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ABSTRACT
We give a simple approximation algorithm for a common general-
ization of many previously studied extensions of the maximum size
stable matching problem with ties. These generalizations include
the existence of critical vertices in the graph, amongst whom we
must match as much as possible, free edges, that cannot be block-
ing edges and Δ-stabilities, which mean that for an edge to block,
the improvement should be large enough on one or both sides.
We also introduce other notions to generalize these even further,
which allows our framework to capture many existing and future
applications. We show that the edge duplicating technique allows
us to treat these different types of generalizations simultaneously,
while also making the algorithm, the proofs and the analysis much
simpler and shorter than in previous approaches. In particular, we
answer an open question by Askalidis et al. [1] about the existence
of a 3

2 -approximation algorithm for the Max-SMTI problem with
free edges. This demonstrates that this technique can grasp the un-
derlying essence of these problems quite well and have the potential
to be able to solve many future applications.
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1 INTRODUCTION
Preference based matching markets is an extensively studied topic
in computer science, mathematics and economics literature. The
intensive study of the area started back in 1962 after the seminal
paper of Gale and Shapley [7]. They defined the model for the sta-
ble marriage problem and showed that a stable matching always
exists and can be found in linear time. Since then, countless appli-
cations and related models have been studied, see Manlove [17] for
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an overview. Applications include Resident allocation, University
admissions, Kidney exchanges, job markets and much more.

1.1 Related work
In the stable marriage problem, the goal is to match two classes of
agents in a way such that there are no blocking edges, i.e. pairs of
agents who mutually consider each other better than their partner.
The stable marriage problem with ties and incomplete lists (smti)
was first studied by Iwama et al. [10], who showed the NP-hardness
of Max-SMTI, which is the problem of finding a maximum size
stable matching in an SMTI instance. Since then, various algorithms
have been proposed to improve the approximation ratio, e.g. Iwama
et al. [11, 12] and Király [13], and the current best ratio is 3

2 by
a polynomial-time algorithm of McDermid [18], where the same
ratio is attained by linear-time algorithms of Pauluch [20, 21] and
Király [14, 15]. This 3

2 -approximation has been extended to critical
relaxed stable matchings by a very recent paper of Nasre et al. [19],
which is a generalization of Max-SMTI, where there is a set of
critical agents, amongst whom we must match as much as possible
and stability is generalized in an appropriate way. Critical relaxed
stability has also been studied in Krishnaa et al. [16], where they
showed that a critical relaxed stable matching always exists, but
finding a maximum size such matching is NP hard to approximate
within 21

19 − 𝜀, even with only strict preferences.
The approximation algorithm for Max-SMTI has also been ex-

tended to some cardinal and matroidal generalizations as well by
Csáji et al. [4]. This include for example common quotas and Δ-min-
stability, where there is a number Δ, and blocking is relaxed in a
way such that only those edges can block, where both participating
agents improve by at least Δ. The matroidal generalization of stable
matching was introduced in Fleiner [6].

As for the inapproximability of Max-SMTI, Halldórssson et al. [8]
showed that it is NP-hard to approximate it within some constant
factor. Later, inapproximability results have been improved, espe-
cially assuming stronger complexity theoretic conjectures. Yanag-
isawa [22] and Halldórsson et al. [9] showed that assuming the
Unique Games Conjecture, there is no 4

3 − 𝜀-approximation for any
𝜀 > 0. By a recent work by Dudycz et al. [5] it follows that assum-
ing the Small Set Expansion Hypothesis or the strong-UGC, there
cannot even be a 3

2 − 𝜀-approximation algorithm for Max-SMTI.
Stable matchings with free edges - that is, edges that can be

included in a matching, but cannot block - have also been studied in
many papers. Askalidis et al. [1] proved that with strict preferences
and free edges, finding a maximum size stable matching can be
3
2 -approximated in polynomial time. However, on the negative side
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they showed that the problem does not admit a polynomial time 21
19−

𝜀 approximation algorithm unless 𝑃 = 𝑁𝑃 and assuming the Unique
Games Conjecture, it does not even admit a 3

2 − 𝜀 approximation.
These negative results also hold with respect to strict preferences.
They posed as an open question whether this 3

2 -approximation
can be extended to weak preferences. In this paper we answer this
question positively. Cechlárová and Fleiner [2] investigated the
stable roommates problem with free edges and proved NP-hardness
even in very restricted settings.

1.2 Our Contributions
In this paper we extend the 3

2 -approximation algorithm for Max-
SMTI for a common generalization of many previously introduced
and studied concepts. In particular, we answer an open question
posed byAskalidis et al. [1] about the existence of a 3

2 -approximation
algorithm for the Max-SMTI problem with free edges. We utilize
and master a recently introduced edge duplicating technique by
Yokoi [23] and Csáji et al. [4] and show that with the help of this
technique, we are able to solve much harder and more general
related problems in a lot simpler and more elegant way. We give
a simple approximation algorithm for a framework that includes
free edges, critical vertices, critical edges, many cardinal stability
notions and more.

Although both our algorithm and our analysis are quite simple
and elegant, we emphasize that our method can solve many prob-
lems that previously took whole papers in highly rated journals
and conferences to tackle and also answers a decade long open
question.

2 PRELIMINARIES
We investigate matching markets, where the set of agents with the
possible set of contracts is given by a bipartite graph𝐺 = (𝑈 ,𝑊 ;𝐸),
where vertices correspond to agents and edges correspond to possi-
ble, mutually acceptable contracts. For each agent 𝑣 ∈ 𝑈 ∪𝑊 , let
𝐸 (𝑣) denote the edges that are incident to 𝑣 . We assume that for
each agent 𝑣 , there is a preference function 𝑝𝑣 : 𝐸 (𝑣) → R≥0, which
defines a weak ranking over the incident edges of 𝑣 . We emphasize
that we assume that the agents (vertices) rank their incident edges
instead of the adjacent agents on the other side, because we allow
parallel edges in our model, representing multiple types of contracts
between two given agents. We also assume that 𝑝𝑣 (∅) ≤ 0, which
denotes that an agent always weakly prefers to be matched to any
acceptable partners rather than being unmatched.

We say that an edge set𝑀 ⊂ 𝐸 is a matching, if |𝑀 ∩ 𝐸 (𝑣) | ≤ 1
for each 𝑣 ∈ 𝑈 ∪𝑊 . For a vertex 𝑣 , let𝑀 (𝑣) denote the edge incident
to 𝑣 in𝑀 , if there is any, otherwise𝑀 (𝑣) is ∅. We say that an edge
𝑒 = (𝑢,𝑤) ∉ 𝑀 blocks a matching 𝑀 , if 𝑝𝑤 (𝑒) > 𝑝𝑤 (𝑀 (𝑤)) and
𝑝𝑢 (𝑒) > 𝑝𝑢 (𝑀 (𝑢)) holds, that is, both agents strictly prefer each
other to their partners in𝑀 . A matching𝑀 is calledweakly stable or
just stable, if there is no blocking edge to𝑀 . The problem of finding
a maximum size weakly stable matching in a bipartite graph with
weak preferences, called Max-SMTI is a well studied problem that
is NP-hard even to approximate within some constant, but admits
a linear time 3

2 -approximation.
We continue by introducing the generalizations that we consider.

