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ABSTRACT
We study the problem of capacity modification in the many-to-one

stable matching of workers and firms. Our goal is to systematically

study how the set of stable matchings changes when some seats are

added to or removed from the firms. We make three main contribu-

tions: First, we examine whether firms and workers can improve

or worsen upon changing the capacities under worker-proposing

and firm-proposing deferred acceptance algorithms. Second, we

study the computational problem of adding or removing seats to

either match a fixed worker-firm pair in some stable matching or

make a fixed matching stable with respect to the modified prob-

lem. We develop polynomial-time algorithms for these problems

when only the overall change in the firms’ capacities is restricted,

and show NP-hardness when there are additional constraints for

individual firms. Lastly, we compare capacity modification with the

classical model of preference manipulation by firms and identify

scenarios under which one mode of manipulation outperforms the

other. We find that a threshold on a given firm’s capacity, which

we call its peak, crucially determines the effectiveness of different

manipulation actions.
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1 INTRODUCTION
The stable matching problem is a classical problem at the intersec-

tion of economics, operations research, and computer science [21,

23, 30, 37]. The problem involves two sets of agents, such as work-

ers and firms, each with a preference ordering over the agents on

the other side. The goal is to find a matching that is stable, i.e., one
where no worker-firm pair prefer each other over their current

matches.

This work is licensed under a Creative Commons Attribution

International 4.0 License.
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Many real-world matching markets have been influenced by the

stable matching problem, such as school choice [1–3], entry-level

labor markets [33, 36], and refugee resettlement [4, 5]. In these

applications, each agent on one side of the market (e.g., the firms)

has a capacity constraint that limits the maximum number of agents

on the other side (namely, workers) it can be feasibly matched with.

Remarkably, for any given capacities, a stable matching of workers

and firms always exists and can be computed using the celebrated

deferred-acceptance algorithm [15, 33].

While the stable matching problem assumes fixed capacities, it is

common to have flexible capacities in practice. This is particularly

useful in settings with variable demand or popularity such as in

vaccine distribution or course allocation. Flexible capacities also

allow for accommodating other goals, such as Pareto optimality

or social welfare [29]. For example, in 2016, nineteen colleges in

Delhi University in India increased their total capacity by 2000 seats

across various courses [12]. Another example is the ScheduleScout
platform,

1
formerly known as Course Match [10], used in course

allocation at the Wharton School. This platform allows the addition

or removal of seats in courses that are either undersubscribed or

oversubscribed, respectively.
2
In more complex matching environ-

ments such as stable matching with couples where a stable solution

is not guaranteed to exist, a small change in the capacities can

provably restore the existence of a stable outcome [31]. We will use

the term capacity modification to refer to change in the capacities

of the firms by a central planner.

The theoretical study of capacity modification was initiated by

Sönmez [39], who showed that under any stable matching algo-

rithm, there exists a scenario where some firm is better off when its

capacity is reduced. The computational aspects of capacity modifi-

cation have also recently gained attention [7, 8, 11]. However, some

natural questions about how the set of stable matchings responds

to changes in capacities have not been answered. Specifically, by

modifying the capacities, can a given worker-firm pair be matched

under some stable matching? Or, can a given matching be realized

as a stable outcome of the modified instance? Furthermore, if we

consider the perspective of a strategic firm, there has been a lack

of a distinct comparison between "manipulation through capac-

ity modification" and the traditional approach of "manipulation

through misreporting preferences". Our interest in this work is to

address these gaps.

1
https://www.getschedulescout.com/

2
https://www.youtube.com/watch?v=OSOanbdV3jI&t=1m38s
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Our Contributions
We undertake a systematic analysis of the structural and computa-

tional aspects of the capacity modification problem and make three

main contributions:

Capacity modification trends. In Section 3, we study the effect

of capacity modification on workers and firms. We observe that

increasing a firm’s capacity by 1 can, in some cases, improve, and

in other cases, worsen its outcome under both worker-proposing

and firm-proposing deferred acceptance algorithms. The workers,

on the other hand, can improve but never worsen (see Table 1).

Computational results. In Section 4, we study a natural compu-

tational problem faced by a central planner: Given a many-to-one

instance, how can a fixed number of seats be added to (similarly, re-

moved from) the firms in order to either match a fixed worker-firm

pair in some stable matching or make a given matching stable in the

new instance?We show that these problems admit polynomial-time

algorithms. We also study a generalization where individual firms

have constraints on the seats added to or removed from them, in

addition to an aggregate budget. Here, the problem of matching a

fixed worker-firm pair turns out to NP-hard while ensuring that a

given matching is stable can still be efficiently solved (see Table 2).

