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ABSTRACT
Research in multi-objective reinforcement learning (MORL) has
introduced the utility-based paradigm, which makes use of both
environmental rewards and a function that defines the utility de-
rived by the user from those rewards. In this paper we extend this
paradigm to the context of single-objective reinforcement learning
(RL), and outline multiple potential benefits including the ability to
perform multi-policy learning across tasks relating to uncertain ob-
jectives, risk-aware RL, discounting, and safe RL. We also examine
the algorithmic implications of adopting a utility-based approach.
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1 INTRODUCTION
Multi-objective reinforcement learning (MORL) has emerged as an
important sub-field of reinforcement learning (RL) [13, 24]. So far
knowledge has flowed primarily from single-objective RL (SORL)
into MORL, with SORL algorithmic innovations being adapted to
the context of multiple objectives [2, 6, 22, 34]. This paper counters
that trend, as we argue that the utility-based paradigm widely used
in MORL [5, 13, 21], has relevance and benefits to SORL. We present
a general framework for utility-based RL (UBRL), unifying SORL
and MORL, and discuss benefits for single-objective problems –
in particular the potential for multi-policy learning which allows
greater flexibility and decision-maker control over the behaviour of
agents. We also highlight lessons from MORL research regarding
the algorithmic implications of a utility-based approach as a guide
to future single-objective UBRL research.

2 FORMALISING UTILITY-BASED RL
2.1 MDPs, MOMDPs and Optimisation criteria
SORL and MORL share a common foundation in the assumption
that the environment can be represented as some form of Markov
Decision Process (MDP). In the single objective case, a MDP is
represented by the tuple ⟨𝑆,𝐴,𝑇 ,𝛾, 𝜇, 𝑅⟩, where:

• 𝑆 is the state space and 𝐴 is the action space
• 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is a probabilistic transition function
• 𝛾 ∈ [0, 1) is a discount factor
• 𝜇 : 𝑆 → [0, 1] is a probability distribution over initial states
• 𝑅 : 𝑆 ×𝐴 × 𝑆 → R is a scalar-valued reward function
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For a single-objective problem of this nature, the agent’s aim is
to discover a policy 𝜋 which maximises either the finite-horizon
undiscounted reward (Equation 1), the infinite-horizon cumulative
discounted reward (Equation 2), or the average reward (Equation 3).
We note that the choice of criteria to optimise is made by the system
designer, rather than being an inherent property of the MDP itself.

𝑉𝜋 = E

[
𝑁−1∑
𝑖=0

𝑟𝑖

����� 𝜋, 𝜇
]

(1)
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(3)

MORL differs from SORL in being based on the concept of aMulti-
Objective Markov Decision Process (MOMDP). This is identical to
a MDP in all respects other than the reward, where rather than a
scalar reward 𝑅 : 𝑆 ×𝐴 × 𝑆 → R, the MOMDP has a vector-valued
reward function R : 𝑆 ×𝐴 × 𝑆 → R𝑑 which specifies the immediate
reward for each of the 𝑑 objectives.

The optimisation criteria in Equations 1–3 are insufficient for a
MOMDP, as they only provide a partial-ordering over the vector
values. Therefore the utility-based paradigm for MORL assumes
the existence of a utility function (sometimes called a scalarisation
function) 𝑢, which maps the multi-objective value of a policy to a
scalar value [13]. Note that the details of this utility function may
or may not be available in advance – in the latter case the agent
may need to identify a set of policies which would be optimal under
different parameterisations of the utility function. We will denote a
parameterised utility function as 𝑢𝜔 .

Given the existence of 𝑢 we can define two alternative optimi-
sation criteria, depending on the stage at which 𝑢 is applied (the
reasoning for this distinction will be discussed further in Section
5)1. Equation 4 defines the scalarised expected reward (SER) where
𝑢 is applied to the expected vector reward, whereas Equation 5
defines the expected scalarised reward, where 𝑢 is applied inside
the expectation operator. In either case, these equations provide a
scalar value which defines a total ordering over policies.

𝑉 𝜋
𝑢 = 𝑢

(
E

[ ∞∑
𝑖=0

𝛾𝑖r𝑖
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])
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(5)

2.2 Utility-based RL as a general framework
In the previous subsection we highlighted the differences between
conventional single-objective RL and utility-based MORL. We now
consider the commonalities between these approaches, and argue

1Note that these equations relate to the infinite-horizon discounted return which has
been the most widely studied criteria in the MORL literature. Similar utility-based
equations can readily be defined for the finite-horizon and average-reward criteria.

that utility-based RL provides a general framework which encom-
passes both SORL and MORL2.

We start with the straightforward observation that MDPs are
a subclass of MOMDPs. Any MDP can be mapped to an equiv-
alent MOMDP with a reward function Which consists of a one-
dimensional vector R = [𝑅].

