
MAGNets: Micro-Architectured Group Neural Networks
AAAI Track

Sumanta Dey
IIT Kharagpur

Kharagpur, India
sumanta.dey@iitkgp.ac.in

Briti Gangopadhyay
IIT Kharagpur

Kharagpur, India
briti_gangopadhyay@iitkgp.ac.in

Pallab Dasgupta
Synopsys Inc

San Francisco, USA
pallabd@synopsys.com

Soumyajit Dey
IIT Kharagpur

Kharagpur, India
soumya@cse.iitkgp.ac.in

ABSTRACT
Reinforcement Learning (RL) algorithms have successfully achieved
human-like performances in complex environments like games, au-
tonomous vehicles, and industrial robots. However, the Deep Neural
Networks (DNNs) used to approximate large Deep Reinforcement
Learning (DRL) policies are resource-hungry and opaque. This lim-
its the applicability of DRL in safety-critical applications running on
resource-constrained platforms. On the other hand, on inspecting
the design of most multi-output safety critical embedded control
applications, it may be observed that such systems often derive
each output based on some artifacts, which are, in turn, derived
from input variables. Given such dependencies of internal system
states on inputs, one may argue that each of these derived artifacts
can be approximated by a smaller network in a multi-network DRL
setting. In this work, we propose Micro Architecture Group Neural
Networks (MAGNets) that can distill the learning of a large DRL
network into multiple small neural networks. Using several Ope-
nAI Gym environments, we show that existing verification tools
can be used to verify the output of MAGNets while preserving the
performance of a large neural policy. We also report our gains in
network compactness, which directly impacts the execution latency
and applicability in edge devices.

KEYWORDS
Reinforcement Learning; Edge Machine Learning; Edge Computa-
tion; Knowledge Distillation

ACM Reference Format:
Sumanta Dey, Briti Gangopadhyay, Pallab Dasgupta, and Soumyajit Dey.
2024. MAGNets: Micro-Architectured Group Neural Networks: AAAI Track.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Reinforcement Learning (RL) is a feedback-oriented machine learn-
ing method, a feature that makes it a natural choice for self-learning
of control policies. RL estimates an optimal state-to-action map-
ping for an agent by exploring an environment following Markov
properties with reward feedback. However, classical RL techniques
like Q-Learning [31] do not scale for real-world control problems
working on large state-action spaces. Deep Reinforcement Learning
(DRL) addresses scalability using Deep Neural Networks (DNNs)
as policy approximators. DRL has successfully learned control poli-
cies often outperforming human beings in game-playing [28] and
has shown promise in deployable technologies like autonomous
driving [18], unmanned autonomous vehicle control [19], traffic in-
tersection management [21], power-grid control [32] etc. However,
two primary concerns that restrict the use of DNNs on real-time
edge devices are as follows. Firstly, embedded edge devices are
often resource-constrained in terms of memory and computation
power. Though DRL training algorithms have been subject to signif-
icant research and are well understood, choosing the right neural
network architecture still remains an art, often resulting in overly
complex networks with many parameters [5] requiring large stor-
age space and high computation power. Secondly, DNNs are known
for their opaque structure with non-explainable outputs [25] and
are, therefore, difficult to verify against safety specifications.

Safety critical systems are often designed to satisfy inductive
invariants, essentially asserting that the system never takes a tran-
sition from a state, ®𝑥 , to a state, 𝑁 (®𝑥), if ®𝑥 satisfies a safety pre-
condition, 𝑃 (®𝑥), and the next state, 𝑁 (®𝑥), satisfies a post-condition,
𝑄 (𝑁 (®𝑥)) modeling unsafe states. In DRL, the function 𝑁 is con-
densed in a neural network. Therefore the verification problem (as
detailed in [1]) is to check the validity of:

∀®𝑥 (𝑃 (®𝑥) ⇒ ¬𝑄 (𝑁 (®𝑥))) (1)

The main challenge here is to keep the network 𝑁 small enough
for verification. Recently, a multitude of methods and tools have
been developed for neural network verification [1, 14–16] and out-
put range prediction [8]. However, all of them suffer from scalability
limitations, rarely going beyond 300-400 neurons in size and limited
in handling only specific types of activation functions [15]. In that
way, neural network size is a critical determinant for verifying DRL
policies. We provide an approach for distilling a DRL network into
multiple verifiable networks of small sizes. We show this succeeds

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2650

https://orcid.org/0000-0002-6004-9100
https://orcid.org/0000-0002-6488-9326
https://orcid.org/0000-0002-2178-8154
https://orcid.org/0000-0001-9329-6389
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1: A toy example illustrating policy network to Rule List conversion using MAGNets.

in many control applications where a limited number of derived
artifacts decide all control outputs.

Interpretability is one of the key requirements for safety cer-
tification. An interesting line of work uses neural policy search
to construct policies in interpretable forms like conventional pro-
grams [30] [22] [7] or decision trees [3] [10] [20]. Existing ap-
proaches towards generating program policies rely on designing
a program grammar, on which the quality of the generated pro-
gram depends. Constructing an optimal grammar requires in-depth
knowledge of the underlying systems. On the other hand, a small
feed-forward neural network with ReLU activation can be trans-
lated into a conventional program. In our framework, by factoring
large DRL networks into multiple small networks using knowledge
distillation [2] [12], we are able to provide interpretable codes for
each control output.

