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ABSTRACT
This paper introduces the Cooperative Electric Vehicles Planning

Problem (CEVPP), which consists in finding a path for each vehicle

of a fleet of electric vehicles, such that the global plan execution

time (including travel time, charging time and waiting time) is

minimal (e.g., by limiting the number of vehicles who need to

charge simultaneously at the same charging station, which leads to

waiting time). We show that the strategy which consists in planning

each possible permutation of EVs and keeping the one providing the

best solution is not only time intractable, but also not optimal. We

propose different centralized planning algorithms to solve CEVPP

instances: (1) a baseline non-cooperative CEVPP planner, (2) an

optimal cooperative planner that finds a solution inside a carefully

designed state space, and (3) multiple variants of an approximate

cooperative planner based on the Cooperative-A* algorithm. We

compare the solutions’ quality and computation times obtained

by these CEVPP planners. Our empirical results show that our

best approximate cooperative EV planner found solutions with a

reasonably small computational overhead compared to the baseline

algorithm. The solutions found by our cooperative planners had

significantly lower plan execution time globally, including travel

time, waiting time and charging time, than the solution found by

our baseline non-cooperative planner. On average, our empirical

results show that our cooperative algorithms decreased the global

(including each EVs) waiting time by more than 90%, while having

a negligible impact on the charging and driving time.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; Combina-

torial algorithms; • Theory of computation→ Shortest paths;
• Computing methodologies→ Cooperation and coordina-
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1 INTRODUCTION
To fight climate change, it is important to gradually shift away

from fossil fuels towards greener energy sources, particularly in

transportation. Electric Vehicles (EVs) offer a sustainable alternative

to fossil-fuel vehicles and have become increasingly widespread

in many countries due to improvements in their range and the

availability of more charging stations. However, as the battery

capacity of EVs has increased, so has the time it takes to charge

them. This leads to longer waiting times when charging stations

are occupied, which is a barrier to the widespread adoption of EVs.

The increasing number of EVs on the road and the longer charging

times are both factors that contribute to the longer waiting times.

In the last decade, many researchers have examined the planning

problems associated with electric vehicles. These problems can be

divided into twomain categories. The first category is path planning

for a single EV, often referred to as EVPP (Electric Vehicles Path-

Planning) [2, 8]. This problem focuses on EV-specific factors, such

as regenerative braking and the location of charging stations on the

road map. The second category is routing for a fleet of EVs, known

as EVRP (Electric Vehicles Routing Problem) [5, 13]. In this case,

the goal is to find the most efficient way to dispatch a group of EVs,

such as those used by a delivery company.

In recent years, some electric vehicles planning algorithms have

begun to consider waiting time as an additional factor to optimize,

in addition to the more commonly considered travel time and charg-

ing time [4, 10, 20]. These algorithms aim to minimize the journey

for one specific EV at a time. However, in real-world situations

where multiple EVs have predetermined destinations, it is desirable

to plan their routes collectively so that we can prevent multiple

EVs from needing to charge at the same station at the same time.

For instance, some EVs could be directed to less congested charging

stations, even if it necessitates a marginally longer journey. Find-

ing global plans can significantly reduce overall waiting time and

improve the experience for EV users. This problem has recently

garnered attention in the research community, being referred to as

an important issue:

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

290

https://orcid.org/0000-0002-1906-4157
https://orcid.org/0009-0003-8220-4110
https://orcid.org/0000-0003-4898-0602
https://orcid.org/0000-0002-4460-0556
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


“An open challenge is to devise algorithms for socially

optimal real-time routing with a reasonable response

time for a large number of vehicles.” [1]

In this paper, we introduce the Cooperative Electric Vehicles

Planning Problem (CEVPP), which aims to find a plan that mini-

mizes the overall journey time of a fleet of electric vehicles, rather

than planning for each vehicle independently. The aforementionned

(multi-agent) EVRP has some important differences compared to

the proposed CEVPP. The former focuses on a fleet of (e.g., delivery)

EVs controlled by the same entity. The vehicles start and end at the

same depot. The objective is to find a minimum set of EVs able to

complete all tasks with minimal cost (travel time + energy). In the

latter, each EV is owned by a different end-user and their respective

journey can start and end at different positions. The problem is

dynamic with new EV requests continually arriving. The objective

is to minimize the total (traveling, charging and waiting) time.

Our main contributions in this paper are as follows:

• we introduce a new EV planning problem: CEVPP ;
• we propose an optimal and an approximate algorithm to

solve CEVPP instances;

• we compare the proposed algorithms on real-world networks,

considering the computation time and solution quality, using

a non-cooperative planner as a baseline.

The rest of the paper is organized as follows: In Section 2, we

discuss relevant cooperative algorithms. Section 3 provides a math-

ematical formulation of CEVPP. In Section 4, we present each of the

proposed CEVPP planners. Section 5 presents the evaluation of our

methods, including the testing methodology, results, and analysis.

Finally, in Section 6, we provide our conclusion and present some

ideas of future works.