We start with Δ-min and Δ-max stability, which were introduced

in Csáji et al. [4] (a similar notion to Δ-min stability has also been
defined in Chen et al. [3]). The motivation behind these notions is
that in many applications, blocking pairs may only arise if one or
both member of the pair improves by a significant enough amount.

Let Δ > 0 be a constant. A matching 𝑀 is Δ-min-stable, if
there is no blocking edge 𝑒 = (𝑢,𝑤) with respect to 𝑀 , such that
min{𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)), 𝑝𝑤 (𝑒) − 𝑝𝑤 (𝑀 (𝑤))} ≥ Δ, that is, both
agents improve by at least Δ. The motivation behind this is clear: if
a blocking does not result in a significant improvement, it may not
even worth the effort.

A matching𝑀 is Δ-max-stable, if there is no blocking edge 𝑒 =

(𝑢,𝑤) with respect to𝑀 , such that max{𝑝𝑢 (𝑒) −𝑝𝑢 (𝑀 (𝑢)), 𝑝𝑤 (𝑒) −
𝑝𝑤 (𝑀 (𝑤))} ≥ Δ, that is, one of the improvements is at least Δ.
Note here, that the edge 𝑒 still must be a blocking edge, so both
𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)) > 0 and 𝑝𝑤 (𝑒) − 𝑝𝑤 (𝑀 (𝑤)) > 0 are assumed.
The motivation behind this notion is that in many cases, it may be
enough that one agent can improve by a sufficiently large amount to
initiate a blocking contract, and the other agent only has to accept
it, so for him even a smaller improvement is enough. By choosing
Δ to be small enough, it is easy to see that both of these stability
notions strictly generalize weak stability.

Now we define critical matchings and relaxed stability, as they
were defined in a very recent work of Krishnaa et al. [16]. For this,
let us suppose that there is a set 𝐶 ⊂ 𝑈 ∪𝑊 of critical vertices.
Criticality means that wewant tomatch asmany of them as possible
in any matching. We say that a matching 𝑀 is critical, if there is
no other matching𝑀′, such that𝑀′ covers strictly more vertices
from 𝐶 , than 𝑀 . Of course, there may not be a matching that is
both critical and weakly stable. Hence, we need a weaker notion of
stability, called relaxed stability. A matching𝑀 is relaxed stable, if
there is no blocking pair 𝑒 = (𝑢,𝑤) to𝑀 , such that𝑀 (𝑢) and𝑀 (𝑤)
are not critical vertices. The motivation behind this definition is that
since we want to maximize the number of matched critical agents,
we do not allow blocking pairs, where one of the participating
agents would leave a critical agent unmatched. We will slightly
strengthen this notion of stability for the following reason: this
does not allow a pair consisting of an unmatched critical agent and
another agent whose partner is critical to block. However, after
letting the agents of such a blocking pair to be matched together,
the number of critical agents covered remains to same, (so maximal),
hence such a pair indeed should be able to block. We will show that
this strengthening of stability is still enough to guarantee existence.

Now we generalize the concept of criticality and relaxed stability
in a natural way. Suppose that there is a set 𝐸𝑐 of critical edges
too. This represents that it may be also important that we match
the critical agents with specific types of contracts, or to certain
other agents that are good enough for them, or more compatible
with them in some way. For a matching𝑀 , let𝑀𝑐 = 𝑀 ∩ 𝐸𝑐 denote
the critical edges of 𝑀 . We say that a matching 𝑀 is critical, if
there is no matching 𝑁 , such that 𝑁𝑐 covers strictly more critical
vertices than 𝑀𝑐 . A matching 𝑀 is critical relaxed stable, if it is
critical and there is no blocking edge 𝑒 = (𝑢,𝑤), such that 𝑀 \
{(𝑢,𝑀 (𝑢)), (𝑀 (𝑤),𝑤)} ∪ {𝑒} is still critical. The special case of
only critical vertices can be obtained by choosing 𝐸 = 𝐸𝑐 .

Finally we introduce the notion of free agents and free edges. In
Askalidis et al. [1], free edges were used to model stable matching
instances, where there are friendship and business relations which
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restrict certain edges from blocking. Let us suppose there is a set
𝐹 ⊂ 𝐸 of free edges and a set 𝐹𝐴 ⊂ 𝑈 ∪𝑊 of free agents. Free agents
cannot participate in any blocking edge, while free edges cannot
be blocking edges. Hence, a matching 𝑀 is stable in this instance,
if for each blocking edge (𝑢,𝑤) it holds that |{𝑢,𝑤} ∩ 𝐹𝐴 | ≥ 1 or
(𝑢,𝑤) ∈ 𝐹 . Clearly, we can model free agents with free edges only:
just make each edge adjacent to a free agent a free edge.

Next we define a nice common generalization of Δ-min/max
stablity and the notion of free edges. Here we suppose that for
each edge 𝑒 = (𝑢,𝑤), there are two numbers 𝛾𝑢𝑒 > 0 and 𝛾𝑤𝑒 > 0
given. We say that a matching is 𝛾-min stable, if there is no blocking
edge 𝑒 = (𝑢,𝑤) such that 𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)) ≥ 𝛾𝑢𝑒 and 𝑝𝑤 (𝑒) −
𝑝𝑤 (𝑀 (𝑤)) ≥ 𝛾𝑤𝑒 holds. Similarly, a matching is 𝛾-max stable, if
there is no blocking edge 𝑒 = (𝑢,𝑤) such that 𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)) ≥
𝛾𝑢𝑒 or 𝑝𝑤 (𝑒) −𝑝𝑤 (𝑀 (𝑤)) ≥ 𝛾𝑤𝑒 holds. The case of Δ-stabilites with
a set 𝐹 ⊂ 𝐸 of free edges corresponds to the very special case,
when 𝛾𝑣𝑒 = ∞, if 𝑒 ∈ 𝐹 and 𝛾𝑣𝑒 = Δ otherwise. Hence, in our model,
we allow very different types of conditions for each edge to block,
independently from each other, which can incorporate many other
special properties of certain applications. For example, if one thinks
about job markets, and assumes that the underlying preferences are
in correspondence with the salaries of the positions, there may be
many other aspects of a workplace that make it desirable. Hence, for
each agent and each different company and position, the increase
in the salary that would make a job offer good enough for the
applicant to switch, might be different. Similary, depending on a
company’s existing employees and a new agent, it may depend on
the specific skills of a new agent that are relevant for the company,
how large of a salary within a contract would be worth it for the
company to switch from an existing employee to the new one in a
blocking pair.