In this paper, we propose the Micro Architecture Group Neural
Networks (MAGNets) framework1. We break the neural structure
into smaller networks, representing derived artifacts responsible
for determining the control outputs. The smaller neural networks
and a set of rules (Rule List) that define each control output as a
function of the derived artifacts jointly represent the RL policy.
Due to the small size of neural networks, each component can be
verified using available verification tools, and the policy can be
converted into a conventional program. The main contributions of
the proposed MAGNets framework are as follows:
• We show that a set of small neural networks (MAGNets)
can learn an intermediate representation or encoding for the
input states.
• We show that a DRL policy can be converted into an inter-
pretable Rule List, namely a collection of linear equations
that consider MAGNets as variables and calculate the final
control outputs (action values). Each rule can be further
expanded along with the MAGNets into conventional pro-
grams.
• We show that the final policy consisting of MAGNets and
the Rule List can be verified using existing verification tools
like Sherlock [8].
• We provide results on several OpenAI Gym environments
and illustrate that the MAGNets policies are, on average, 9

1Codebase and appendix: https://github.com/sumantasunny/MAGNets.git

times smaller in terms of parameter count than the original
network.
• We provide results showing a MAGNets policy is much more
suitable for edge devices, considering its lower latency and
memory footprint than the original DRL policy.

It is important to note here that the primary focus of this work is
on obtaining compact DRL-based policies that are better suited for
resource-constrained edge devices. Due to platform constraints, the
large policy network is problematic for deployment as shown in
[29][23]. Edge-aware on-device machine learning also has benefits
like latency, privacy, connectivity, size, and power consumption [23].
For example, a large policy network for a very lightweight drone
is not suitable due to power and size constraints. Then, the policy
network should run in an edge server and rely on communication
links for every simple and frequent control decision. The above
issues motivate our work to obtain stipped-down NN-based policies
with similar performance. The compaction of the policy network
indirectly contributes to verifiability as we scale down to a size that
formal/semi-formal tools can handle.

2 THE MAGNETS FRAMEWORK
Interpretable models like linear regression models and decision
trees are easy to verify [4]; however, simple linear mapping be-
tween states and action might not always hold for a control policy.
Large neural networks have higher learning capacities, capturing
relationships beyond linear correlations. However, they are hard
to verify, even utilizing state-of-the-art verification methodologies.
Therefore, the framework aims to generate a set of distilled net-
works smaller in structure and parameters than the original DRL
policy network, which can be verified using existing verification
tools.

We proposeMicro Architecture Group Neural Networks Frame-
work or MAGNets Framework to address the learning capacity vs.
verification trade-off by replacing a large policy network with multi-
ple interpretable Rule List or linear equations. However, rather than
directly using the input states as parameters for the linear equa-
tions, we use an intermediate encoded representation or the latent
representation of the input states. The intermediate representation
is captured using multiple smaller neural networks.

We start with a handcrafted motivating example to elucidate our
methodology, as shown in Figure 1. The policy network converts

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2651

Figure 2: Overall Process Flow of MAGNets Framework

the input value (1) into an encoded feature space (0, 2). This en-
coded representation can be captured with two simpler networks
containing only one neuron each, abstracting out the multiple neu-
rons and connections between layers 1 and 2. The final output can
then be obtained using a set of linear equations called a Rule List,
where the encoded input (0, 2) is multiplied by the weights of the
last layer [1,−1] of the original policy network. The MAGNets
framework aims to find such structurally simple networks that
mimic the original policy.

TheMAGNets Framework consists of four phases: namely, Policy
Training, Dataset Generation, MAGNets Training, and finally Rule
List Generation. Figure 2 depicts the process flow of our MAGNets
framework. We describe each phase in detail as follows:

2.1 Policy Training
We consider an RL policy training problem instance where the
policy is trained using PPO (Proximal Policy Optimization) [27].
To capture the intermediate encoded representation of the input,
one extra fully connected layer is added between the last hidden
layer and the output layer of the policy network, termed Layer-M,
as shown in Figure 3. Since the number of MAGNets depends on
the number of neurons in Layer-M, we aim to keep this layer’s
neurons as small as possible without degrading performance. In
our study, we manually tune the size (number of neurons) and
activation function of Layer-M. We assume an optimal policy 𝜋∗ is
obtained post-training. In buffer A, we store the states that the RL
agent visits during training.

Essentially, Layer-M is introduced to reduce the number of MAG-
Nets required for environments having large action spaces. For en-
vironments having small action spaces, Layer-M may be excluded
and the action logit values can be directly used to train the MAG-
Nets. We present the generic approach in the paper as sometimes
we have to consider a slightly larger Layer-M size than the action
space size to perform similarly to the original PPO network.

2.2 Dataset Generation
After the policy training phase, we sample multiple trajectories
based on the final trained policy 𝜋∗ with respect to a starting state
distribution 𝜇. We consider an environment state (®𝑥) and values of
Layer-M neurons as a single data item represented in terms of tuple

Figure 3: Modified Policy Network with Layer-M

⟨®𝑥,Ξ⟩, where, Ξ = ⟨Ξ1 . . .Ξ𝑚⟩ depicts the encoded representation
of the input state ®𝑥 . The 𝑖-th neuron output is denoted as follows.

Ξ𝑖 ← 𝜋∗ (®𝑥)
���𝑖
𝐿𝑎𝑦𝑒𝑟𝑀

These data items are collected for all states of the sampled trajecto-
ries and are stored in buffer 𝐵. In a similar way, we calculate the Ξ
values for all the states present in buffer𝐴, collected during training
using 𝜋∗. We merged these two buffers 𝐴 and 𝐵 to construct the
training dataset C.