2 RELATEDWORKS
To the best of our knowledge, there is no work about cooperative

planning in the context of electric vehicles. However, manyworks in

the field of automated planning and computer games have proposed

cooperative multi-agent algorithms used in other contexts [12, 18,

19]. We present some of them in this section, from which some of

our proposed algorithms are based on.

One simple cooperative planning technique is Local-Repair A*
(LRA*) [23], which uses the A* algorithm [7] to find the optimal

path of each agent (non-cooperatively). During execution of the

plans, agents can detect imminent collision in the state space and

recompute (i.e., repair) local parts of its plan. This method is simple,

but requires frequent recomputations. Furthermore, it does not find

globally optimal solutions.

Cooperative-A* is another cooperative planning algorithm [17].

Similar to LRA*, it uses A* to compute the path of each agent one-

by-one. However, after finding the path of an agent, its position

at relevant times is recorded into a reservation table. Subsequent

paths found are computed while taking into account the reservation

table, which allows the agents to get around the positions occu-

pied by already computed agents at each time step. This leads to

an implicit priority of agents whose paths are computed first over

those whose paths are computed after. Since the order for which the

agents’ path are computed directly impact the solution obtained,

different orderings have been proposed [11]. Assuming there are 𝑘

agents, some possible orderings are: (1) first arrived, first computed

(1 order); (2) first departure time, first computed (1 order) (3) every

permutation (𝑘! orders); (4) cascading insertion order (
𝑘 (𝑘−1)

2
or-

ders); (5) random order (𝐻 orders, where𝐻 can be chosen to control

a tradeoff between computation time and solution quality). One

problem of Cooperative-A* is that many orders might be equivalent,

and therefore we might waste a lot of time and resources during

computation. The M* algorithm [21] partitions the state space into

independent subspaces such that agents in one subspace have a

minimal number of collisions with agents in other subspaces. This

allows planning inside each subspace independently, and therefore

the planning time is greatly decreased. However, when we can

expect many collisions, the running time quickly increases and the

algorithm becomes intractable.

The previously mentioned multi-agent cooperative planning

algorithms are either suboptimal, or optimal but intractable in

practice. They are also difficult to adapt to the context of electric

vehicles, mostly for two reasons. First, the mentioned algorithms

each consider hard collisions (i.e., two agents can’t share the same

position at the same time), whereas EV collisions are soft collisions
(an EV can pass by a station without needing to stop, and multiple

EVs can be at the same station at the same time, incurring a waiting

time penalty, but no failure). Second, the mentioned algorithms are

designed to consider the position of agents in the state space at

discrete time steps, which makes sense in a grid, but not on a road

network where the EVs all have different speeds and continuous

travel, waiting and charging times.

For EVs to plan their respective path accurately, it is important

to predict the waiting times at the different possible charging sta-

tions. Recently, some studies have tackled this problem. Some of

them propose a supervised machine learning model to estimate

charging stations waiting time, including idle time, i.e., the time

an EV remains parked after charging is complete [3, 14]. Others

have proposed using historical occupancy data to estimate station

availability and waiting time depending on the time and day of

arrival [4, 15].

3 COOPERATIVE ELECTRIC VEHICLES
PLANNING PROBLEM

This section formally defines the concepts related to CEVPP. The

notions of road networks, EV requests, CEVPP, and solutions are

respectively defined next.

Definition 1. A road network𝑀 is modeled by a tuple (𝑉 , 𝐸, 𝜆, 𝜇, 𝑆),
where (𝑉 , 𝐸) is a directed graph and 𝜆, 𝜇 are two labelings of the

edges. More specifically:

• 𝑉 is the set of nodes (latitude, longitude) on the map;

• 𝐸 is the set of road segments (edges);

• 𝜆 : 𝐸 → R+ gives the length (in m) of every edge;

• 𝜇 : 𝐸 → R+ gives the expected speed (in m/s) at every edge;

• 𝑆 ⊆ 𝑉 is the set of all charging stations.

Remark 1. The labelings 𝜆 and 𝜇 defined in Definition 1 can be

used to create a labeling that specifies the expected time needed

to traverse an edge, using edges that represent time rather than

distance in the graph. Both formulations are interchangeable. The

𝜇 labeling can be derived from empirical data on the average speed
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of vehicles on each edge or can be set to the maximum allowable

speed of each road segment.

Remark 2. The model currently considers homogeneous charging

stations, each of them having a single charging port, but it can

easily be extended to consider heterogeneous stations (e.g., different

number of charging ports, different charging rate, etc.). In the case

of charging rate, no algorithmic change would be necessary in the

proposed algorithms (only the formula to compute charging time

would change).

Definition 2. An EV request is a tuple (𝛼,𝜔, 𝜌, 𝜏) where:
• 𝛼 ∈ 𝑉 is the departure node;

• 𝜔 ∈ 𝑉 is the destination node;

• 𝜌 ∈ R+ is the range (battery autonomy in m) of the vehicle;

• 𝜏 ∈ R+ is the departure time.