Putting it all together, we define a general model, which incorpo-
rates all of the previously discussed ones. Suppose we are given a set
𝐶 ⊂ 𝑈 ∪𝑊 of critical vertices, a set 𝐸𝑐 ⊂ 𝐸 of critical edges and 𝛾𝑣𝑒
values for each pair (𝑒, 𝑣) ∈ 𝐸×(𝑈 ∪𝑊 ) such that 𝑣 ∈ 𝑒 . We say that
amatching𝑀 is c𝛾-min stable, if𝑀 is critical and there is no blocking
edge 𝑒 = (𝑢,𝑤), such that𝑀 \ {(𝑢,𝑀 (𝑢)), (𝑀 (𝑤),𝑤)} ∪ {𝑒} is still
critical, andmin{𝑝𝑢 (𝑒)−𝑝𝑢 (𝑀 (𝑢))−𝛾𝑢𝑒 , 𝑝𝑤 (𝑒)−𝑝𝑤 (𝑀 (𝑤))−𝛾𝑤𝑒 } ≥
0 both hold. Otherwise, we call such a blocking edge a 𝑐𝛾-min block-

ing edge. Clearly, this generalizes all three concepts: Δ-min stability,
free edges and critical vertices. Similarly we can define c𝛾-max

stable matchings by replacing min{𝑝𝑢 (𝑒) −𝑝𝑢 (𝑀 (𝑢)) −𝛾𝑢𝑒 , 𝑝𝑤 (𝑒) −
𝑝𝑤 (𝑀 (𝑤)) − 𝛾𝑤𝑒 } ≥ 0 with max{𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)) − 𝛾𝑢𝑒 , 𝑝𝑤 (𝑒) −
𝑝𝑤 (𝑀 (𝑤)) − 𝛾𝑤𝑒 } ≥ 0.

In order to be able to solve both problems with the same al-
gorithm, let us go even one step further and consider a common
generalization of the above two problems that we describe now.
Instead of one 𝛾𝑢𝑒 , we have values 0 < 𝛾𝑢𝑒 < 𝛿𝑢𝑒 for each vertex-
edge pair. We say that an edge 𝑒 = (𝑢,𝑤) 𝑐𝛾-blocks a matching
𝑀 , if 𝑀 \ {(𝑢,𝑀 (𝑢)), (𝑀 (𝑤),𝑤)} ∪ {𝑒} is still critical, and either
min{𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)) − 𝛾𝑢𝑒 , 𝑝𝑤 (𝑒) − 𝑝𝑤 (𝑀 (𝑤)) − 𝛿𝑤𝑒 } ≥ 0 or
min{𝑝𝑢 (𝑒) − 𝑝𝑢 (𝑀 (𝑢)) − 𝛿𝑢𝑒 , 𝑝𝑤 (𝑒) − 𝑝𝑤 (𝑀 (𝑤)) − 𝛾𝑤𝑒 } ≥ 0 holds.
We say that a matching𝑀 is 𝑐𝛾-stable, if𝑀 is critical and there is
no edge that 𝑐𝛾-blocks𝑀 .

If the 𝛾𝑣𝑒 values are sufficiently small, then this corresonds to
𝑐𝛾-max stability, and when the 𝛾𝑣𝑒 and 𝛿𝑣𝑒 values are sufficently
close, then it corresponds to 𝑐𝛾-min stability.

Now we define the optimization problem we investigate, called
Maximum 𝑐𝛾-stable matching with ties, incomplete prefer-
ences and critical edges abbriviated as Max-𝑐𝛾-smti for short.

Max-𝑐𝛾-smti

Input: A bipartite graph 𝐺 = (𝑈 ,𝑊 ;𝐸), 𝑝𝑣 () preference
valuations for each 𝑣 ∈ 𝑈 ∪𝑊 , a set 𝐶 ⊂ 𝑈 ∪𝑊

of critical vertices, a set 𝐸𝑐 ⊂ 𝐸 of critical edges,
numbers 0 < 𝛾𝑣𝑒 < 𝛿𝑣𝑒 for each pair (𝑒, 𝑣) ∈ 𝐸 ×
(𝑈 ∪𝑊 ) such that 𝑣 ∈ 𝑒 .

Output: A maximum size 𝑐𝛾-stable matching𝑀

The main result of the paper is a simple 3
2 -approximation algo-

rithm for Max-𝑐𝛾-smti.

3 THE ALGORITHM
We start by describing a high level view of the algorithm. Let 𝐼 be
an instance of Max-𝑐𝛾-smti.

1. Create an instance 𝐼 ′ of the stable marriage problemwith strict
preferences by making parallel copies of each edge and create strict
preferences over the created edges.

2. Run the Gale-Shapley algorithm to obtain a stable matching
𝑀′ in the new instance 𝐼 ′

3. Take the projection 𝑀 of 𝑀′ to 𝐼 by taking an edge 𝑒 inside
𝑀 , whenever one of the parallel copies of 𝑒 was inside𝑀′.

The intuition behind this algorithm is the following. Our goal is
a stable matching that is as large as possible. Hence, to help agents
not to remain alone, we create copies for each edge, that allow
rejected and unmatched agents multiple new chances to propose
again to the same partner with a new, stronger contract that is
more favorable to the other agent and can be good enough for her
to reject another partner who has been considered better than the
proposing agent before.

3.1 The case of 𝐸𝑐 = 𝐸

Let us start with the special case when each edge is critical, so only
the number of covered critical vertices matters. Also, this means
that 𝑀𝑐 = 𝑀 for any matching 𝑀 . The more general case will be
solved by the same simple ideas, however, the many required types
of copies make it more difficult to follow. We describe the algorithm
in more detail as follows. Let 𝐼 be an instance of Max-𝑐𝛾-smti. Let
|𝐶 ∩𝑈 | = 𝑠 and |𝐶 ∩𝑊 | = 𝑡 . For each edge 𝑒 = (𝑢,𝑤) ∈ 𝐸 we create
parallel edges as follows

– We create copies 𝑎(𝑒), 𝑏0 (𝑒), 𝑏1 (𝑒) and 𝑐 (𝑒),
– If𝑤 ∈ 𝐶 ∩𝑊 is critical we create copies 𝑥1 (𝑒), . . . , 𝑥𝑡 (𝑒),
– If 𝑢 ∈ 𝐶 ∩𝑈 is critical we create copies 𝑧1 (𝑒), . . . , 𝑧𝑠 (𝑒).