2.3 MAGNets Construction and Training
We build and train𝑚 number of single regression neural networks
(MAGNets) where 𝑚 is the number of neurons in Layer-M. Our
primary aim is to construct decomposed networks with fewer pa-
rameters. Therefore, we consider a small network for each MAGNet
with substantially fewer hidden layers and neurons, experimentally
determined, compared to the original policy. The input size of each
MAGNet is equivalent to the cardinality of the environment state
while it has a single output unit. We consider ReLU as the activation
function for all the neurons as it can be represented with only two
linear segments aiding verification.

Given the overall training dataset C, the 𝑖-th MAGNet is trained
on data pairs of the form ⟨®𝑥,Ξ𝑖 ⟩, ∀𝑖 ∈ {1 . . .𝑚}. This is because the
𝑖𝑡ℎ MAGNet takes ®𝑥 as input and produces the value of 𝑖𝑡ℎ neuron
of the Layer-M (Ξ𝑖) as the target output. An illustrative depiction is
shown in Figure 4 (highlighted in yellow). Therefore, each MAGNet
(𝑀𝐺𝑁𝑖) is trained to estimate the respective index of the encoding

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2652

of state, and combining all the MAGNets output will produce the
estimated encoded state given as follows.

Ξ̂←
[
𝑀𝐺𝑁𝑖 (®𝑥)

]
𝑖=1...𝑚

2.4 Rule List Generation
Given an input ®𝑥 , our network of MAGNets produces the estimated
encoded state Ξ̂ as output. We use the weights and biases between
Layer-M and output layers of 𝜋∗ to find a linear mapping from the
encoded state Ξ̂ to the set of rules 𝑅𝑢𝑙𝑒 𝐿𝑖𝑠𝑡 . The evaluation of a
rule 𝑟𝑖 ∈ 𝑅𝑢𝑙𝑒 𝐿𝑖𝑠𝑡 produces the logit value of an action 𝑎𝑖 ∈ A.
Here, A represents the RL agent’s action set. The final Rule List
can be mathematically represented as follows.

𝑅𝑢𝑙𝑒 𝐿𝑖𝑠𝑡 :
[
𝑟

]
𝑛×1
←𝑊𝑒𝑖𝑔ℎ𝑡𝑠

���𝐿𝑎𝑦𝑒𝑟𝑀 × Ξ̂+

𝐵𝑖𝑎𝑠𝑒𝑠

���
𝐿𝑎𝑦𝑒𝑟𝑀

Here𝑊𝑒𝑖𝑔ℎ𝑡𝑠

���
𝐿𝑎𝑦𝑒𝑟𝑀

and 𝐵𝑖𝑎𝑠𝑒𝑠
���
𝐿𝑎𝑦𝑒𝑟𝑀

represent the weights and

biases of Layer-M of the modified policy network. Figure 4 depicts
the overall construction process of the Rule List.

Figure 4: Rule List Construction

2.5 Verification Strategy
As discussed in Section 1, we consider that a policy can be verified
if we can correctly compute that the output range of 𝑁 (®𝑥) (from Eq.
1) is safe. In this work, we use Sherlock [8] for statically computing
the output range of individual MAGNets. The calculated values are
then used to predict the output ranges of the rules, using which we
can identify possible action values for chosen input ranges.

The output range estimated by Sherlock is guaranteed to be
tight for a set of input ranges forming a polyhedron ([8], Theorem
1.1). Therefore, we consider standard region-based abstraction on
the inputs to improve the scalability of the verification process.
The state is defined over an n-dimensional hyperspace. We divide
the hyperspace by splitting each environment state variable into
multiple range segments based on a chosen granularity. The n-
dimensional ranges form hypercubes containing a subset of the
state space. Then, we use Sherlock to predict the output ranges of
the policy (see Figure 5a).

In the verification pass, the choice of input state space abstrac-
tion granularity controls the trade-off between the time required
for verification and the chance of obtaining deterministic actions
(for discrete action space) or more coarse-grained action ranges
(for continuous action space) with safety verification. For exam-
ple, consider an input space 𝑥 comprising two variables 𝑣1, 𝑣2 and

(a)

(b)

Figure 5: (a) MAGNets verification strategy using Sherlock.
(b) Verification result of MountainCar-v0 MAGNets policy
using Sherlock.

two actions [𝑎, 𝑏]. Assume 𝑁 (𝑥) = 𝑎 is a deterministic discrete
action when 𝑣1 ∈ [0, 2] ∧ 𝑣2 ∈ [0, 3] while 𝑁 (𝑥) = 𝑏 when
𝑣1 ∈ [3, 5] ∧ 𝑣2 ∈ [4, 8]. However, if we consider input ranges
at a coarser range, i.e., 𝑣1 ∈ [0, 5] ∧ 𝑣2 ∈ [0, 8], the action estimate
by range analysis would be nondeterministic, since 𝑁 (𝑥) = [𝑎, 𝑏].
For coarser input ranges, the number of hypercubes will be smaller,
requiring less time for verification, while the opposite can be said
for fine-grained input ranges that lead to more precise output esti-
mates.

For example, we consider the “MountainCar-v0” environment
taken fromOpenAI Gym Environments [6]. In Figure 5b, we plot the
action(s) predicted by Sherlock for each hypercube of input range
combinations for the “MountainCar-v0” environment’s MAGNets
policy. MountainCar-v0 has two observation variables, i.e., the
position of the car along the x-axis (POS-X) with a domain range
of (-1.2 to 0.6) and the velocity of the car (VEL) with a domain
range of (-0.07 to 0.07). We consider a granularity of 0.1 for the
axis POS-X and 0.01 for the axis VEL, which therefore divides
the state space into (18 × 14) or 252 two-dimensional hypercubes
(essentially rectangles in this case). The environment has three
discrete actions: ‘Left’ (←), ‘Right’ (→), and ‘No Action’ (−); others
are the combinations of such actions as shown in Figure 5b. We
can observe that with the above granularity of value ranges, a few
hypercubes have multiple actions. Those hypercubes can be split
into multiple smaller hypercubes until each hypercube has only
one predicted action. This aids in understanding whether the action

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2653

Table 1: Neurons and parameter counts of various policies for different Gym environments.