Remark 3. In addition to the range, the previous definition can also

be extended to include other characteristics of EVs, such as travel

and charging speed. These additionnal variables can be included in

the proposed planning algorithms with only trivial modifications.

Definition 3. The Cooperative Electric Vehicles Path-Planning Prob-
lem (CEVPP) is defined by the tuple (𝑀,𝑅) where:
• 𝑀 is the road network;

• 𝑅 = ⟨(𝛼1, 𝜔1, 𝜏1, 𝜌1), . . . , (𝛼𝑘 , 𝜔𝑘 , 𝜏𝑘 , 𝜌𝑘 )⟩ is a list of EV re-

quests in an arbitrary order.

Definition 4. A solution to a CEVPP instance (𝑀,𝑅) is a global
plan, consisting of a set of itineraries (one for each request 𝑟 ∈ 𝑅).
More precisely, a solution is denoted

𝜋 = ⟨𝜋1, 𝜋2, . . . , 𝜋𝑘 ⟩
= ⟨⟨𝑣11, 𝑣12, . . . , 𝑣1𝑛1

⟩, ⟨𝑣21, 𝑣22, . . . , 𝑣2𝑛2
⟩, . . . , ⟨𝑣𝑘1, 𝑣𝑘2, . . . , 𝑣𝑘𝑛𝑘 ⟩⟩,

where for all 𝑖 ∈ {1, 2, . . . , 𝑘}, 𝑣𝑖1 = 𝛼𝑖 and 𝑣𝑖𝑛𝑖 = 𝜔𝑖 . The set of all

solutions 𝜋 is denoted Π.

Many objective functions can be chosen in multi-agent plan-

ning. For example, we can try to minimize the longest itinerary

(makespan), or the sum of the time of completion of all itineraries

(flowtime). However, none of these is ideal, since that may force an

end-user of the system to do a large detour of, e.g., 2h, if it helps

many other EVs save 5 minutes. Since in the context of CEVPP, the

cooperation among EVs should not be made disproportionately at

the expanse of one of them, we instead propose to use quadratic de-

viations. Definitions 5 and 6 present respectively how we measure

the cost of a plan and what we will consider an optimal solution.

Definition 5. We define the cost of a solution 𝜋 = ⟨𝜋1, 𝜋2, . . . , 𝜋𝑘 ⟩
to be 𝐶 (𝜋) =

∑𝑘
𝑖=1𝐶 (𝜋𝑖 ), where 𝐶 (𝜋𝑖 ) is the sum of traveling,

charging and waiting time that the 𝑖
th

EV incurs when following

his plan 𝜋𝑖 .

Definition 6. An optimal solution 𝜋★ is a solution in Π that mini-

mizes the sum of the quadratic deviations between the cost of an EV

plan 𝐶 (𝜋𝑖 ) and its theoretical optimal cost 𝐶★(𝜋𝑖 ) (where 𝐶★(𝜋𝑖 )
is the cost of the local plan when assuming the EV is alone on the

road network, i.e., the waiting time is zero at every station). More

precisely,

𝜋★ = argmin

𝜋∈Π
𝑃 (𝜋)

:= argmin

𝜋∈Π

[
1

𝑘

𝑘∑︁
𝑖=1

(
𝐶 (𝜋𝑖 ) −𝐶★(𝜋𝑖 )

)
2

]
.

we call 𝑃 (𝜋) the (global) penalty incurred by a plan 𝜋 .

In practice, a planner in the context of CEVPP would be used

in the following way: A central authority would collect and group

incoming EV requests until some time limit 𝑇 or until some prede-

termined number of requests is reached, and then find a solution

to the CEVPP instance corresponding to the batch of EV requests.

When a new batch of EV requests is ready to compute, the EVs from

the previous batch that have not yet reached their destination can

be included, so that the new and the old EVs in the system can both

consider each other from now on. This also improves robustness of

the plans by addressing uncertainties indirectly: if a driver takes a

break or other unexpected changes happens, the computation of

the next batch will account for this.

4 PROPOSED PLANNERS
In this section, we present a simple non-cooperative planner, which

we use as a baseline to measure the global plan quality improvement

that cooperative planning allows, and two cooperative EV planners,

the former being optimal (Exhaustive-Search planner) and the latter

being approximate (a permutations-based planner).

To simplify the presentation of the following algorithms, we

assume that we have first constructed a graph containing the charg-

ing stations (which we will call the stations’ graph, or s-graph), and
where an arc (𝑠𝑖 , 𝑠 𝑗 ) is present in the graph if there exists a path on

the road network going from station 𝑠𝑖 to station 𝑠 𝑗 . Such a graph

can be constructed easily by e.g., running Dijkstra’s algorithm from

each charging stations. Other techniques to create this graph faster

can also be used, e.g., graph contraction hierarchies [6], but the

time it takes to build this graph is negligible compared to the time

it takes to find a cooperative solution, and hence it is not an issue

in this research.