Then, we create strict preferences as follows. For a vertex 𝑢 ∈ 𝑈 ,
we rank the copies according to the rule

𝑥1 ≻ · · · ≻ 𝑥𝑡 ≻ 𝑎 ⪰𝛾 𝑏0 ⪰𝛿−𝛾 𝑏1 ≻ 𝑐 ≻ 𝑧𝑠 ≻ · · · ≻ 𝑧1.
For a vertex𝑤 ∈𝑊 , we rank the copies according to the rule

𝑧1 ≻ · · · ≻ 𝑧𝑠 ≻ 𝑐 ⪰𝛾 𝑏1 ⪰𝛿−𝛾 𝑏0 ≻ 𝑎 ≻ 𝑥𝑡 ≻ · · · ≻ 𝑥1.
For any non-𝑏𝑖 copy, we rank the edges of the same copy according
to the preference functions 𝑝𝑣 () by breaking the ties arbitrarily.
Here, 𝛼 ≻ 𝛽 denotes that for any two edges 𝑒, 𝑓 , the copy 𝛼 (𝑒) is
ranked higher than the copy 𝛽 (𝑓 ).
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The notation 𝑎 ⪰𝛾 𝑏0 ⪰𝛿−𝛾 𝑏1 means that for any edge 𝑒 ,
𝑎(𝑒) ≻𝑣 𝑏0 (𝑒) ≻𝑣 𝑏1 (𝑒), but 𝑏0 (𝑓 ) ≻𝑣 𝑎(𝑒), if and only if 𝑝𝑣 (𝑓 ) ≥
𝑝𝑣 (𝑒) +𝛾𝑣𝑓 and 𝑏1 (𝑓 ) ≻𝑣 𝑎(𝑒) if and only if 𝑝𝑣 (𝑓 ) ≥ 𝑝𝑣 (𝑒) +𝛿𝑣𝑓 . This
can be obtained in the following way. For each vertex 𝑢 ∈ 𝑈 rank
the 𝑎 copies according to 𝑝𝑣 () by breaking the ties arbitrarily. Then,
we can insert the 𝑏0 copy of each edge 𝑓 , such that 𝑏0 (𝑓 ) ≻𝑢 𝑎(𝑒),
if and only if 𝑝𝑢 (𝑓 ) ≥ 𝑝𝑢 (𝑒) + 𝛾𝑢𝑓 . Similarly we can insert the 𝑏1
copies such that 𝑏1 (𝑓 ) ≻𝑢 𝑎(𝑒) if and only if 𝑝𝑢 (𝑓 ) ≥ 𝑝𝑢 (𝑒) + 𝛿𝑢

𝑓
.

For the𝑊 side, we do it similarly, according to their ranking. Note
that this definition allows the 𝑏𝑖 copies to be ranked in a different
order than 𝑝𝑣 (), which is surprising, but necessary. If there are still
some ties remaining, we break them arbitrarily.

We remark another way to create the ranking over the 𝑎, 𝑏0, 𝑏1, 𝑐
copies. For a vertex 𝑢 ∈ 𝑈 and 𝑒 = (𝑢,𝑤) let 𝑝𝑢 (𝑎(𝑒)) = 𝑝𝑢 (𝑒),
𝑝𝑢 (𝑏0 (𝑒)) = 𝑝𝑢 (𝑒) −𝛾𝑢𝑒 and 𝑝𝑢 (𝑏1 (𝑒)) = 𝑝𝑢 (𝑒) −𝛿𝑢𝑒 . Then, for each
vertex, these new (possibly negative) preference number define a
weak order, in which we break ties in a way such that with the
same value the 𝑏1 copies are best, the 𝑏0 copies are second and the
𝑎 copies are last. We can do it similary for the𝑊 side, with the
tiebreaking 𝑏0 first, 𝑏1 second, 𝑐 best.

We illustrate the creation of the extended preferences on a
concrete example with the second method. Let 𝑠 = 𝑡 = 1. Let
𝑢 ∈ 𝑈 be an agent with three adjacent edges 𝑒, 𝑓 , 𝑔. Let 𝑝𝑢 (𝑒) = 1,
𝑝𝑢 (𝑓 ) = 3 and 𝑝𝑢 (𝑔) = 4. Also, let 𝛾𝑢𝑒 = 1, 𝛾𝑢

𝑓
= 2, 𝛾𝑢𝑔 = 2 and 𝛿𝑢𝑒 =

2, 𝛿𝑢
𝑓
= 3, 𝛿𝑢𝑔 = 6. Then, 𝑝𝑢 (𝑎(𝑔)) = 4, 𝑝𝑢 (𝑎(𝑓 )) = 3, 𝑝𝑢 (𝑏0 (𝑔)) =

2, 𝑝𝑢 (𝑏0 (𝑓 )) = 𝑝𝑢 (𝑎(𝑒)) = 1, 𝑝𝑢 (𝑏1 (𝑓 )) = 𝑝𝑢 (𝑏0 (𝑒)) = 0, 𝑝𝑢 (𝑏1 (𝑒)) =
−1, 𝑝𝑢 (𝑏1 (𝑔)) = −2. Then, the ranking between the copies is the
following:

𝑥1 (𝑔) ≻𝑢 𝑥1 (𝑓 ) ≻𝑢 𝑥1 (𝑒) ≻𝑢 𝑎(𝑔) ≻𝑢 𝑎(𝑓 ) ≻𝑢 𝑏0 (𝑔) ≻𝑢
𝑏0 (𝑓 ) ≻𝑢 𝑎(𝑒) ≻𝑢 𝑏1 (𝑓 ) ≻𝑢 𝑏0 (𝑒) ≻𝑢 𝑏1 (𝑒) ≻𝑢 𝑏1 (𝑔) ≻𝑢 𝑐 (𝑔) ≻𝑢
𝑐 (𝑓 ) ≻𝑢 𝑐 (𝑒) ≻𝑢 𝑧1 (𝑔) ≻𝑢 𝑧1 (𝑓 ) ≻𝑢 𝑧1 (𝑒).

Notice that here 𝑏1 (𝑓 ) ≻𝑢 𝑏1 (𝑒) ≻𝑢 𝑏1 (𝑔), so for the 𝑏1 copy,
the edges are not ranked in their original order.

Theorem 3.1. Max-𝑐𝛾-smti can be
3
2 -approximated in O((𝑠 +

𝑡) |𝐸 |) time, if 𝐸 = 𝐸𝑐 .

Proof. We prove the theorem in three simple claims. Let 𝑀
denote the output of the algorithm and𝑀′ be its preimage in the
extended instance 𝐼 ′.

Claim.𝑀 is critical.
Proof: Suppose for contradiction that there is a matching 𝑁 , such
that 𝑁 covers strictly more critical vertices than𝑀 . Then, it must
hold that either 𝑁 covers more critical vertices from 𝑈 or more
critical vertices form𝑊 than𝑀 .

Suppose that the first case holds. Then, there is a component 𝑃
(a path) in 𝑁 ∪𝑀 , such that there is an endpoint 𝑢1 ∈ 𝑈 ∩𝐶 that is
critical, but is only matched in 𝑁 , and also more critical vertices are
covered in 𝑁 ∩ 𝑃 , than in𝑀 ∩ 𝑃 . Let 𝑒1 = (𝑢1,𝑤1) = 𝑁 (𝑢1). As 𝑢1
is critical, we know that the copies 𝑧1 (𝑢1,𝑤1), . . . , 𝑧𝑠 (𝑢1,𝑤1) exist.
As 𝑢1 is not matched in𝑀′, the fact that 𝑧1 (𝑢1,𝑤1) does not block
𝑀′ implies that𝑤1 is matched in𝑀′ and with a 𝑧1-type edge. Let
𝑧1 (𝑢2,𝑤1) = 𝑀′ (𝑤1). This immediately implies that 𝑢2 ∈ 𝑈 ∩ 𝐶 ,
as 𝑧1 (𝑢2,𝑤1) exists. By our assumption on the component (more
critical vertices are covered in 𝑁 ∩ 𝑃 , than in𝑀 ∩ 𝑃 ), 𝑢2 is matched
in 𝑁 to a vertex𝑤2.