Environments
Original Policy Pruned Policy MAGNet Policy

Neurons
Count

Param
Count

Neurons
Count

% of PPO
Param used

Neurons/
MAGNet

% of PPO
Param used

CartPole-v1 64 1282 64 90 4 3.43
Acrobot-v1 128 4803 128 90 16 3.23
BipedalWalker-v3 128 6020 128 70 16 20.47
LunarLander-v2 128 4996 128 55 8 6.08
LunarLanderCont-v2 256 17922 256 50 8 1.10
MountainCar-v0 128 4547 128 65 16 10.82
MountainCarCont-v0 256 17025 256 35 16 0.62
Ant-v2 128 6472 128 70 8 15.95
HalfCheetah-v2 128 5702 128 95 8 8.56
Hopper-v2 128 5123 128 75 16 15.23
Humanoid-v2 128 29393 128 75 8 43.90
InvertedDblPendlm-v2 128 4993 128 80 8 4.39
InvertedPendulum-v2 128 4545 128 35 4 0.84
Reacher-v2 128 5058 128 95 6 3.32
Swimmer-v2 128 4866 128 90 8 5.43
Walker2d-v2 128 5702 128 85 16 18.94

is safe for each hypercube. The detailed verification strategy and
results for multiple environments are given in Appendix B.1.

3 EMPIRICAL STUDIES
We conduct various experiments on different OpenAI Gym [6]
environments with both continuous and discrete action spaces to
provide empirical support to the following claims:

• Compaction:OurMAGNets framework can capture the learned
policies with much fewer parameters and neurons than the
original policy network.
• Interpretability: The compaction attained leads to a simple
program-based representation of the learned policies. The
encoded states, as derived, have simple linear relations with
output actions. The above transformations aid the inter-
pretability of the learned policy.
• Verification: EachMAGNet used by our MAGNets framework
is sufficiently small (≤ 16 neurons) so that it can be verified
using existing verification methodologies.

3.1 Baselines
We consider three baselines to compare with the MAGNets frame-
work:

• Original Policy Network: We consider the original policy net-
work as a baseline to derive a (size, performance) comparison
with our MAGNets framework.
• Static Pruned Policy Network: In this approach, the original
policy network is sparsified by replacing the weights that
have very small values with zeros such that the pruned net-
work gives approximately similar returns as the original
policy network [11]. We use it as a baseline to demonstrate
size comparison with our MAGNets framework for similar
performance.

• Dagger-based Cloned Policy Network: We use Dagger-based
policy cloning or imitation learning method [24] to clone the
original policy network into a single MAGNet-sized neural
network. Using a Dagger policy with an equivalent amount
of neurons as combined MAGNets results in a network with
a large number of parameters. Our motivation is to retain
verifiability, assuming the system becomes unwieldy for ver-
ification beyond MAGNet-sized networks. We consider this
baseline to demonstrate the performance improvements in
terms of the reward of using a group of small neural net-
works over a single small neural network.

3.2 Evaluation Metrics
We consider the following metrics to compare our MAGNets Frame-
work with the baselines.

• Average Episodic Rewards: The performance of the RL algo-
rithms is generally represented using the cumulative reward
the RL Agents accumulate in an episode. Therefore, we con-
sider the average episodic reward over 100 test episodes a
metric.
• Neurons Count: This metric is calculated by the total number
of neurons in hidden layers of each neural network. For
our MAGNets framework, we can calculate this value by
multiplying the total number of MAGNets by the number of
nodes present in each MAGNet.
• Parameters Count: This metric counts the number of weights
and biases present in each neural network. We sum up the
number of parameters of the MAGNets corresponding to
non-zero Layer-M nodes to calculate the total number of
parameters.

Among these threemetrics, the first twometrics are used to evaluate
the performance of the underlying RL policy. At the same time,

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2654

Table 2: Avg. Episodic Reward ± Std. Deviation of the baselines and MAGNets policy over 100 episodes and four seeds for Gym
environments, and the environments’ input and output size.