We also assume for simplicity in the sections below that the

departure and destination of each EVs is a charging station (i.e.,

(𝛼,𝜔) ∈ 𝑆2). Again, this is not an issue in practice because algo-

rithms and graphs can easily be adapted (e.g., nodes representing

the departure and arrival of an EV can be added to the s-graph).

We assume below that the A* algorithm is modified such that

an arc is only considered if its length is smaller than the range of

the EV currently considered. Note that for each mentioned planner,

when the A* algorithm is used to find the plan of a specific EV

request, it is possible to use instead a more specialized EV path-

planning algorithm that considers, e.g., regenerative-braking, such

as the Energy-A* algorithm [16].

4.1 Baseline: Non-Cooperative Planner
Our baseline non-cooperative planner is based on the A* algorithm

and is presented in Algorithm 1. Basically, each EV request is

planned independently (i.e., without considering the other EVs)

using the A* algorithm. After each path is planned, we compute the

global penalty incurred by the plan found. In the case of the baseline

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

292



planner, since every EV takes the geographically shortest path, the

penalty is entirely due to waiting times of EVs trying to charge at

the same stations. The time complexity of this algorithm is given by

Θ(𝑘 · |𝑆 |2), since we run the A* algorithm 𝑘 times, and this algorithm

has a worst time complexity of Θ( |𝑆 | log |𝑆 | + |𝑆 |2) = Θ( |𝑆 |2) (the
number of edges is Θ( |𝑆 |2) since the s-graph is a complete graph).

Algorithm 1 Baseline Non-Cooperative EV Planner

1: procedure ncEVP((𝑀,𝑅 = ⟨𝑟1, . . . , 𝑟𝑘 ⟩): CEVPP)
2: for all 𝑟𝑖 ∈ 𝑅 do
3: ⊲ Considers travel and charging, but not waiting time

4: 𝜋𝑖 ← A*(𝑀, 𝑟𝑖 )
5: 𝜋 ← 𝜋 ∪ {𝜋𝑖 }
6: Compute the global penalty 𝑃 (𝜋)

4.2 Exhaustive-Search Cooperative Planner
One way to find an optimal solution is to use a graph planning

algorithm on a graph that represents the entire state space of a

CEVPP instance. The difficulty is in defining the state space in

such a way that we have all the information needed in the state

variables, but nothing superfluous. Definition 7 presents what we

will consider a state. Basically, a state contains for each EV its

position (i.e., the id of the current charging station) at a specific

time 𝑡 , and its planned time of departure from that station.

Definition 7. We define a state to be an array

𝜎 = [(𝜎𝑠
1
, 𝜎𝑡

1
), (𝜎𝑠

2
, 𝜎𝑡

2
), . . . , (𝜎𝑠

𝑘
, 𝜎𝑡

𝑘
)],

where:

• 𝜎𝑠
𝑖
is the charging station currently used by the EV 𝑖;

• 𝜎𝑡
𝑖
is the planned departure time of EV 𝑖 from station 𝜎𝑠

𝑖
.

Algorithm 2 presents the main steps of the Exhaustive-Search

Cooperative EV Planner (escEVP). The planner is based on the A*

algorithm and uses the state space defined above. The initial state

is simply built by copying the starting position and departure time

from the set of EV requests 𝑅. Then, at each considered state, we

check if the state is terminal (i.e., each EV 𝑖 is at its destination node

𝜔𝑖 ). If not, we add to the priority queue 𝑜𝑝𝑒𝑛 the states reachable

from the current state 𝜎 . Since at each state transition, we only

make one EV move, we create a new state for each station that

each EV 𝑖 can reach from its current station 𝜎𝑠
𝑖
considering its

range 𝜌𝑖 . The waiting time and charging time are considered in

the ComputeTimeDeparture() function. This function checks at

current state 𝜎 if there is already an EV 𝑗 charging at station 𝑠

(i.e., 𝑠 = 𝜎𝑠
𝑗
). If so, it considers the time at which 𝑗 will leave the

station (given by 𝜎𝑡
𝑗
) and uses that to compute its own departure

time 𝜎′𝑡
𝑖

= 𝜎𝑡
𝑗
+ ChargingTime(𝑖, 𝑠, 𝜎), where the charging

time is simply computed by considering the range of the EV and

the distance it traveled since its last charge. When a new state is

constructed, we compute its heuristic cost (used as priority in the

queue 𝑜𝑝𝑒𝑛), which is the minimum for each EV of 𝑓𝑖 = 𝑔𝑖 + ℎ𝑖 ,
where 𝑔𝑖 = Cost(𝑖, 𝜎′) and ℎ𝑖 = Heuristic(𝑖, 𝜎′, 𝑟𝑖 ). The cost 𝑔𝑖 is
simply given by the difference between the initial departure time 𝜏𝑖
of EV 𝑖 and the departure time 𝜎𝑡

𝑖
of the current station 𝜎𝑠

𝑖
. Finally,

ℎ𝑖 is computed with the estimated time to reach the destination

node 𝜔𝑖 (using the graph distance from 𝜎𝑠
𝑖
to 𝜔𝑖 ). The heuristic ℎ

considers both the travel time and the charging time of the vehicle.