Capacity modification v/s preference manipulation. In Section 5,

we examine which mode of manipulation is more powerful for a

strategic firm: underreporting/overreporting capacity or misreport-

ing preferences. Interestingly, it turns out that the effectiveness of

each manipulation action (i.e., adding/deleting capacity or misre-

porting preferences) depends on a threshold on the firm’s capacity

which we call peak (see Figure 1). For a firm to successfully manipu-

late its preferences, its capacity must be strictly below its peak (un-

der the worker-proposing algorithm) or at most its peak (when

firms propose). Thus, the concept of peak appears to have relevance

beyond capacity modification.

All missing proofs and other technical details can be found in

the full version [17].

Related Work
The stable matching problem has inspired a large body of work in

economics, operations research, computer science, and artificial

intelligence [15, 21, 23, 30, 37].

Prior work has demonstrated strategic vulnerabilities of stable

matching algorithms. It is known that any stable matching algo-

rithm is susceptible to manipulation via misreporting of prefer-

ences [13, 32], underreporting of capacities [39], and formation of

pre-arranged matches [40].
3
Subsequently, Roth and Peranson [36]

showed via experiments on the data from the National Resident

Matching Program that less than 1% of the programs can benefit

by misreporting preferences or underreporting capacities. Kojima

and Pathak [27] provided theoretical justification for these findings

by showing that incentives for such manipulations vanish in large

markets. Note that, unlike the above results that only apply to spe-

cific datasets [36] or in the asymptotic setting [27], our algorithmic

results provide worst-case guarantees for any given instance.

3
In pre-arrangedmatches, a worker and firm can choose tomatch outside the algorithm.

The worker does not participate in the algorithm, and in return, is offered a seat at the

firm. The firm then has one less seat available through the algorithm.

Another line of work has explored restricted preference do-

mains for circumventing the above impossibility results [22, 26,

28]. In particular, Konishi and Ünver [28] have shown that under

strongly monotone preferences (formally defined in Section 2), a

firm cannot manipulate by underreporting its capacity under the

worker-proposing algorithm (although other algorithms, like the

firm-proposing algorithm, can still be manipulated).

The computational problem of modifying capacities to serve

a given objective has seen significant attention in recent years.

Bobbio et al. [8] showed that the problem of adding (similarly,

removing) seats from the firms in order to minimize the average

rank of matched partners of the workers is NP-hard to approximate

within O(
√
𝑚), where𝑚 is the number of workers. Bobbio et al. [7]

developed a mixed integer linear program for this problem.

Chen and Csáji [11] studied the problem of increasing the firms’

capacities to obtain a stable and perfect matching, and similarly, a

matching that is stable and Pareto efficient for the workers. They

considered two objectives for this problem: minimizing the overall

increase in the firms’ capacities and minimizing the maximum

increase in any firm’s capacity. Dur and Van der Linden [14] studied

the problem of adding seats to firms to achieve a matching that

is stable (with respect to the modified capacities) and not Pareto

dominated (as per workers’ preferences only) by any other stable

matching. Some of our computational results draw upon the work

of Boehmer et al. [9], who studied the control problem for stable

matchings in the one-to-one setting. We discuss the connection

with this work in Section 4.

2 PRELIMINARIES
For any positive integer 𝑟 , let [𝑟 ] B {1, 2, . . . , 𝑟 }.

Problem instance. An instance of themany-to-onematching prob-

lem is given by a tuple ⟨𝐹,𝑊 ,𝐶, ≻⟩, where 𝐹 = {𝑓1, . . . , 𝑓𝑛} is the
set of 𝑛 ∈ N firms,𝑊 = {𝑤1, . . . ,𝑤𝑚} is the set of𝑚 ∈ N workers,
𝐶 = {𝑐1, . . . , 𝑐𝑛} is the set of capacities of the firms (where, for every

𝑖 ∈ [𝑛], 𝑐𝑖 ∈ N ∪ {0}), and ≻= (≻𝑓1 , . . . , ≻𝑓𝑛 , ≻𝑤1
, . . . , ≻𝑤𝑚

) is the
preference profile consisting of the ordinal preferences of all firms

and workers. Each worker𝑤 ∈𝑊 is associated with a linear order

(i.e., a strict and complete ranking) ≻𝑤 over the set 𝐹 ∪ {∅}. Each
firm 𝑓 ∈ 𝐹 is associated with a linear order ≻𝑓 over the set𝑊 ∪{∅}.
Throughout, we will use the term agent to refer to a worker or a

firm, i.e., an element in the set𝑊 ∪ 𝐹 .