As any 𝑧2 copy is better for𝑢2 in 𝐼 ′, but 𝑧2 (𝑢2,𝑤2) exists and does
not block, 𝑧 𝑗 (𝑢3,𝑤2) ∈ 𝑀′ for some 𝑢3 ∈ 𝑈 and 𝑗 ≤ 2. Again, we
obtain that 𝑢3 is critical, so by our assumption on the component,
𝑢3 is matched in 𝑁 to a vertex𝑤3. By iterating this argument, we
get that there must be vertices 𝑢1, 𝑢2, . . . , 𝑢𝑠+1 ∈ 𝑈 that are critical,
which contradicts |𝑈 ∩𝐶 | = 𝑠 .

The second case is analogous. ■
Claim. The output matching𝑀 by the algorithm is 𝑐𝛾-stable.

Proof: Suppose for contradiction that there is a 𝑐𝛾-blocking edge
𝑒 = (𝑢,𝑤) to𝑀 .

If𝑢 is unmatched, then𝑔 = (𝑢′,𝑤) = 𝑀 (𝑤) exists. As 𝑒 𝑐𝛾-blocks
and𝑀 is critical, we get that 𝑢 ∈ 𝐶 if and only if 𝑢′ ∈ 𝐶 . Hence, the
best copy of 𝑒 and 𝑔 for𝑤 has the same type, either 𝑧1 (𝑒) or 𝑐 (𝑒). In
both cases, we get that this copy of 𝑒 blocks𝑀′ as these copies are
both ranked according to 𝑝𝑤 (), contradiction. If𝑤 is unmatched,
𝑥1 (𝑒) or 𝑎(𝑒) blocks𝑀′ for similar reasons, contradiction.

Hence, 𝑀 (𝑢) = 𝑓 = (𝑢,𝑤 ′) and 𝑀 (𝑤) = 𝑔 = (𝑢′,𝑤) is not ∅.
Because 𝑒 𝑐𝛾-blocks, 𝑝𝑢 (𝑒) ≥ 𝑝𝑢 (𝑓 ) + 𝛾𝑢𝑒 and 𝑝𝑤 (𝑒) ≥ 𝑝𝑤 (𝑔) + 𝛿𝑤𝑒
or 𝑝𝑢 (𝑒) ≥ 𝑝𝑢 (𝑓 )+𝛿𝑢𝑒 and 𝑝𝑤 (𝑒) ≥ 𝑝𝑤 (𝑔)+𝛾𝑤𝑒 . Also, as 𝑒 𝑐𝛾-blocks,
the vertices𝑢′,𝑤 ′ cannot be critical, so𝑥1 (𝑓 ), . . . , 𝑥𝑡 (𝑓 ), 𝑧1 (𝑔), . . . , 𝑧𝑠 (𝑔)
do not exist. Hence, in the first case 𝑏0 (𝑒) and in the second case
𝑏1 (𝑒) blocks𝑀′, contradiction.

■
Claim. For any c𝛾-min stable matching 𝑁 it holds that |𝑁 | ≤

3
2 |𝑀 |.
Proof: Suppose for contradiction that there is a 𝑐𝛾-stable matching
𝑁 such that |𝑁 | > 3

2 |𝑀 |. Then, there must be a path component in
𝑁 ∪𝑀 that is either a single 𝑁 -edge, or consists of two 𝑁 -edges and
one𝑀-edge. The first case is clearly impossible, as𝑀 is necessarily
maximal.

Suppose the second case holds. Let 𝑒 = (𝑢1,𝑤2) be the edge of
𝑀 and 𝑓 = (𝑢1,𝑤1), 𝑔 = (𝑢2,𝑤2) be the edges of 𝑁 .

First observe that as 𝑀 and 𝑁 are critical, 𝑒 and 𝑓 ∪ 𝑔 cover
the same number of critical vertices, so𝑤1, 𝑢2 are not critical and
𝑥1 (𝑓 ), . . . , 𝑥𝑡 (𝑓 ), 𝑧1 (𝑔), . . . , 𝑧𝑠 (𝑔) does not exists.

As 𝑎(𝑓 ) does not block, 𝑏0 (𝑒), 𝑏1 (𝑒), 𝑎(𝑒) or 𝑥𝑖 (𝑒) ∈ 𝑀′ for
some 𝑖 . As 𝑐 (𝑔) does not block, 𝑏0 (𝑒), 𝑏1 (𝑒),𝑐 (𝑒) or 𝑧 𝑗 (𝑒) ∈ 𝑀′ for
some 𝑗 . Hence, 𝑏0 (𝑒) or 𝑏1 (𝑒) ∈ 𝑀′. If 𝑏0 (𝑒) ∈ 𝑀′, then 𝑝𝑢1 (𝑒) ≥
𝑝𝑢1 (𝑓 ) + 𝛾

𝑢1
𝑒 and 𝑝𝑤2 (𝑒) ≥ 𝑝𝑤2 (𝑔) + 𝛿

𝑤2
𝑒 as 𝑀′ is stable, so 𝑒 𝑐𝛾-

blocks 𝑁 (combining with the fact that 𝑒 and 𝑓 ∪ 𝑔 cover the same
number of critical vertices), contradiction. The other case implies
𝑝𝑢1 (𝑒) ≥ 𝑝𝑢1 (𝑓 ) + 𝛿

𝑢1
𝑒 and 𝑝𝑤2 (𝑒) ≥ 𝑝𝑤2 (𝑔) + 𝛾

𝑤2
𝑒 , so 𝑒 𝑐𝛾-blocks

𝑁 , contradiction again.
■

The statement follows from these three claims. The running time
of the algorithm is linear in the number of edges of the extended
instance, as the Gale-Shapley algorithm is linear, so it has running
time O((𝑠 + 𝑡) |𝐸 |). □

3.2 General case
Next, we discuss the more general case with an arbirtary subset of
critical edges.

We may assume without loss of generality that each critical edge
𝐸𝑐 is adjacent to at least one critical vertex, otherwise it cannot
cover any critical vertices, so we get an equivalent instance by
making the edge non-critical.
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Let us start by describing the extended instance 𝐼 ′. For each edge
𝑒 = (𝑢,𝑤) ∈ 𝐸 we create parallel edges as follows:

– We create copies 𝑎(𝑒), 𝑏0 (𝑒), 𝑏1 (𝑒) and 𝑐 (𝑒),
– If𝑤 ∈ 𝐶 ∩𝑊 is critical and 𝑒 ∈ 𝐸𝑐 is also critical, we create
copies 𝑥1 (𝑒), . . . , 𝑥𝑡+7 (𝑒)