Since in practice, there might be a detour or some waiting time,

the heuristic is a lower bound on the actual time of arrival, and is

therefore admissible.

Algorithm 2 Exhaustive-Search Cooperative EV Planner

1: procedure escEVP((𝑀,𝑅 = ⟨𝑟1, . . . , 𝑟𝑘 ⟩): CEVPP)
2: 𝑜𝑝𝑒𝑛 ← Empty Priority Queue of (state, cost 𝑓 = 𝑔 + ℎ)
3: 𝑜𝑝𝑒𝑛.𝑝𝑢𝑠ℎ(InitialState(𝑀,𝑅), 0)
4: while not 𝑜𝑝𝑒𝑛.𝑒𝑚𝑝𝑡𝑦 () do
5: 𝜎 ← 𝑜𝑝𝑒𝑛.𝑝𝑜𝑝 ()
6: if IsGoalState(𝜎) then 𝜎★← 𝜎 ; break

7: for all vehicle 𝑖 ∈ {1, . . . , 𝑘} do ⊲ any EV can move

8: for all 𝑠 ∈ ReachableStations(𝜎𝑠
𝑖
, 𝜌𝑖 ) do

9: if EV 𝑖 already visited 𝑠 then continue

10: 𝜎′ ← 𝜎 ⊲ state 𝜎′ is same as 𝜎 except for EV 𝑖

11: 𝜎′ [𝑖] ← (𝑠,ComputeTimeDeparture(𝑖, 𝑠, 𝜎))
12: 𝑓 ← min

𝑖∈{1,...,𝑘 }
(Cost(𝑖, 𝜎′) +Heuristic(𝑖, 𝜎′, 𝑟𝑖 ))

13: 𝑜𝑝𝑒𝑛.𝑝𝑢𝑠ℎ(𝜎′, 𝑓 )
14: Extract global plan 𝜋 from 𝜎★

15: Compute the global penalty 𝑃 (𝜋)

Assuming the state space Σ only contains the current position

𝜎𝑠
𝑖
∈ 𝑆 of each EV 𝑖 , then the number of possible states is |Σ| = |𝑆 |𝑘 .

Since in practice, the state space also contains the planned departure

time of each EVs, the true size of the state space is greater. Therefore,

the worst-case time complexity of Algorithm 2 is Ω( |𝑆 |𝑘 ) and the

problem is thus in EXPTIME.

4.3 Permutations Cooperative Planner
Our next cooperative EV planner is inspired by the Cooperative-

A* algorithm mentioned before [17]. As for Cooperative-A*, our

proposed planner, named Permutations Cooperative EV Planner

(pcEVP), computes a plan for each EV one-by-one using the A*

algorithm. We use a modified version of A* that records into a reser-

vation table the charging stations and the time of departure from

each of them. For the plans of the other EVs computed subsequently,

the planner considers the reservation table and therefore considers

the waiting time due to stations occupied by already computed

plans of prior EVs. The modified A* will in that case either take a

detour to avoid the station that would be occupied at the same time,

or will conclude that the waiting time is smaller than the detour

time and still go to the occupied station.

One important thing to note is that the order in which the EVs are

planned will impact the solution’s quality. For example, consider the

problem in Figure 1. If each EV was alone on the road network, the

shortest path of EV 𝛼 would be ⟨𝐴, 𝐵, 𝐸, 𝐹 ⟩ (total time: 12160 s), and

the shortest path of EV 𝛽 would be ⟨𝐶, 𝐵, 𝐸, 𝐷⟩ (total time: 12160 s).

Now, let’s assume we consider the waiting time. The shortest paths

above would lead to two collisions (at stations B and E) and thus lead

to some waiting time. If we plan EV 𝛽 , then EV 𝛼 , then 𝛽 will take

the shortest path already mentioned. In this case, 𝛼 will still also

take its shortest path. This leads to a waiting time at B (but not at E,
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𝛼 𝛽
A

B

C

D

E

F

50 km

2500 s

1500 s

51 km

2550 s

1530 s

52 km

2600 s

1560 s

53 km

2650 s

1590 s

55 km
2750 s

1650 s

49 km
2450 s

1470 s

54 km
2700 s

1620 s

Figure 1: Example of CEVPP where the EV 𝛼 must move from A to F and the EV 𝛽 must move from C to D. Each node represent
a charging station. We assume the battery of each EV is 12 kWh and the consumption is 200 Wh/km (i.e., their range is 60km).
We also assume their speed is constant at 72 km/h and the charging stations have 24 kW power. The numbers in blue represent
the travel time, and the numbers in red represent the corresponding charging time.

since 𝛼 will complete its charging before 𝛽 arrives). The total time

of this global plan is in this case max(12160, 12160+1450) = 13610𝑠 ,

where 1450 is the waiting time of 𝛽 at B. If instead we plan for EV

𝛼 first, it will take its shortest path, while 𝛽 will instead use the

path ⟨𝐶, 𝐹, 𝐸, 𝐷⟩ to avoid waiting time at station B. There will be

waiting time at station E, and the cost of this global plan will be

max(12160, 12720 + 950) = 13670𝑠 .