Having done this conversion, then utility-based methods such
as those defined in terms of the optimisation criteria in Equations 4
and 5 can be applied to the resultant MOMDP. More generally we
might consider any utility function which maps from the expected
mean rewards or the expected distribution of rewards to a scalar
value – we will explore examples of this in Sections 4.2 and 4.3. In
addition the utility function may itself be parameterised, so that a
set of policies would be required in order to optimise the criteria
across all possible instantiations of 𝑢.

We note that some authors have previously criticised approaches
such as MORL and risk-aware RL as “special cases” [25], and we
anticipate that similar criticisms may be levelled at UBRL. To the
contrary, we argue that the UBRL framework presented here is a
strict generalisation of prior RL frameworks. It can encompass stan-
dard scalar-reward RL by simply setting the number of objectives
𝑛=1 and the utility function 𝑢 to the identity function, while also
supporting other more complex forms of RL, such as MORL.

3 MOTIVATION FOR UTILITY-BASED SORL
While it is clear that SORL problems can be represented within the
UBRL framework, the question remains as to whether this is an
unnecessary complication, or whether it provides tangible benefits.

One advantage of a utility-based paradigm is that it can simplify
the task of reward engineering [8] – that is, designing rewards in
such a way that maximising them induces the desired behaviour
from an RL agent. In many cases it may be easy to identify events
(significant changes in state) within the MDP for which rewards
should be provided (e.g. picking up an object). But the task of tailor-
ing the magnitude of those rewards and the choice of optimisation
criteria to engender the desired behaviour is non-trivial (see for
example [16]). Consider an environment with gold nuggets of dif-
fering size at varying distances from the starting location. Whether
an agent prioritises collecting nearby low-value objects over more
distant, higher-valued objects will depend both on the relative mag-
nitude of the rewards and factors of the optimisation criteria, such
as the choice of discounting parameter. The utility-based frame-
work separates the specification of the rewards within the MDP (i.e.
defining the environment) from the definition of utility (i.e. defining
the desired outcome), which may make the reward engineer’s task
easier.

This is particularly true considering that MORL research has
found that a key benefit of a utility-based approach is that it allows
for the creation of multi-policy algorithms [13]. Rather than aiming
to learn a single policy optimal for a specific definition of utility,
multi-policy algorithms instead consider a set of possible utility
functions 𝑈 = {𝑈1, ..,𝑈𝑚}, and produce a coverage set of policies
such that the agent has an optimal policy for every member of 𝑈 .

2The name ‘utility-based is not intended to imply that standard SORL is not maximising
a measure of utility, but to emphasise our framework’s explicit consideration of user-
utility. In standard SORL the choice of optimisation criteria is made by the developer
whereas in multi-policy UBRL the final decision rests with the end-user.
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Learning multiple policies in this way is not possible within con-
ventional SORL, and so represents a novel contribution of the UBRL
framework that greatly enhances the RL process. We can define
an MDP with a simple reward structure, learn multiple policies for
that MDP based on a variety of different definitions of utility, and
then select the utility function which produces the most desirable
outcomes. This will be significantly easier than trying to specify
a priori the rewards required to produce the desired behaviour. It
also means that the final decision can be left in the hands of the
ultimate user of the system, rather than inappropriately requiring it
to be made by the system engineers [32]. In addition this provides
flexibility should the desired behaviour change over time, as a new
policy can be selected without any need for further learning.

The benefits of multi-policy learning may also be realised at
relatively little additional cost. The utility-based approach allows
for inner-loop multi-policy methods, in which the multiple policies
are learned in parallel [13]. For example, the Conditioned Network
algorithm trains a single Deep Q-Network, conditioned on both
the current MOMDP state and the values of the parameters 𝜔 of
the utility function. Experiences gained while following the policy
for one value of 𝜔 are leveraged to update Q-values for policies
conditioned on different values of 𝜔 . This greatly increases the
sample-efficiency of these methods.

4 POTENTIAL SINGLE-OBJECTIVE
APPLICATIONS OF UTILITY-BASED RL

In this section we will discuss several potential applications of the
utility-based paradigm within SORL. These are intended as repre-
sentative examples where UBRL provides benefits, rather than an
exhaustive list. These represent both a reframing of existing con-
cepts such as risk-aware RL to the UBRL framework, as well as more
novel concepts made possible by the adoption of this framework.

4.1 Multi-policy methods for hard-to-define
objectives

Consider the scenario of a mining company which has the choice
between carrying out its usual operations or following a riskier
course of action that can potentially lead to a lot of the resource
being mined (e.g., committing most of the workforce to exploratory
excavation). The company has outstanding contracts that commit
it to sell a given amount to certain costumers at a set price and
leading to an incurred penalty if these amounts are not delivered.