– If 𝑢 ∈ 𝐶 ∩𝑈 is critical and 𝑒 ∈ 𝐸𝑐 is also critical, we create
copies 𝑧1 (𝑒), . . . , 𝑧𝑠+7 (𝑒)

– Finally, if 𝑒 ∈ 𝐸𝑐 is critical and both 𝑢,𝑤 ∈ 𝐶 are critical, we
create a copies 𝑦0 (𝑒), 𝑦1 (𝑒)

Then, we create strict preferences as follows. Let 𝛿 ′ = 𝛿 − 𝛾 . For
a vertex 𝑢 ∈ 𝑈 , we rank the copies according to the rule

𝑥1 ⪰𝛾 𝑥2 ⪰𝛿 ′ 𝑥3 ≻ 𝑥4 ≻ · · · ≻ 𝑥𝑡+4 ≻ 𝑧𝑠+7 ⪰𝛾 (𝑦0 ⪰ 𝑧𝑠+6) ⪰𝛿 ′

(𝑦1 ⪰ 𝑧𝑠+5) ≻ 𝑧𝑠+4 ≻ · · · ≻ 𝑧4 ≻ 𝑎 ⪰𝛾 (𝑏0 ⪰ 𝑧3 ⪰ 𝑥𝑡+5) ⪰𝛿 ′ (𝑏1 ⪰
𝑧2 ⪰ 𝑥𝑡+6) ≻ 𝑧1 ≻ 𝑥𝑡+7 ≻ 𝑐 .
For a vertex𝑤 ∈𝑊 , we rank the copies according to the rule

𝑧1 ⪰𝛾 𝑧2 ⪰𝛿 ′ 𝑧3 ≻ 𝑧4 ≻ · · · ≻ 𝑧𝑠+4 ≻ 𝑥𝑡+7 ⪰𝛾 (𝑦1 ⪰ 𝑥𝑡+6) ⪰𝛿 ′

(𝑦0 ⪰ 𝑥𝑡+5) ≻ 𝑥𝑡+4 ≻ · · · ≻ 𝑥4 ≻ 𝑐 ⪰𝛾 (𝑏1 ⪰ 𝑥3 ⪰ 𝑧𝑠+5) ⪰𝛿 ′ (𝑏0 ⪰
𝑥2 ⪰ 𝑧𝑠+6) ≻ 𝑥1 ≻ 𝑧𝑠+7 ≻ 𝑎.

Here, when we denote (𝛼 ⪰ 𝛽) for some types of copies, then
it always means that we insert 𝛼 (𝑒) and 𝛽 (𝑒) together with 𝛽 (𝑒)
being strictly after 𝛼 (𝑒) (so no other edge comes between them)
and we keep them together, so in the end for any other edge, either
it is worse than both of them or better than both of them. In the
model where we assign preference values to the copies to create a
new ranking, this corresponds to that these copies always get the
same value, so they are tied, and then we keep them together in
the tiebreaking in that order.

The only important thing is that, if we have some copies 𝛼 ⪰𝛾
(𝛽1 ⪰ · · · ⪰ 𝛽𝑘 ) ⪰𝛿 ′ (𝜔1 ⪰ · · · ⪰ 𝜔𝑙 ), then for any edge 𝑒 ,
𝛼 (𝑒) ≻𝑣 𝛽1 (𝑒) ≻𝑣 · · · ≻𝑣 𝛽𝑘 (𝑒) ≻𝑣 𝜔1 (𝑒) ≻𝑣 · · · ≻𝑣 𝜔𝑙 (𝑒) and that
for any 𝑖 ∈ [{1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑙} it holds that 𝛽𝑖 (𝑓 ) ≻𝑣 𝛼 (𝑒),
if and only if 𝑝𝑣 (𝑓 ) ≥ 𝑝𝑣 (𝑒) + 𝛾𝑣𝑓 and 𝜔 𝑗 (𝑓 ) ≻𝑣 𝛼 (𝑒) if and only if
𝑝𝑣 (𝑓 ) ≻ 𝑝𝑣 (𝑒) + 𝛿𝑣

𝑓
.

The edges from copies 𝑥1, 𝑥4, 𝑥5, . . . , 𝑥𝑡+4, 𝑥𝑡+7, 𝑧1, 𝑧4, 𝑧5 . . . , 𝑧𝑠+4,
𝑧𝑠+7, 𝑎, 𝑐 are ranked according to 𝑝𝑣 (), the others are then inserted
to the right place as before. In the preference value model, we do
this by computing the corresponding values similarly as in the
previous case (with each copy in a parenthesis getting the same
value) and for tie breaking we use a suitable rule. For example for a
vertex 𝑢 ∈ 𝑈 , amongst the copies 𝑎, 𝑏0, 𝑏1, 𝑧2, 𝑧3, 𝑥𝑡+5, 𝑥𝑡+6, we can
use 𝑏1 ≻𝑢 𝑧2 ≻𝑢 𝑥𝑡+6 ≻𝑢 𝑏0 ≻𝑢 𝑧3 ≻𝑢 𝑥𝑡+5 ≻𝑢 𝑎. The ties between
the same type of copies can be broken arbitrarily.

Theorem 3.2. Max-𝑐𝛾-smti can be
3
2 -approximated in O((𝑠 +

𝑡) |𝐸 |) time.

Proof. We prove the theorem in three simple claims. Let 𝑀
denote the output of the algorithm and𝑀′ be its preimage in the
extended instance 𝐼 ′.

Claim.𝑀 is critical.
Proof: Suppose for contradiction that there is a matching 𝑁 , such
that 𝑁𝑐 covers strictly more critical vertices than𝑀𝑐 . Then, it must
hold that either 𝑁𝑐 covers more critical vertices from 𝑈 or more
critical vertices from𝑊 than𝑀𝑐 .

Suppose that the first case holds. Then, there is a component (a
path) in 𝑁𝑐 ∪𝑀𝑐 , such that there is an endpoint 𝑢1 ∈ 𝑈 ∩𝐶 that is

critical, but is only covered in 𝑁𝑐 and also more critical vertices are
covered in 𝑁𝑐 ∩𝑃 , than in𝑀𝑐 ∩𝑃 . Let 𝑒1 = (𝑢1,𝑤1) = 𝑁𝑐 (𝑢1). As𝑢1
is critical, we know that the copies 𝑧1 (𝑢1,𝑤1), . . . , 𝑧𝑠+7 (𝑢1,𝑤1) exist.
As 𝑢1 is not covered with a critical edge in𝑀 (as it is uncovered in
𝑀𝑐 ), it can only be matched with an 𝑎, 𝑏𝑖 or 𝑐 type copy. The fact
that 𝑧4 (𝑢1,𝑤1) does not block𝑀′ implies that𝑤1 is matched in𝑀′

and with a 𝑧 𝑗 -type edge with 𝑗 ≤ 4. Let (𝑢2,𝑤1) = 𝑀 (𝑤1). This
immediately implies that𝑢2 ∈ 𝑈∩𝐶 and (𝑢2,𝑤1) ∈ 𝐸𝑐 , as 𝑧 𝑗 (𝑢2,𝑤1)
exists. By our assumption on the component (more critical vertices
are covered in 𝑁𝑐 ∩ 𝑃 , than in 𝑀𝑐 ∩ 𝑃 ), 𝑢2 is matched in 𝑁𝑐 to a
vertex𝑤2.