We might think that by testing every possible EVs ordering and

keeping the smallest cost plan obtained, we will obtain an optimal

solution. Alas, it is not the case. As a counterexample, we can see

in the above example that none of the two global plans found are

optimal. Indeed, the plan

𝜋 = (𝜋𝛼 , 𝜋𝛽 ) = (⟨𝐴, 𝐵,𝐶, 𝐹 ⟩, ⟨𝐶, 𝐹, 𝐸, 𝐷⟩)

does not require any waiting at a charging station and has a cost

of max(12400, 12720) = 12720, which is better than the two plans

found above by planning EVs one after the other. However, as we’ll

see in our evaluation, testing multiple orderings still provide in

practice a close-to-optimal solution in the vast majority of cases.

If there are 𝑘 EVs in the CEVPP instance, there are in theory

𝑘! possible permutations. It is both impractical (intractable) and

unnecessary (many orders are redundant) to find and compare each

of the 𝑘! possible global plans. Therefore, we will consider in our

evaluation many subsets of permutations.

The pseudocode of our approximate cooperative planner, called

Permutations Cooperative EV Planner (pcEVP) is shown in Algo-

rithm 3. The algorithm is generic and is the same whatever subset

of permutations is returned by GetConsideredPermutations(𝑅).
ModifiedA* is simply an A* algorithm that considers (using the

reservation table) the waiting time at charging stations were EVs

are already committed. The general time complexity of pcEVP is

Θ( |P| · |𝑆 |2).
One interesting special case of pcEVP is when we only consider

the order given implicitly by 𝑅 (i.e., no permutations). This is not

equivalent to the baseline planner (Algorithm 1), because even with

a single tested order, pcEVP is making a reservation of the charg-

ing stations on a first planned, first committed way and therefore

considers the waiting time of already committed EVs, whereas the

baseline never considers waiting time during planning.

Algorithm 3 Permutations Cooperative EV Planner

1: procedure pcEVP((𝑀,𝑅 = ⟨𝑟1, . . . , 𝑟𝑘 ⟩): CEVPP)
2: P ← GetConsideredPermutations(𝑅)
3: 𝐶𝑏𝑒𝑠𝑡 ←∞
4: for all 𝜙 ∈ P do
5: 𝜋 ← ∅
6: R ← Empty Reservation Table

7: for all 𝑟𝑖 ∈ 𝜙 do ⊲ In given order

8: 𝜋𝑖 = ModifiedA*(𝑀, 𝑟𝑖 ,R)
9: UpdateReservationTable(R, 𝜋)
10: 𝜋 ← 𝜋 ∪ {𝜋𝑖 }
11: if 𝐶 (𝜋) < 𝐶𝑏𝑒𝑠𝑡 then
12: 𝜋𝑏𝑒𝑠𝑡 ← 𝜋

13: Compute the global penalty 𝑃 (𝜋𝑏𝑒𝑠𝑡 )

5 EVALUATION
5.1 Test Environment
In this section, we conduct an empirical evaluation to compare the

running time and solution quality of the proposed algorithms: (1)

a baseline non-cooperative CEVPP planner (Algorithm 1, ncEVP),
(2) an optimal cooperative planner (Algorithm 2, escEVP), and (3)

multiple variants of our approximate permutations-based coop-

erative planner (Algorithm 3, pcEVP). The variants we consider

are the ordered by departure (1 permutation), the random log(k!)
(log(𝑘!) ∈ Θ(𝑘 log𝑘) permutations sampled randomly among the

𝑘! possible permutations) and the cascade (𝑘2 permutations, created

by swapping the order of the EVs two-by-two) variants.

The competing algorithms were implemented in C++ and com-

piled using the GNU g++ compiler (version 12.2). All our exper-

iments were performed on a computer equipped with a 4.2 GHz

Intel Core i5-7600K CPU and 32 GB of RAM.

The road network data (i.e., the nodes and the road segments)

were taken from the OpenStreetMap project [22]. The territory of

the Québec province and the Maritime provinces (Canada) were

chosen to carry out our tests. They are vast, the journeys between

certain pairs of cities can be very long (thus requiring a large num-

ber of recharge) and the network of charging stations is relatively

well developed. The former graph generated from these data has
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4 416 080 vertices and 8 797 051 edges, while the latter one has

2 105 607 vertices and 4 200 189 edges.

The stations considered in the tests come from a public network

of EV charging stations, called the Electric Circuit [9]. We use three

different sets of stations in our evaluation: one for the Maritimes

road network (50 stations), and two for the Québec road network,

with respectively 347 and 1816 stations. To simplify, we assume in

our implementation that each station has an identical power and

that the EVs are charged linearly, recovering a range of 9 km/min.