Environments
State
Space
Size

Action
Space
Size

Layer-M
Size

MAGNets
Count

Average Rewards
Original
Policy

Pruned
Policy

Dagger
Policy

MAGNets
Policy

CartPole-v1 4 2 2 2 500 ± 0 500 ± 0 97 ± 18 500 ± 0
Acrobot-v1 6 3 1 1 −61.6 ± 0.2 −62.2 ± 0.6 −70 ± 3 −76.8 ± 0.9
BipedalWalker-v3 24 4 4 4 294 ± 10 256 ± 14 −14 ± 74 281 ± 8
LunarLander-v2 8 4 4 4 280 ± 1 246 ± 8 247 ± 7 260 ± 8
LunarLanderCont-v2 8 2 3 3 251 ± 2 244 ± 6 −43 ± 24 231 ± 3
MountainCar-v0 2 3 5 4 −100 ± 0.7 −101 ± 0.4 −200 ± 0 −99 ± 0.6
MountainCarCont-v0 2 1 1 1 93.3 ± 0 94.1 ± 0.1 0 ± 0 89.2 ± 0.4
Ant-v2 27 8 7 6 4533 ± 29 4344 ± 53 882 ± 7 4287 ± 20
HalfCheetah-v2 17 6 4 4 4807 ± 21 4813 ± 25 −92 ± 0 4570 ± 58
Hopper-v2 11 3 4 4 1285 ± 7 1297 ± 37 837 ± 3 1303 ± 29
Humanoid-v2 376 17 9 8 803 ± 19 741 ± 11 290 ± 1 862 ± 14
InvertedDblPendlm-v2 11 1 4 3 9336 ± 46 9358 ± 0 840 ± 46 9356 ± 1
InvertedPendulum-v2 4 1 4 2 1000 ± 0 1000 ± 0 1000 ± 0 1000 ± 0
Reacher-v2 11 2 4 3 −5.5 ± 0.3 −5.7 ± 0.3 −7 ± 0.2 −5.1 ± 0.2
Swimmer-v2 8 2 4 4 132 ± 0 129 ± 0 68 ± 0 122 ± 0
Walker2d-v2 17 6 4 4 2091 ± 25 2162 ± 118 477 ± 0 1898 ± 98

the number of neurons is used to determine the verifiability of the
neural network. Finally, the parameter count is used to define the
compactness of the learned policy.

3.3 Experiments on Gym Environments
Table 1 shows the size of the Neural Networks in terms of the num-
ber of neurons and the number of parameters of our MAGNets
framework against the baselines for various environments taken
from MuJoCo, Classic Control, and Box2D groups of environments
from OpenAI Gym [6]. We observe that the number of neurons for
each MAGNet is very small compared to the original policy net-
work and the pruned policy network for all the environments. For
environments like “CartPole-v1” and “InvertedPendulum-v2”, the
number of neurons is only 6.25%, and for “LunarLanderContinuous-
v2” it is only 3.13% of the original policy network. On average, the
neuron count of each MAGNet varies between four to sixteen (for
comparable performance) or “7.7%” of original policy networks.
Similar trends can be seen in the case of parameter count. Each
MAGNet has a substantially lesser number of parameters than the
original policy network, with around “2.66%”, and “Humanoid-v2,”
which has the highest “11%” (due to its large input space size). How-
ever, when all the MAGNets of the Rule List are considered, then it
averages around “11.16%” with “Humanoid-v2” having the highest
percentage of parameters “43.9%” (due to its large input space size)
and “MountainCarContinuous-v0” having the lowest percentage
of parameters “0.62%” compared to the respective original policy
network.

In Table 2, we give each environment’s state space and action
space size along with Layer-M size and MAGNets counts. During
MAGNets training, we do not train any MAGNet for the zero neu-
rons in Layer-M. Therefore, with the column heading ‘MAGNets

count,’ we mean the number of zero neurons in Layer-M. Table 2
shows the performance in terms of Average Episodic Reward (over
100 episodes) ± Standard Deviation over four different seeds for the
same Gym environments of Table 1. OurMAGNets framework gives
similar rewards as the original PPO policies (with ±5%) for most of
the environments. For a few environments, it goes up to ±(7 𝑡𝑜 9)%
except for the “Acrobot-v1” environment. In the “Acrobot-v1” envi-
ronment, the MAGNets framework gives “25%” less reward than the
original PPO and pruned policies. Our MAGNets Policy also works
better regarding rewards than the Dagger-based cloned policy for
most of the Gym environments except the “Acrobot-v1” environ-
ment, where the Dagger-based clone policy achieves better rewards,
but the difference is not too big. For the “InvertedPendulum-v2”
environment, both collect the same rewards. However, the MAG-
Nets policy achieves much better rewards for the rest of the envi-
ronments than the Dagger-based cloned policy. The results from
Table 1 and Table 2 give the empirical evidence of our first claim,
“Compaction.” Another important observation from Table 2 is the
number of MAGNets required (MAGNets Count column) for MAG-
Nets policy is about the same as the Action Space Size for all the
environments except for the “Humanoid-v2” environment. For this
environment, the action space size is large (seventeen), but the
number of required MAGNets counts (eight and four, respectively)
is much smaller.

Sometimes, we consider a slightly larger Layer-M size than the ac-
tion space size to perform similarly to the original PPO network. In
the case of InvertedPendulum-v2, a MAGNet-sized network trained
using DAGGER achieves similar performance as theMAGNet frame-
work with two MAGNets. However, in some of those cases, the
MAGNets policy performs better than the similar sized logits-based

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2655

Table 3: PyTorch Profiling. Times in 𝜇s and memories in Kb.

Env Name PPO Time
(CPU+GPU)

MAGNets Time
(CPU+GPU)

PPO
Memory

MAGNets
Memory

MountainCar
Continuous-v0 (906+1191) (120+118) 2017.28 109.38
LunarLander
Continuous-v2 (993+1325) (189+316) 2037.76 230.47

Table 4: Varying Layer-M Size while MAGNets Size is Fixed

Env Name Layer-M
Size

Magnet
Size

Reward
PPO

Reward
MAGNets

Ant-v2
4 4x4 4482.52 2286.3
10 4x4 4482.52 3966.27
14 4x4 4482.52 4636.13

Hopper-v2
2 8x8 1286 199.46
3 8x8 1286 274
4 8x8 12864 1273.8

HalfCheetah-v2
1 4x4 4876.75 825.03
2 4x4 4876.75 4419.72
4 4x4 4876.75 4614.9

policy. For example, in the case of InvertedDblPendlm-v2, the MAG-
Net policy (with three MAGNet) achieves far better performance
than a MAGNet-sized network trained using DAGGER. This justi-
fies using “Layer-M” instead of the output values in our framework.