There are various ways to address this using standard RL:

• Wemight model this as constrained RL [10], where the fulfill-
ment of contracts is an inviolable constraint. But perhaps this
is overly restrictive, as the management may be prepared to
breach contracts if the potential pay-off is sufficiently high?

• It could be modelled as a SORL problem, with a positve
reward for the value of the resource, and a negative penalty
for unfulfilled contracts. The agent might select the riskier
action if the potential gain offsets the contractual penalty.
But such an approach might fail to account for longer-term
reputational damage arising from unfulfilled contracts.

• MORL methods could model reputational harm as a further
objective, but this may be difficult to define quantitatively.

As a result, the preferred approach of the company’s manage-
ment might be to generate a set of alternative policies using UBRL,
and make an a posteriori decision about which policy to follow.
This could be accomplished by defining the reward in terms of
the quantity of the resource mined, and then specifying the utility
function as in Equation 6, where 𝑑 is the monetary value of each
unit of the resource, 𝑐 (·) is a binary function returning 1 if the
contract terms are breached and 0 otherwise, 𝑝 is the penalty for
breaching the contract, and ℎ is an estimate of the financial impact
of the reputational harm caused by a contract breach.

𝑢ℎ = 𝑑 ∗
𝑁−1∑
𝑖=0

𝑟𝑖 − 𝑐 (
𝑁−1∑
𝑖=0

𝑟𝑖 ) ∗ (𝑝 + ℎ) (6)

Note that the utility term 𝑢 is conditioned on the value of ℎ.
Rather than learning an optimal policy for a single estimate of cost
of the reputational harm, this utility-based formulation enables the
UBRL agent to learn multiple policies, each optimal with respect to
a different estimated value of ℎ. The multiple policies produced via
this process would then be presented to the management, allowing
them to make an informed decision about the best policy to exe-
cute. Existing multi-policy MORL methods such as the Conditioned
Network approach of [1] could readily be adapted to this task by
conditioning Q-values and policies on ℎ.

4.2 Multi-policy risk-aware RL
Many authors have investigated risk-aware RL agents – that is,
agents which apply some awareness of risk during their decision-
making rather than simply aiming to maximise the expected return.
A common approach to address this problem is to use a distribu-
tional form of RL [3, 15, 17, 19], which learns the distribution of
future returns from any state rather than just the mean expected
return. These approaches can take into account various aspects
of this distribution when identifying the optimal policy (e.g. best
worst case, more than 60% chance of profit, etc.) [7, 9, 11, 14, 33].

Again we would argue that this approach is already utility-based,
as the choice of constraints applied to the distribution represents the
definition of the utility function. Conventional SORL approaches
to risk-awareness assume that these constraints are fixed a priori,
and learn a single policy which is optimal under those constraints.
In contrast a UBRL approach would learn, in parallel using multi-
policy methods, a set of policies which are optimal under different
risk-sensitivity preferences. These could then be presented to a
human decision-maker for selection of the policy to be executed.

For example, consider the conditional value at risk (CVaR) (Equa-
tion 7), which is widely-used as an optimisation criteria in risk-
aware RL [26]. 𝑍 is the distribution of future returns, and 𝛼 ∈ [0, 1]
is a parameter controlling the risk-sensitivity of the agent. In con-
ventional risk-aware RL, the value of 𝛼 is fixed and a single optimal
policy is found. If we instead treat CVaR𝛼 as a utility function
parameterised by 𝛼 , we can apply multi-policy methods to find
policies with a diverse range of different sensitivities to risk, and
then allow a human decision-maker to select their preferred policy.

CVaR𝛼 (𝑍 ) = E [𝑍 | 𝑍 ≤ VaR𝛼 (𝑍 )] (7)
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4.3 Multi-policy discounting
We noted earlier in Section 2 that the choice of optimisation crite-
ria used in SORL (undiscounted sum, discounted sum, or average
reward) is made by the system designer/user rather than being an
inherent property of the MDP itself. As such, this decision could
in itself be regarded as a definition of user utility, although it usu-
ally is not framed as such. Similarly we would contend that the
discounting term 𝛾 used in Equation 2 can be viewed as a form of
utility definition. This term does not originate from the MDP itself,
and two agents using different discounting rates may well derive
differing optimal policies from the same MDP. Conventional SORL
requires that the discounting rate be fixed prior to learning, and the
impact of this choice on the final policy is not evident to the user.
The only way to gain insight into the effect of the discounting rate
on the agent’s behaviour is to subsequently train another agent on
the same MDP using a different value for 𝛾 which is inefficient.