To assess the performance of the proposed algorithms, we gen-

erated random sets of EV requests, ranging from 2 to 1024 EVs per

set. For each set, we randomly sampled two stations at least 100 km

apart. We then sampled from a 50 km cluster around these stations

the departure 𝛼 and destination 𝜔 nodes, to simulate multiple EVs

journeying along similar paths. The range of each vehicle was sam-

pled uniformly between 100 and 550 km. Finally, the departure time

of each vehicle was sampled uniformly between 0 and 120 min.

5.2 Results
Table 1 reports the detailed results provided by the compared plan-

ning algorithms on the three tested road networks. The first two

columns present the characteristics of the test (the name of the

road network, and the number of simultaneous EVs). The remain-

ing columns account respectively for the penalty 𝑃 (𝜋) (column P)

of the solution found and the running time of each compared algo-

rithm (column RT). Each test (i.e., each row in the table) consists

in running 50 CEVPP request instance. We report in the table the

average over these 50 results. We set a timeout value of 15 minutes.

We represent by the symbol ‘-’ the fact that a solver did not manage

to solve the 50 CEVPP requests inside a 15-minute period. We also

present the results in Figure 2, where the 6 subfigures represent the

two evaluated metrics (penalty of the solution and running time)

over the three tested road networks.

Note that we do not include the results for the optimal Exhaustive-

Search cooperative planner presented in Section 4.2, because that

algorithm has an exponential time complexity and did not manage

to solve requests within the 15 minutes allotted period. Moreover,

since the number of states that need to be considered increase expo-

nentially as the number of EVs increases, the memory consumption

is also an issue. For example, tests with 6 EVs on the Maritimes50

road network led to a memory consumption that exceeds the hard

limit of 24 GB we had set. That being said, we believe this optimal

planner to be an important first step in understanding and design-

ing CEVPP solving methods in the future. Based on this algorithm,

we plan as future work in designing other optimal CEVPP planners

able to prune large parts of the state spaces that would hopefully

lead to an optimal planner useful in practice.

When looking at the results, a first surprising insight is that the

simplest and fastest cooperative planner, the permutations coop-

erative planner variant that considers only one permutation (the

permutation where we plan vehicles ordered by departure time),

managed to find the best solutions (i.e., solutions with the lowest

penalty value) in almost all test instances where the number of EVs

is at least 32. This is because when there are lots of EVs, there can be

a bottleneck at a specific EV charging station. By planning the EVs

ordered by departure time, the 𝑖
th

EV knows the stations already

reserved and therefore can avoid the bottleneck. It allows to avoid

situations where an EV that would have arrived first at a charging

station only gets the chance to make a reservation after someone

else who needs it less (e.g., who would have arrived 20 minutes

after) already reserved it. The random log(𝑘!) permutations variant

has a high likelihood of not considering an order that allows the

planner to avoid entirely these bottlenecks (e.g., more than 3 EVs

at the same station), whereas the cascade variant will almost never

find the optimal order in this case. When the number of EVs is less

than 32, those kinds of bottlenecks are significantly less likely, and

therefore the advantage of the first variant disappears.

We can summarize the preceding observations by saying that

the first variant (ordered by departure time) is best when there

are many EVs who tries to charge at the same station (i.e., one

large bottleneck), which happens most often when the number

of EVs is large compared to the number of stations in the road

network, whereas the other two variants are best when there are

many small bottlenecks (e.g., many charging stations where 2-3

EVs try to charge at the same time).

Between the cascade and the random log(𝑘!) variants, there is
no clear winner when considering the solution quality obtained on

all three tested road networks. However, since the random log(𝑘!)
variant has a Θ(𝑘 log𝑘 · |𝑆 |2) time complexity, whereas the cascade
variant has a Θ(𝑘2 · |𝑆 |2) time complexity, it managed to solve more

difficult instances of the problem. Therefore, the former seems more

promising. As for the running time of the baseline non-cooperative

planner and the Ordered by departure variant of our cooperative
permutations planner, we see in the results that they only differ by

a constant, which is expected, since the only overhead is the cost

reordering the EV requests and of managing the reservation table.

In Table 2, we showcase the average percentage reduction in

penalty 𝑃 (𝜋) for each tested road network when comparing our

cooperative planning algorithms to the baseline non-cooperative

planner. The proposed cooperative algorithms brings us signifi-

cantly closer to the ideal penalty of 0, which is nearly unattainable

in most cases. Achieving a 0 penalty would require each EV to take

the geographically shortest path without any waiting time, imply-

ing that the baseline planner already provided the optimal solution

— a rare occurrence in practice. The table demonstrates that each

proposed cooperative planner reduces the global penalty of the

solution by over 90%. For instance, in the Québec347 road network

with 128 EVs, the penalty decreased by 24 000 minutes. Therefore,

on average, each EV’s trip was shortened by 187 minutes.