In Table 3, we shown statistics from the PyTorch profiler for both
PPO and MAGNets executed in our server. From the results, it is
clear that the MAGNets-based policies have a far better advantage
in execution time and a much lesser memory footprint (10-20 times
faster).

3.4 Varying Layer-M Size, Fixed MAGNets Size
We have conducted a few experiments to test the sensitivity of our
framework for the Layer-M Size hyperparameter. In Table 4 we
provide performance comparison between PPO Policy and MAG-
Nets Policy while varying the size of Layer-M, keeping the size
of individual MAGNets fixed. The fixed MAGNet size is provided
in column 3 of Table 4. As the Layer-M size grows, the MAGNets
policy learns more and more rewards for “Ant-v2” and “Hopper-v2”,
but the gains get plateaued for “HalfCheetah-v2”.

3.5 Varying MAGNets Size, Fixed Layer-M Size
We have also conducted a few experiments to test the sensitivity
of our framework for the MAGNets size hyperparameter. In Table
5 we vary the size of MAGNets while keeping the Layer-M size
fixed and provide performance comparison between PPO Policy
and MAGNets Policy. It is evident (from the rewards in bold-face)
that with suitable choice of MAGNets size performance similar to
PPO policy can be obtained.

In general, Table 4 and Table 5 also demonstrates the trade-off
between the choice of network dimensions and rewards obtained.
PPO-like rewards are attained with larger Layer-M or larger MAG-
Nets size, even though the networks are still much smaller in com-
parison with PPO. Choosing the suitable Layer-M and MAGNets

Table 5: Effect of varying MAGNets Size while Layer-M Fixed

Env Name Layer-M
Size

Magnet
Size

Reward
PPO

Reward
MAGNets

Acrobot-v1
1 6x6 -61.74 -78.86
1 8x8 -61.74 -76.82
1 10x10 -61.74 -70.34

BipedalWalker-v3
4 4x4 298.85 222.04
4 6x6 298.85 276.23
4 8x8 298.85 280

LunarLander-v2
4 2x2 276.14 170.59
4 3x3 276.14 180.84
4 4x4 276.14 260

sizes requires tuning to achieve satisfactory rewards on a target
platform. This is enabled by the proposed method.

3.6 Edge Devices Compatibility
Given the portability advantage of MAGNet policies, we gather
execution statistics for the same using Edge platforms like Ar-
duino Uno R3 and Nvidia Jetson Nano. For such cases, Table 6
shows the average time and memory taken by the Original PPO
Policy and MAGNets Policy for each iteration during testing in
“LunarLanderContinuous-v2” and “MountainCarContinuous-v0”
environments. Due to memory constraints, PPO policies for both
environments failed to run in Arduino Uno. This shows that the
MAGNets-based policies are advantageous in terms of both execu-
tion time (100 times faster) andmemory footprint. Hence, our policy
networks are suitable for low-power lightweight platforms that are
useful in various Cyber Physical Systems (CPS) applications.

3.7 Rule List Representation
As discussed in section 2.4, the policy outputs can be represented us-
ing a simple set of rules. For example, the rules of the “MountainCar-
v0” environment are shown below.

𝑟1 =0 + (−1.261 ×𝑀2) + (−1.258 ×𝑀3)+
(1.243 ×𝑀4) + (−1.206 ×𝑀5) + 0.524

𝑟2 =0 + (−0.650 ×𝑀2) + (−0.575 ×𝑀3)+
(−0.525 ×𝑀4) + (0.283 ×𝑀5) + 0.060

𝑟3 =0 + (1.290 ×𝑀2) + (1.010 ×𝑀3)+
(−0.925 ×𝑀4) + (0.923 ×𝑀5) − 0.654

Each 𝑀𝑖 is a relatively simple NN-based mapping from the envi-
ronment state ®𝑥 to encoded state Ξ𝑖 . In this example,𝑀1 happens
to be a zero neuron; hence, the respective term is omitted. Each
rule (𝑟1, 𝑟2, 𝑟3) returns the logit values of the corresponding action
(𝑎0, 𝑎1, 𝑎2). Since “MountainCar-v0” is a discrete-action environ-
ment, we consider the 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑟1, 𝑟2, 𝑟3) value as the action of the
MAGNets policy. In general, one can thus argue that the Rule List
representation can be easily expanded into a conventional program
block, as Appendix A.1 shows. This feature makes MAGNets poli-
cies interpretable, similar to program representations synthesized
for NNs in [22, 30].

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2656

Table 6: Average Time and Memory taken by Original PPO Policy and MAGNets Policy for each iteration during testing in
LunarLanderContinuous and MountainCarContinuous environments.