For two capacity vectors𝐶,𝐶 ∈ (N∪ {0})𝑛 , we will write𝐶 ≥ 𝐶

to denote coordinate-wise greater than or equal to, i.e., for every

𝑖 ∈ [𝑛], 𝑐𝑖 ≥ 𝑐𝑖 , where 𝑐𝑖 and 𝑐𝑖 are the 𝑖
th
coordinate of vectors 𝐶

and 𝐶 , respectively. Additionally, we will write |𝐶 −𝐶 |1 to denote

the 𝐿1 norm of the difference vector, i.e., |𝐶 −𝐶 |1 B
∑𝑛
𝑖=1 |𝑐𝑖 − 𝑐𝑖 |.

When all firms have unit capacities (i.e., for each firm 𝑓 ∈ 𝐹, 𝑐 𝑓 =

1), we obtain the one-to-one matching problem. In this case, we will

follow the terminology from the literature on the stable marriage

problem [15] and denote a problem instance by ⟨𝑃,𝑄, ≻⟩, where 𝑃
and 𝑄 denote the set of 𝑛 men and𝑚 women, respectively, and ≻
denotes the corresponding preference profile.

Complete preferences. A worker 𝑤 is said to be acceptable to a

firm 𝑓 if𝑤 ≻𝑓 ∅. A set of workers 𝑆 ⊆𝑊 is said to be acceptable

to a firm 𝑓 , denoted by 𝑆 ≻𝑓 ∅, if all workers in it are acceptable
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to 𝑓 . Likewise, a firm 𝑓 is acceptable to a worker𝑤 if 𝑓 ≻𝑤 ∅. An
agent’s preferences are said to be complete if all agents on the other

side are acceptable to it.

Responsive preferences. Throughout the paper, we will assume

that firms’ preferences over subsets of workers are responsive [34].
Informally, this means that for any subsets 𝑆, 𝑆 ′ ⊆𝑊 of workers

where 𝑆 is derived from 𝑆 ′ by replacing a worker 𝑤 ′ ∈ 𝑆 ′ with a

more preferred worker𝑤 , it must be that 𝑆 ≻𝑓 𝑆 ′. More formally,

the extension of firm 𝑓 ’s preferences over subsets of workers is

responsive if for any subset 𝑆 ⊆𝑊 of workers,

• for all𝑤 ∈𝑊 \ 𝑆 , 𝑆 ∪ {𝑤} ≻𝑓 𝑆 if and only if𝑤 ≻𝑓 ∅, and
• for all 𝑤,𝑤 ′ ∈ 𝑊 \ 𝑆 , 𝑆 ∪ {𝑤} ≻𝑓 𝑆 ∪ {𝑤 ′} if and only if

𝑤 ≻𝑓 𝑤 ′
.

We will write 𝑆 ⪰𝑓 𝑆 ′ to denote that either 𝑆 ≻𝑓 𝑆 ′ or 𝑆 =

𝑆 ′. Further, we will always consider the transitive closure of any
responsive extension of ≻𝑓 , which, in turn, induces a partial order

over the set of all subsets of workers.

We will now define two subdomains of responsive preferences

that will be of interest to us: strongly monotone and lexicographic.

Strongly monotone preferences. A firm is said to have strongly
monotone preferences [28] if its preferences are responsive and it

prefers cardinality-wise larger subsets of workers. That is, for any

pair of acceptable subsets of workers 𝑆,𝑇 such that |𝑆 | > |𝑇 |, it
holds that 𝑆 ≻𝑓 𝑇 .

Lexicographic preferences. A firm 𝑓 is said to have lexicographic
preferences if it prefers any subset of workers containing its favorite

worker over any subset not containing it, subject to which, it prefers

any subset containing its second-favorite worker over any subset

not containing it, and so on. Formally, given a linear order ≻𝑓

over the set𝑊 ∪ {∅} and any pair of distinct acceptable subsets of

workers 𝑆 and 𝑇 , we have 𝑆 ≻𝑓 𝑇 if and only if the favorite worker

of firm 𝑓 (as per ≻𝑓 ) in the set difference of 𝑆 and𝑇 (i.e., 𝑆 \𝑇 ∪𝑇 \𝑆)
lies in 𝑆 . Observe that lexicographic preferences are responsive.