Alternatively we could parameterise the utility function on 𝛾

as in Equation 8, and use multi-policy UBRL to simultaneously
learn optimal policies for multiple values of 𝛾 . These can then be
presented to the user, allowing them to make a fully informed
choice of the appropriate policy3

𝑢𝛾 =

∞∑
𝑖=0

𝛾𝑖𝑟𝑖 (8)

4.4 Satisficing agents
AI safety researchers have argued that ‘hard optimizers’ like con-
ventional RL can be unsafe, as their focus on maximising their
reward may lead to adverse side-effects if the rewards are not fully
aligned with the desired behaviour [28, 29]. This has lead to interest
in satisficing agents which are not incentivised to over-optimise
[12]. For example, in a multi-agent resource-gathering task we
might disincentivise an agent from collecting more resources than
it actually needs so as to avoid adversely impacting others. In the
context of MORL satisficing has been implemented by causing the
agent to switch emphasis between objectives once a suitable level
of return has been achieved for each objective. This can either use
hard thresholding as in [31] or a non-linear utility which reduces
the weight of objectives as higher returns are achieved [27].

These approaches are not directly applicable to SORL due to the
lack of alternative objectives. For example, reducing the gradient
of the utility function as in [27] would not disincentivise the agent
from still trying to maximise it. So for safe SORL we might need to
consider the concept of a non-monotonic utility function where the
utility actually falls in value after a satisfactory amount of reward
has been received, as shown in Equation 9.

𝑢𝜔 = −|𝜔 −
∞∑
𝑖=0

𝛾𝑖𝑟𝑖 | (9)

This could of course also be achieved via changing the reward
definition within the MDP. However that approach would not be
amenable to multi-policy learning whereas a multi-policy UBRL
algorithm could simultaneously learn optimal policies for various
3We note that the utility definition in Equation 8 differs from both forms of utility
previously used in MORL (Equations 4 and 5), in that it is the per-time-step reward,
rather than the summed return, that is being transformed.

values of the threshold 𝜔 , allowing insight into the appropriate
value of 𝜔 which will produce the desired safe behaviour while still
performing to a satisfactory level in terms of the actual task.

5 IMPLICATIONS OF NON-LINEAR UTILITY
The benefits of utility-based learning described earlier do not come
without some additional considerations. Research in utility-based
MORL has identified several issues which need to be taken into
account when designing and applying UBRL methods, particularly
when using non-linear forms of 𝑢, such as that in Equation 9.4

One fundamental issue relates to the selection of the optimi-
sation criteria. For tasks where we care about the outcome on a
per-episode basis then the Expected Scalarised Return (ESR) de-
fined in Equation 5 is most appropriate, whereas for problemswhere
we care about the average outcome over multiple episodes then
Scalarised Expected Return (SER, Equation 4) is the correct criteria5.
Several researchers have reported that different algorithms may be
required to address the ESR and SER settings [20, 23, 30].

A non-linear utility function has further implications for value-
based UBRL algorithms, as it means the returns are no longer ad-
ditive which is not compatible with the Bellman equation [24]. To
address this, UBRL algorithms based on temporal difference ap-
proaches may need to use an augmented state which concatenates
the environment state with a history of prior received rewards [30].

One further issue to consider is the implementation of reward
shaping. In SORL, shaping rewards are simply added to the MDP
rewards prior to presenting the reward to the agent. As long as
certain conditions are met, the optimal policy is not altered by
this process [18]. However this may not be the case if a non-linear
utility function is applied to these combined reward values. To allow
the agent to appropriately evaluate the true utility, it may prove
necessary to treat the shaping reward as a separate objective [4].

6 CONCLUSION
The utility-based RL framework presented here unifies the previ-
ously disparate areas of single-objective RL and multi-objective
RL. The utility-based approach increases the flexibility of SORL
agents by facilitating multi-policy learning. This is the main novel
capability of UBRL compared to standard SORL, and increases the
control human decision-makers have over the RL agent, by allow-
ing them to make an informed selection of their preferred agent
after seeing which alternative behaviours exist, rather than making
a priori decisions regarding the reward design and optimisation
criteria and hoping these achieve the desired outcome. UBRL may
also have benefits in terms of simplifying the task of reward design.
We have presented several motivating cases where multi-policy
UBRL approaches have advantages over standard SORL – uncertain
objectives, risk-aware RL, discounted returns, and satisficing agents.
Finally we believe that wide-spread adoption of UBRL as a unified
framework would facilitate faster and easier transfer of novel ideas,
algorithms and software implementations between the previously
somewhat disconnected fields of SORL and MORL.
4MORL may use either linear or non-linear utility functions, but single-objective UBRL
will almost exclusively use non-linear forms as a linear function would merely scale
the range of the scalar reward without changing the optimal policy.
5The distinction between ESR and SER does not arise in SORL or in UBRL with linear
𝑈 as the values of Equations 4 and 5 are equal under those settings.
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