Environment Policy Edge Device Arduino Uno R3 Jetson Nano

Iterations Average
Time (ms)

Memory
(bytes)

Average
Time(ms)

LunarLander
Continuous

PPO
Policy

100 NA NA 337
1000 NA NA 335
10000 NA NA 351

MAGNets
Policy

100 3.07 751 4
1000 3.06 751 5
10000 3.06 751 4

MountainCar
Continuous

PPO
Policy

100 NA NA 333
1000 NA NA 332
10000 NA NA 330

MAGNets
Policy

100 0.96 1327 2
1000 0.94 1327 2
10000 0.95 1327 2

4 RELATEDWORKS
DNN Pruning and Knowledge Distillation: Pruning [9] and
knowledge distillation methods [2], [12] are used to compress a
trained DNN. In contrast to our approach, this method only focuses
on reducing the parameters but does not consider reducing the
neurons. The knowledge distillation-based method in [2] trains
a shallow neural network that mimics the original deep neural
network behaviors. However, the number of neurons ranges from
8k to 400k. The authors in [12] propose to train multiple neural
networks or an ensemble of models and then distill the knowledge
of the ensemble of models into a single compact model. This helps
to achieve ensemble-like accuracy but with a compact single model.
Compared to our method, we distilled the knowledge of a bigger
neural network into multiple compact neural networks and then
considered all the neural networks together to estimate the output.
Imitation Learning: Behavior Cloning/Imitation Learning [26]
based methods are used in RL to reduce the sample complexity
via expert advice to achieve the intended behavior. The dataset
aggregation or Dagger [24] algorithm proposed an iterative ap-
proach that samples new trajectories based on a weighted average
of expert policy and target policy. However, it uses expert policy
to determine the actions of the states present in the trajectories.
These new trajectories and actions aggregated with the previous
trajectories are used to update the target policy. Compared to this,
in our framework, rather than directly mimicking the expert policy
using a single neural network, we consider learning the interme-
diate representation of an input state by the expert policy using
multiple compact neural networks.
DNN Verification: Currently, several tools customized for DNN
verification are available. One such pioneer tool is Reluplex [15], an
SMT solver customized for verifying DNNs with only ReLU activa-
tion function for all neurons. The authors in [1] use Marabou [16],
another SMT-based DNN verifier in their whiRL 2.0 algorithm for
DNN verification. On the other hand, [8] uses Mixed Integer Linear
Programming (MILP) to calculate the output range of a DNN for
a given input range. The authors in [14] [13] propose the Verisig

tool that uses a hybrid system for safety properties for closed-loop
systems that use DNN as a controller.

All the above tools suffer from scalability with the growing size
(in terms of neurons) of the neural networks. However, MAGNets
use small neural networks with ReLU as activation functions; there-
fore, these tools can be effectively used for verification. Also, as a
MAGNets policy can be converted into a conventional program,
program verification tools [17] can be used for verification.

5 CONCLUSION
We evaluate our framework on different Gym environments and
present a comparative study with the original policy network, ran-
domly pruned policy network, and Dagger-based cloned policy. We
show that the MAGNets framework achieves similar performance
with fewer parameters. In summary, our framework provides the
following advantages.

• Convert policies suitable for edge devices: A large DRL policy
has many interconnected dependencies that impede data
parallel high-performance computation. On the other hand,
as each MAGNet is lightweight and independent, they can be
executed in parallel on embedded GPGPU platforms while
avoiding synchronization barrier overheads, thus providing
energy, latency, and memory resource benefits.
• Build verifiable and interpretable safety-critical policies: Em-
pirically, we establish MAGNets as a collection of Light-
weight NNs that approximate the original policy network, a
property that makes them verifiable and interpretable. More-
over, this structural decomposition can aid in determining
the regions where the learned policy fails to ensure safety.

This work opens two important future avenues. The MAGNet size
and state space granularity for verification can be treated as hyper-
parameters and tuned using optimization frameworks. The struc-
ture of MAGNets can be iteratively refined based on the verification
results.

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2657

REFERENCES
[1] Guy Amir, Michael Schapira, and Guy Katz. 2021. Towards Scalable Verification

of Deep Reinforcement Learning. 2021 Formal Methods in Computer Aided Design
(FMCAD) (2021), 193–203.

[2] Jimmy Ba and Rich Caruana. 2014. Do Deep Nets Really Need to be
Deep?. In Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.), Vol. 27. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2014/file/
ea8fcd92d59581717e06eb187f10666d-Paper.pdf

[3] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable Re-
inforcement Learning via Policy Extraction. In Neural Information Processing
Systems.

[4] Andrew Bell, Ian Solano-Kamaiko, Oded Nov, and Julia Stoyanovich. 2022.
It’s Just Not That Simple: An Empirical Study of the Accuracy-Explainability
Trade-off in Machine Learning for Public Policy. In 2022 ACM Conference on
Fairness, Accountability, and Transparency (Seoul, Republic of Korea) (FAccT
’22). Association for Computing Machinery, New York, NY, USA, 248–266.
https://doi.org/10.1145/3531146.3533090

[5] Yoshua Bengio et al. 2009. Learning deep architectures for AI. Foundations and
trends® in Machine Learning 2, 1 (2009), 1–127.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. ArXiv abs/1606.01540
(2016). https://api.semanticscholar.org/CorpusID:16099293

[7] Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Push-
meet Kohli. 2018. Leveraging Grammar and Reinforcement Learning for Neural
Program Synthesis. ArXiv abs/1805.04276 (2018).

[8] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. 2019. Sherlock - A Tool for Verification of Neural Network Feedback
Systems: Demo Abstract. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control (Montreal, Quebec, Canada) (HSCC
’19). Association for Computing Machinery, New York, NY, USA, 262–263. https:
//doi.org/10.1145/3302504.3313351

[9] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net. https://openreview.net/forum?id=rJl-b3RcF7

[10] Abhiroop Ghosh, Yashesh Dhebar, Ritam Guha, Kalyanmoy Deb, Subramanya
Nageshrao, Ling Zhu, Eric Tseng, and Dimitar Filev. 2021. Interpretable AI
Agent Through Nonlinear Decision Trees for Lane Change Problem. In 2021 IEEE
Symposium Series on Computational Intelligence (SSCI). 01–08. https://doi.org/10.
1109/SSCI50451.2021.9659552

[11] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. arXiv: Computer Vision and Pattern Recognition (2015).

