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ABSTRACT

We present the first implemented symbolic solver for sequential
equilibria in general finite imperfect information games.!
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1 INTRODUCTION

The sequential equilibrium is a standard solution concept for ex-
tensive-form games with imperfect information, introduced by
Kreps and Wilson [4] in 1982. Sequential equilibria are so-called
assessments, consisting of a strategy profile 5 and a system of beliefs p.
The strategy profile specifies for each action a and information set
I the probability f(I)(a) with which the acting player plays a at I.
The belief system specifies for each history h and information set I
the probability u(I)(h) that the acting player attributes to being in
history h, given that they know they are in information set I. An
assessment (f, p) is a sequential equilibrium if it satisfies the two
properties (1) sequential rationality and (2) consistency.

Intuitively, sequential rationality ensures that strategies are ratio-
nal given players’ beliefs. That is, for any information set I in which
player i acts, the believed utility of playing f is at least as good as
the believed utility of playing any strategy profile f’ that differs
from f only in the action probabilities for player i. Formally, for all
information sets I of player i and strategy profiles ' = (a;, f—i),

UP (B plD) < UF (B.plD).

Conversely, consistency ensures that beliefs are sound given
the players’ strategies. It requires the existence of a series of fully
mixed assessments (S, u™) where lim,—,« (S", ) = (B, 1), and
Pgn (h)

Ppn (1)

Pﬁn (h) >0, and [ln(I)(h) =

ISee https://github.com/tengesser/GTE-sequential for the implementation and our
demonstration video.
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Figure 1: Game Theory Explorer input for Selten’s horse.

for all information sets I and histories h € I. Here Pgn (") is
the probability of history h or information set I being reached,
assuming all players act according to the strategy profile f".

The complicated definition of consistent assessments as the limit
of an infinite series is necessary because some information sets may
not be reached, in which case Pg(I) = 0.1t is also one of the main
reasons why finding sequential equilibria is a challenging problem,
both conceptually and in terms of computational complexity.

In our technical paper [1] we describe an algorithm for symboli-
cally solving sequential equilibria. In this demonstration paper, we
present our implementation, which we have integrated into the
well-established open-source software Game Theory Explorer [6].

2 EXAMPLE: SELTEN’S HORSE

Figure 1 shows Selten’s horse, a well-known example of imperfect
information games, first introduced by Selten [7] in 1975.

Note that there is only one information set that contains more
than one history. If this information set can be reached (i.e., if
player 1 plays D with non-zero probability, or if player 2 plays d
with non-zero probability), consistency requires that the beliefs be
the conditional probabilities of each of the histories being reached.
If the information set cannot be reached, the beliefs can be arbitrary
as long as the sequential rationality property is still satisfied.

Some more complex examples where arbitrarily chosen beliefs
in one information set affect the choice of beliefs in other parts of
the game tree are discussed in our technical paper [1].
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Nash Equilibria

1: profile: P(D} == @, P(C) == 1, P(d) == 0, P{c) == 1, @ <= P(L) <= 1/4, P(R) == 1 - P(L)
payoffs: 1, 1, 1

2: profile: P(D) == 1, P(C) == @, 0 <= P(d) <= 2/3, P{c) == 1 - P(d), P(L) == 1, P(R) == @
payoffs: 3, 3, 2

Sequential Equilibria

1: profile: P(D} == 8, P(C) == 1, P(d) == 8, P(c) == 1, P(L) == 8, P(R) == 1, & <= B([DI) <= 1/3, B([C,dI} == 1 - B([D])
payoffs: 1, 1, 1

2: profile: P(D) == @, P(C) == 1, P(d) == 0, P(c) == 1, @ < P(L) <= 1/4, P(R) == 1 - P(L), B([D]) == 1/3, B([C,d]) == 2/3
payoffs: 1, 1, 1

Figure 2: Output of the solver. P(-) are the action probabilities and B(-) are the beliefs.

3 SYSTEM OF EQUATIONS AND INEQUALITIES

Our algorithm works by generating (and then solving) a system of
polynomial equations and inequalities characterizing the set of all
sequential equilibria. The variables are the probabilities 5(I)(a) for
each action a to be played at its information set I, and the beliefs
p(I)(h) that the players assign to each history h at I. When the
information set is clear, we often write f(a) and pu(h). We obtain
the following system of polynomial equations and inequalities:

BD)(a) >0,  (la) u(D)(h) =0, (2a)

>, D@ =1,

acA(I)

(1b) QD) =1, (2b)

hel

(Zy(z)(h)vf(ﬂuh,a»)—U?(/f,mn <0, (3

hel

p)(a) - ((Z (D) (WU (BI(h, a>)) - U{"(ﬁ,mn) =0, (@

hel

®)

[ [T = [ [ e

pi>0 Ppi<0 pi>0 Pi<0

The equations of type (1a-2b) ensure that strategies f(I) and
beliefs u(I) are probability distributions. The equations of type
(3-4) are based on the one-shot deviation principle for imperfect
information games [2] and ensure sequential rationality. They are
quantified over all information sets I and actions a applicable in I.
Note that the expected and believed utilities UiE (-) and UiB () are
polynomial functions of § and . The equations of type (5) provide
consistency. Obtaining the exponent and coefficient vectors p, a,
and y is not straightforward and requires us to compute the extreme
directions of a set of polyhedral cones. The idea was proposed by
Kohlberg and Reny [3] and elaborated in our technical paper [1] in
sufficient detail to be easily implemented.

For Selten’s horse, the only such equation is p({D))B(C)f(d) =
1({C,d))B(D). The equation corresponds to our intuition that, as-
suming the information set for player 3 can be reached, the belief
assigned to each history must be the conditional probability of the
history being reached. If both f(d) = 0 and (D) = 0, then both
sides of the equation are zero and the belief can be arbitrary.
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Our implementation allows restricting solutions to pure strate-
gies or beliefs, which often improves the time to solve the system.
This is done by adding additional equations to the system.

4 SOLVING THE POLYNOMIAL SYSTEM

Our implementation uses the cylindrical algebraic decomposition
algorithm implemented in Mathematica [8]. It partitions the solu-
tion space of the system into connected components, which are
represented in a stratified way (i.e., without cyclic dependencies).

Consider the output of our solver for Selten’s horse in Figure 2.
The instance was solved in about three seconds on an Intel i7-
1195G7 CPU. Both sequential and Nash equilibria (of which the
sequential equilibrium is a refinement) are shown. There are two
connected components of Nash equilibria, with only the first com-
ponent having corresponding sequential equilibria.

The set of sequential equilibria is further divided into two con-
nected components. The sequential equilibria of Selten’s horse are
also discussed by Osborne and Rubinstein [5]. Interestingly, they
only consider the case where u({D)) = % for which both compo-
nents can be combined into one. They seem to be either unaware
of the remaining equilibria, or at least do not discuss them. This
illustrates the difficulty of manually finding all sequential equilibria,
which requires proving that no other equilibria exist.

5 CONCLUSION

We have presented the first implementation of a symbolic sequential
equilibrium solver for general finite imperfect information games.

A drawback of our approach is its high algorithmic complexity:
Cylindrical algebraic decomposition is double exponential in the
number of variables in the worst case. Nevertheless, we argue that
our solver is a significant improvement over the state of the art,
which is to find sequential equilibria by hand. Besides analyzing
small games, we see a practical use for teaching the concept of
sequential equilibria in game theory courses.
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