem 6.1. For any instance I with binary weights, Algorithm
3 returns an EF1 allocation with social welfare at least 1/3 · sw∗ (I)
in polynomial time.

7 EXTENSION: GENERAL GRAPHS
In this section, we extend our results to more general settings –

trees and general graphs. In particular, the resources are modelled as

the vertices in a graph and the agents may have different weights

on the edges. The utility of an agent is represented by the total

weight of the edges within the induced subgraph of her received

vertices. Due to space limit, we defer the detailed discussion to the

appendix.

In the following, we briefly summarize our results. Without

considering fairness requirements, we first study the computational

complexity of computing a welfare-maximizing allocation:

• A welfare-maximizing allocation for trees can be computed

efficiently by a similar algorithm used for path;

• In sharp contrast, it is NP-hard to compute awelfare-maximizing

allocation for the general graph.

Regarding the social welfare guarantee of EF1 allocations, our re-

sults are summarized in Table 2.

heterogeneous agents

homogeneous

agents

binary

weights

arbitrary

weights

arbitrary

weights

trees Θ(1/𝑛) 1/2
general graphs 1/(4Δ − 2) 2/𝑉 (𝑉 − 1)

Table 2: A summary of extension, where 𝑉 is the number of
vertices in the graph and Δ is the maximum vertex degree.

8 CONCLUSION
In this paper, we study the discrete cake-cutting problem, where

cutting destroys the pieces and thus causes utility loss. We design

efficient algorithms to find EF1 allocations with guaranteed social

welfare that are (approximately) optimal for various settings. In

the appendix, we show how to extend our results to more general

settings where the underlying graph can be arbitrary and not re-

stricted to the path. For trees, as an example, most positive results

carry through, such as the efficient computation of the optimal

social welfare and the approximation algorithms for the settings

we have considered. However, for more general classes of graphs,

the news is less positive. Notably, it is NP-hard to find allocations

maximizing the social welfare. Also, to guarantee EF1 fairness, the

welfare loss could be very high even in the special settings such as

binary weight functions.

There are many interesting future directions. An immediate one

is to consider other fairness solution concepts, such as MMS, PROP,

EFX, etc. Another direction would be analyzing other preference

representations, such as chores, mixture of goods and chores, and

mixture of divisible and indivisible items. We can also study the

constrained settings; for example, computing the price of fairness

when each agent’s allocation is required to be connected.
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