[12] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. ArXiv abs/1503.02531 (2015).

[13] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural network
controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 169–178.

[14] Radoslav Ivanov, James Weimer, Oleg Sokolsky, and Insup Lee. 2018. Demo:
verisig - verifying safety properties of hybrid systems with neural network
controllers. Proceedings of the Workshop on Design Automation for CPS and IoT
(2018).

[15] Guy Katz, Clark W. Barrett, David L. Dill, Kyle D. Julian, and Mykel J. Kochender-
fer. 2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
In International Conference on Computer Aided Verification.

[16] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, HaozeWu, Aleksandar Zeljić, David L.

Dill, Mykel J. Kochenderfer, and Clark Barrett. 2019. The Marabou Framework
for Verification and Analysis of Deep Neural Networks. In Computer Aided
Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing,
Cham, 443–452.

[17] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (jul 1976), 385–394. https://doi.org/10.1145/360248.360252

[18] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, PatrickMannion, AhmadA. Al Sallab,
Senthil Yogamani, and Patrick Pérez. 2022. Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation
Systems 23, 6 (2022), 4909–4926. https://doi.org/10.1109/TITS.2021.3054625

[19] William Koch, Renato Mancuso, Richard West, and Azer Bestavros. 2018. Re-
inforcement Learning for UAV Attitude Control. ACM Transactions on Cyber-
Physical Systems 3 (2018), 1 – 21.

[20] Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles
Kamhoua, Evangelos E Papalexakis, and Fei Fang. 2023. MAVIPER: Learning
Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning. In
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part IV.
Springer, 251–266.

[21] Ananya Paul, Krishnendu Bera, Devtanu Misra, Sattwik Barua, Saurabh Singh,
Nishu Nishant Kumar, and Sulata Mitra. 2021. Intelligent Traffic Signal Man-
agement Using DRL for a Real-Time Road Network in ITS. In 2021 Thirteenth
International Conference on Contemporary Computing (IC3-2021) (Noida, India)
(IC3 ’21). Association for Computing Machinery, New York, NY, USA, 417–425.
https://doi.org/10.1145/3474124.3474187

[22] Wenjie Qiu and He Zhu. 2022. Programmatic Reinforcement Learning without
Oracles. In International Conference on Learning Representations.

[23] Partha Pratim Ray. 2022. A review on TinyML: State-of-the-art and prospects.
Journal of King Saud University - Computer and Information Sciences 34, 4 (2022),
1595–1623. https://doi.org/10.1016/j.jksuci.2021.11.019

[24] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. 2010. A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning. In
International Conference on Artificial Intelligence and Statistics.

[25] Iqbal H Sarker. 2021. Deep learning: a comprehensive overview on techniques,
taxonomy, applications and research directions. SN Computer Science 2, 6 (2021),
420.

[26] Stefan Schaal. 1999. Is imitation learning the route to humanoid robots? Trends
in cognitive sciences 3, 6 (1999), 233–242.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. ArXiv abs/1707.06347 (2017).

[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. nature 550,
7676 (2017), 354–359.

[29] Filip Svoboda, David Nunes, Milad Alizadeh, Russel Daries, Rui Luo, Akhil Mathur,
Sourav Bhattacharya, Jorge Sa Silva, and Nicholas Donald Lane. 2021. Resource
Efficient Deep Reinforcement Learning for Acutely Constrained Tiny{ML} De-
vices. In Research Symposium on Tiny Machine Learning. https://openreview.net/
forum?id=_vo8DFo9iuB

[30] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri. 2018. Programmatically interpretable reinforcement learning.
In International Conference on Machine Learning. PMLR, 5045–5054.

[31] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine
Learning 8, 3 (01 May 1992), 279–292. https://doi.org/10.1007/BF00992698

[32] Zidong Zhang, Dongxia Zhang, and Robert C. Qiu. 2020. Deep reinforcement
learning for power system applications: An overview. CSEE Journal of Power and
Energy Systems 6, 1 (2020), 213–225. https://doi.org/10.17775/CSEEJPES.2019.
00920

AAAI Track AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2658

https://proceedings.neurips.cc/paper_files/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf
https://doi.org/10.1145/3531146.3533090
https://api.semanticscholar.org/CorpusID:16099293
https://doi.org/10.1145/3302504.3313351
https://doi.org/10.1145/3302504.3313351
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1109/SSCI50451.2021.9659552
https://doi.org/10.1109/SSCI50451.2021.9659552
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1145/3474124.3474187
https://doi.org/10.1016/j.jksuci.2021.11.019
https://openreview.net/forum?id=_vo8DFo9iuB
https://openreview.net/forum?id=_vo8DFo9iuB
https://doi.org/10.1007/BF00992698
https://doi.org/10.17775/CSEEJPES.2019.00920
https://doi.org/10.17775/CSEEJPES.2019.00920

	Abstract
	1 Introduction
	2 The MAGNets Framework
	2.1 Policy Training
	2.2 Dataset Generation
	2.3 MAGNets Construction and Training
	2.4 Rule List Generation
	2.5 Verification Strategy

	3 Empirical Studies
	3.1 Baselines
	3.2 Evaluation Metrics
	3.3 Experiments on Gym Environments
	3.4 Varying Layer-M Size, Fixed MAGNets Size
	3.5 Varying MAGNets Size, Fixed Layer-M Size
	3.6 Edge Devices Compatibility
	3.7 Rule List Representation

	4 Related Works
	5 Conclusion
	References