6 CONCLUSION
The main contributions of this paper are two-fold. First, we intro-

duced the Cooperative Electric Vehicles Planning Problem (CEVPP)

and demonstrated through experiments that incorporating cooper-

ative algorithms can significantly reduce overall time, highlighting

the real-world importance of this issue. Second, we introduced both

an optimal and three variants of an approximate cooperative plan-

ner, which we evaluated using three real-world road networks. Our

most effective cooperative planner reduced the mean total trip time

of each EV driver by 2 hours. As the number of EVs on the road

network grows, the number of bottlenecks at charging stations that
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Figure 2: Penalty 𝑃 (𝜋) and running times (in s) of the competing algorithms for the three considered road networks (Maritimes50,
Québec347 and Québec1816) when varying the number of EVs from 2 to 1024.
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Table 1: Results (P: penalty 𝑃 (𝜋), and RT: running time) of the compared planners, the Baseline non-cooperative and the
permutations (ordered by departure, random log(𝑘!), and cascade variants) cooperative planner, on three different road networks.
For each test, we report the average of 50 CEVPP requests. The symbol ‘-’ indicates that the algorithm did not manage to find a
solution for the batch of 50 requests within 15 minutes. The lowest penalty value on each row is bolded.

Test characteristics Baseline Ordered by departure Random log(𝑘!) Cascade

Network #EVs P(𝜋) (min) RT (ms) P(𝜋) (min) RT (ms) P(𝜋) (min) RT (ms) P(𝜋) (min) RT (ms)

Maritimes50 2 0.37 0 0.01 0 0.01 0 0.01 0

Maritimes50 4 21.275 0 1.37 0 1.37 0 1.37 0

Maritimes50 8 39.355 0 9.58 0 8.98 0.2 3.11 1.02

Maritimes50 16 602.378 0 46.9963 0 46.4562 2.58 41.1537 10.74

Maritimes50 32 5151.81 0 134.741 0.06 189.81 17.1 208.724 101.92

Maritimes50 64 55471.1 0.1 1687.7 0.16 1893.06 85.04 2038.08 847.16

Maritimes50 128 414601 0.52 6589.36 1.12 7183.98 562.5 7725.53 9253.56

Maritimes50 256 2706313 1.86 29106.8 3.1 30094.6 2850.12 - -

Maritimes50 512 16389675 4.54 89585.1 8 90916.9 15135.6 - -

Maritimes50 1024 32440149 15.6 241419 41.22 - - - -

Québec347 2 0 0.24 0 0.3 0 0.3 0 0.52

Québec347 4 5.415 0.7 1.815 0.84 1.955 2.62 1.235 4.52

Québec347 8 15.695 0.86 2.2925 1 1.5775 9.42 1.975 24.68

Québec347 16 279.127 2.72 11.1913 3.16 10.2212 68.36 9.78751 264.38

Québec347 32 537.111 6.84 13.6631 8.22 17.5406 415.64 19.8519 2500.22

Québec347 64 9549.65 14.26 67.9469 17.1 103.703 2123.74 - -

Québec347 128 24454.8 26.2 454.282 32.92 573.711 10046.9 - -

Québec347 256 375362 86.64 1000.89 111.04 - - - -

Québec347 512 4288950 80.94 14037 132.6 - - - -

Québec347 1024 17657016 194.54 17172.4 359.92 - - - -

Québec1816 2 0.25 26.98 0 29.74 0.01 29.8 0 46.22

Québec1816 4 3.14 68.26 0.03 75.52 0.01 198.52 0.01 321.02

Québec1816 8 21.1175 113.2 0.665 125.14 0.115 806.82 0.115 2027.16

Québec1816 16 43.1937 166.92 3.94625 184.64 2.10125 3197.58 2.65 12232

Québec1816 32 4219.4 442 5.81813 486.88 0.43375 22914.8 - -

Québec1816 64 543.543 647.94 1.44281 712.74 - - - -

Québec1816 128 7294.58 1835.3 26.9613 2045.88 - - - -

Québec1816 256 327805 4031.76 678.371 4540.98 - - - -

Québec1816 512 1451887 9694.42 1623.29 11267.2 - - - -

Québec1816 1024 6695855 12483.7 1970.67 15233.8 - - - -

Table 2: Average percentage reduction in penalty 𝑃 (𝜋) for
each tested road network between the compared planners.

Network By departure Random log(𝑘!) Cascade

Maritimes50 0.9491 0.949831 0.966535

Québec1347 0.935624 0.90581 0.90581

Québec21816 0.985638 0.980524 0.980524

Average 0.956788 0.945388 0.950956

lead to waiting times will increase, presenting more opportunities

for optimization and further emphasizing the relevance of CEVPP.

As future work, we aim to explore methods for pruning substan-

tial portions of the state space utilized by our optimal cooperative

planner, potentially drawing inspiration from the M* algorithm.

This would enable a significant reduction in spatial and temporal

resources, making the planner more practical for real-world appli-

cations. Additionally, we plan to conduct a comprehensive analysis

of various permutation subsets for our permutations cooperative

planner. Lastly, we intend to incorporate more factors into CEVPP,

such as accounting for waiting times at charging stations caused by

external EVs, e.g., by taking account of historical charging stations

occupancy or by considering a reservation system that each EV

must use, to further enhance its applicability and effectiveness.
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