As any 𝑧5 copy is better for 𝑢2 in 𝐼 ′ than any 𝑧 𝑗 copy with
𝑗 ≤ 4, but 𝑧5 (𝑢2,𝑤2) exists and does not block, 𝑧 𝑗 (𝑢3,𝑤2) ∈ 𝑀′

for some 𝑢3 ∈ 𝑈 and 𝑗 ≤ 5. Again, we obtain that 𝑢3 is critical
and (𝑢3,𝑤2) ∈ 𝐸𝑐 , so by our assumption on the component, 𝑢3 is
matched in 𝑁𝑐 to a vertex𝑤3. By iterating this argument, we get
that there must be vertices 𝑢1, 𝑢2, . . . , 𝑢𝑠+1 ∈ 𝑈 that are critical,
which contradicts |𝑈 ∩𝐶 | = 𝑠 .

The second case is analogous. ■
Claim. The output matching𝑀 by the algorithm is 𝑐𝛾-stable.

Proof: Suppose for contradiction that there is a 𝑐𝛾-blocking edge
𝑒 = (𝑢,𝑤) to𝑀 .

If𝑢 is unmatched, then𝑔 = 𝑀 (𝑤) = (𝑢′,𝑤) exists. As 𝑒 𝑐𝛾-blocks
and 𝑀 is critical we get that 𝑒 ∈ 𝐸𝑐 if and only if 𝑔 ∈ 𝐸𝑐 and if
yes, then 𝑢′ ∈ 𝐶 if and only if 𝑢 ∈ 𝐶 . In particular, we get that the
best copy of 𝑒 and 𝑔 in 𝐼 ′ for𝑤 is the same. Also, this copy can be
only 𝑐, 𝑥𝑡+7 or 𝑧1 and all these copies are ranked according to 𝑝𝑤 ().
Therefore, this copy of 𝑒 blocks𝑀′, as 𝑒 𝑐𝛾-blocks𝑀 , contradiction.
The case when𝑤 is unmatched is similar.

Hence, 𝑀 (𝑢) = 𝑓 = (𝑢,𝑤 ′) and 𝑀 (𝑤) = 𝑔 = (𝑢′,𝑤) is not ∅.
Because 𝑒 𝑐𝛾-blocks, 𝑝𝑢 (𝑒) ≥ 𝑝𝑢 (𝑓 ) + 𝛾𝑢𝑒 and 𝑝𝑤 (𝑒) ≥ 𝑝𝑤 (𝑔) + 𝛿𝑤𝑒
or 𝑝𝑢 (𝑒) ≥ 𝑝𝑢 (𝑓 ) + 𝛿𝑢𝑒 and 𝑝𝑤 (𝑒) ≥ 𝑝𝑤 (𝑔) + 𝛾𝑤𝑒 .

If 𝑓 , 𝑔 ∉ 𝐸𝑐 , then 𝑒 ∉ 𝐸𝑐 , as 𝑀 is critical. Hence, only 𝑎, 𝑏0, 𝑏1, 𝑐
copies exists of 𝑒, 𝑓 , 𝑔. As 𝑒 𝑐𝛾-blocks𝑀 , we get that 𝑏0 (𝑒) or 𝑏1 (𝑒)
blocks𝑀′, contradiction.

Suppose that 𝑓 , 𝑔 ∈ 𝐸𝑐 . Then, 𝑒 ∈ 𝐸𝑐 , 𝑢,𝑤 ∈ 𝐶 and 𝑢′,𝑤 ′ ∉ 𝐶 ,
because 𝑒 𝑐𝛾-blocks. Hence, 𝑥𝑖 (𝑓 ), 𝑧 𝑗 (𝑔) do not exists for any 𝑖, 𝑗 ,
but 𝑦0 (𝑒), 𝑦1 (𝑒) exist. As 𝑒 𝑐𝛾-blocks one of 𝑦0 (𝑒), 𝑦1 (𝑒) blocks𝑀′,
contradiction.

Suppose that 𝑓 ∈ 𝐸𝑐 , 𝑔 ∉ 𝐸𝑐 . In particular, only𝑎(𝑔), 𝑏0 (𝑔), 𝑏1 (𝑔), 𝑐 (𝑔)
exist of 𝑔. Then, 𝑒 ∈ 𝐸𝑐 as 𝑒 𝑐𝛾-blocks and 𝑤 ′ ∈ 𝐶 if and only if
𝑤 ∈ 𝐶 . If𝑤,𝑤 ′ ∈ 𝐶 , then 𝑥2 (𝑒), 𝑥3 (𝑒) exist and one of them blocks
𝑀′, contradiction. If𝑤,𝑤 ′ ∉ 𝐶 , then 𝑢 ∈ 𝐶 (by our assumption for
any 𝑒 ∈ 𝐸𝑐 , at least one endpoint is critical) and 𝑥𝑖 (𝑒), 𝑥𝑖 (𝑓 ) do not
exists for any 𝑖 and neither does 𝑦0 (𝑒), 𝑦0 (𝑓 ), 𝑦1 (𝑒), 𝑦1 (𝑓 ). Hence,
𝑧𝑠+5 (𝑒) or 𝑧𝑠+6 (𝑒) blocks𝑀′, contradiction.

The case 𝑓 ∉ 𝐸𝑐 , 𝑔 ∈ 𝐸𝑐 is analogous.
■

Claim. For any c𝛾-min stable matching 𝑁 it holds that |𝑁 | ≤
3
2 |𝑀 |.
Proof: Suppose for contradiction that there is a 𝑐𝛾-stable matching
𝑁 such that |𝑁 | > 3

2 |𝑀 |. Then, there must be a path component in
𝑁 ∪𝑀 that is either a single 𝑁 -edge, or consist of two 𝑁 -edges and
one𝑀-edge. The first case is clearly impossible, as𝑀 is necessarily
maximal.
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Suppose the second case holds. Let 𝑒 = (𝑢1,𝑤2) be the edge of
𝑀 and 𝑓 = (𝑢1,𝑤1), 𝑔 = (𝑢2,𝑤2) be the edges of 𝑁 .

First observe that as𝑀 and 𝑁 are critical, 𝑒 and 𝑓 ∪ 𝑔 cover the
same number of critical vertices with critical edges. Hence, if 𝑒
𝛾-blocks 𝑁 , then it 𝑐𝛾-blocks 𝑁 .

Suppose that 𝑓 , 𝑔 ∉ 𝐸𝑐 . Then, 𝑒 ∉ 𝐸𝑐 and only 𝑎, 𝑏0, 𝑏1, 𝑐 copies
exists of all three edges. As 𝑎(𝑓 ) does not block𝑀′, 𝑏0 (𝑒), 𝑏1 (𝑒) or
𝑎(𝑒) ∈ 𝑀′. As 𝑐 (𝑔) does not block 𝑀′, 𝑏0 (𝑒), 𝑏1 (𝑒) or 𝑐 (𝑒) ∈ 𝑀′ .
Hence, 𝑏0 (𝑒) or 𝑏1 (𝑒) ∈ 𝑀′. Furthermore, if 𝑏0 (𝑒) ∈ 𝑀′, then
𝑝𝑢1 (𝑒) ≥ 𝑝𝑢1 (𝑓 ) + 𝛾

𝑢1
𝑒 and 𝑝𝑤2 (𝑒) ≥ 𝑝𝑤2 (𝑔) + 𝛿

𝑤2
𝑒 , so 𝑒 𝑐𝛾-blocks

𝑁 (combining with the fact that 𝑒 and 𝑓 ∪𝑔 cover the same number
of critical vertices), contradiction. The other case implies 𝑝𝑢1 (𝑒) ≥
𝑝𝑢1 (𝑓 ) + 𝛿

𝑢1
𝑒 and 𝑝𝑤2 (𝑒) ≥ 𝑝𝑤2 (𝑔) + 𝛾

𝑤2
𝑒 , so 𝑒 𝑐𝛾-blocks 𝑁 , contra-

diction again.
Next suppose that 𝑓 , 𝑔 ∈ 𝐸𝑐 . Then, as 𝑀 is critical, 𝑒 ∈ 𝐸𝑐 ,

𝑢1,𝑤2 ∈ 𝐶 and 𝑢2,𝑤1 ∉ 𝐶 . Hence, 𝑥𝑖 (𝑓 ), 𝑧 𝑗 (𝑔) does not exists for
any 𝑖, 𝑗 but 𝑦0 (𝑒), 𝑦1 (𝑒) exist and also 𝑧 𝑗 (𝑓 ), 𝑥𝑖 (𝑔) exists for all 𝑖, 𝑗 .
As 𝑧𝑠+7 (𝑓 ) does not block and 𝑥𝑡+7 (𝑔) does not block 𝑀′ we get
that 𝑦0 (𝑒) ∈ 𝑀′ or 𝑦1 (𝑒) ∈ 𝑀′ and in both cases, 𝑒 𝑐𝛾-blocks 𝑁 ,
contradiction.

Suppose that 𝑓 ∈ 𝐸𝑐 , 𝑔 ∉ 𝐸𝑐 . Then, as 𝑀, 𝑁 are critical, 𝑒 ∈ 𝐸𝑐
and 𝑤1 ∈ 𝐶 if and only if 𝑤2 ∈ 𝐶 . If𝑤1,𝑤2 ∈ 𝐶 , then 𝑥1 (𝑓 ) exists.
As 𝑥1 (𝑓 ) does not block and 𝑐 (𝑔) does not block𝑀′, 𝑥2 (𝑒) ∈ 𝑀′ or
𝑥3 (𝑒) ∈ 𝑀′. In both cases, 𝑒 𝑐𝛾-blocks 𝑁 , contradiction. If𝑤1,𝑤2, ∉
𝐶 , then 𝑢1 ∈ 𝐶 (each 𝑒 ∈ 𝐸𝑐 has one critical endpoint by our
assumption) and𝑦0 (𝑒), 𝑦1 (𝑒), 𝑥𝑖 (𝑒) does not exists for 𝑖 ∈ {1, . . . , 𝑡 +
7}, but 𝑧 𝑗 (𝑒), 𝑧 𝑗 (𝑓 ) does for 𝑗 ∈ {1, . . . , 𝑠 + 7}. As neither 𝑧𝑠+7 (𝑓 )
nor 𝑐 (𝑔) blocks 𝑀′, we get that 𝑧𝑠+6 (𝑒) ∈ 𝑀′ or 𝑧𝑠+5 (𝑒) ∈ 𝑀′. In
both cases, we get that 𝑒 𝑐𝛾-blocks 𝑁 , contradiction.

The case 𝑓 ∉ 𝐸𝑐 , 𝑔 ∈ 𝐸𝑐 is similar.
■

The statement follows from these three claims. The running
time of the algorithm is linear in the edges of the extended instance,
as the Gale-Shapley algorithm is linear, so it has running time
O((𝑠 + 𝑡) |𝐸 |). □

We state one remark about a straightforward extension of this
algorithm.

Remark. If we can have 𝑘 (𝛾𝑣𝑒 )1 < (𝛾𝑣𝑒 )2 < · · · < (𝛾𝑣𝑒 )𝑘 values
instead of the two 𝛾𝑣𝑒 , 𝛿𝑣𝑒 values, and let 𝑒 = (𝑢,𝑤) block if 𝑝𝑢 (𝑒) ≥
𝑝𝑢 (𝑀 (𝑢)) + (𝛾𝑢𝑒 )𝑖 and 𝑝𝑤 (𝑒) ≥ 𝑝𝑤 (𝑀 (𝑤)) + (𝛾𝑤𝑒 )𝑘+1−𝑖 for some
𝑖 ∈ {1, . . . , 𝑘}, then this framework can also incorporate a notion
of 𝛾-sum stability. In 𝛾-sum stability, we have one 𝛾𝑒 value for
each edge, and (𝑢,𝑤) 𝛾-sum blocks, if it blocks and the sum of
the two improvements are at least 𝛾𝑒 . With 𝑘 = O(|𝑈 ∪𝑊 |2)
copies, we can have (𝛾𝑣𝑒 )1 < (𝛾𝑣𝑒 )2 < · · · < (𝛾𝑣𝑒 )𝑘 values for each
possible improvement 𝑐 and 𝛾𝑒 −𝑐 such that (𝛾𝑣𝑒 )𝑖 = 𝛾𝑒 − (𝛾𝑣𝑒 )𝑘+1−𝑖 ,
so 𝛾-sum stability becomes a special case. Furthermore, the same
algorithm straightforwardly extends to this case, we only need to
make 𝑘 copies instead of 2 for the needed cases and define the strict
ranking in 𝐼 ′ according to the differences (𝛾𝑣𝑒 )𝑖+1 − (𝛾𝑣𝑒 )𝑖 .

4 CONCLUSION AND FUTUREWORK
In this paper we demonstrated the robust usefulness and generality
of the edge duplicating technique and provided simple algorithms
for many Max-SMTI generalizations at the same time. A natural

direction to generalize the algorithm even further is to allow capac-
ities or matroid constraints for the vertices. Our preliminary results
show that our algorithm indeed extends to these cases. As there are
probably even more cases, where this technique could provide a
nice solution, there is a huge potential of applying it to other lesser
known or yet to be introduced models.
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