For many-to-one instances with two workers (i.e., |𝑊 | = 2) that

are both acceptable to a firm, lexicographic and strongly monotone

preferences coincide. However, for instances with three or more

workers, strongly monotone preferences are not lexicographic and

lexicographic preferences are not strongly monotone.
4

Many-to-one matching. Given an instance I = ⟨𝐹,𝑊 ,𝐶, ≻⟩, a
many-to-one matching for I is specified by a function 𝜇 : 𝐹 ∪𝑊 →
2
𝐹∪𝑊

such that:

• for every firm 𝑓 ∈ 𝐹 , |𝜇 (𝑓 ) | ≤ 𝑐 𝑓 and 𝜇 (𝑓 ) ⊆ 𝑊 , i.e., each

firm 𝑓 is matched with at most 𝑐 𝑓 workers,

• for every worker𝑤 ∈𝑊 , |𝜇 (𝑤) | ≤ 1 and 𝜇 (𝑤) ⊆ 𝐹 , i.e., each

worker is matched with at most one firm, and

• for every worker-firm pair (𝑤, 𝑓 ) ∈ 𝑊 × 𝐹 , 𝜇 (𝑤) = {𝑓 } if
and only if𝑤 ∈ 𝜇 (𝑓 ).

A firm 𝑓 with capacity 𝑐 𝑓 is said to be saturated under the match-

ing 𝜇 if |𝜇 (𝑓 ) | = 𝑐 𝑓 ; otherwise, it is said to be unsaturated.

4
This can be easily seen by considering a firm with preference over singletons as

𝑤1 ≻ 𝑤2 ≻ 𝑤3 ≻ · · · . A firm with lexicographic preferences will prefer {𝑤1 } over
{𝑤2, 𝑤3 }. On the other hand, under strongly monotone preferences, the firm will

prefer {𝑤2, 𝑤3 } over {𝑤1 }. Hence, lexicographic and strongly monotone preferences

do not coincide when there are three or more workers.

For simplicity, we will use the term matching in place of ‘many-

to-one matching’ whenever it is clear from context. We will ex-

plicitly use the qualifiers ‘one-to-one’ and ‘many-to-one’ when the

distinction between the two notions is relevant to the context.

Stability. A many-to-one matching 𝜇 is said to be

• blocked by a firm 𝑓 if there is some worker 𝑤 ∈ 𝜇 (𝑓 ) such
that ∅ ≻𝑓 {𝑤}. That is, firm 𝑓 prefers to keep a seat vacant

rather than offer it to worker𝑤 .

• blocked by aworker𝑤 if ∅ ≻𝑤 𝜇 (𝑤). That is, worker𝑤 prefers

being unmatched over being matched with firm 𝜇 (𝑤).
• blocked by a worker-firm pair (𝑤, 𝑓 ) if worker𝑤 prefers being

matched with firm 𝑓 over its current outcome under 𝜇, and,

simultaneously, firm 𝑓 prefers being matched with worker

𝑤 along with a subset of the workers in 𝜇 (𝑓 ) over being
matched with the set 𝜇 (𝑓 ). That is, 𝑓 ≻𝑤 𝜇 (𝑤) and there

exists a subset 𝑆 ⊆ 𝜇 (𝑓 ) such that 𝑆 ∪ {𝑤} ≻𝑓 𝜇 (𝑓 ) and
|𝑆 ∪ {𝑤}| ≤ 𝑐 𝑓 .

5

• stable if it is not blocked by any worker, any firm, and any

worker-firm pair.

The set of stable matchings for an instanceI is denoted bySI . Note
that the above definition of stability assumes responsive preferences.

A more general definition of stability in terms of choice sets can be

found in [39].

Firm and worker optimal stable matchings. It is known that given

any many-to-one matching instance, there always exists a firm-
optimal (respectively,worker-optimal) stablematching that is weakly

preferred by all firms (respectively, all workers) over any other

stable matching. This result, due to Roth [33], is recalled in Propo-

sition 2.1 below. We will write FOSM and WOSM to denote the

firm-optimal and worker-optimal stable matching, respectively.

Proposition 2.1 (Firm-optimal and worker-optimal stable

matchings [33]). Given any instance I, there exist (not necessarily
distinct) stable matchings 𝜇𝐹 , 𝜇𝑊 ∈ SI such that for every stable
matching 𝜇 ∈ SI , 𝜇𝐹 (𝑓 ) ⪰𝑓 𝜇 (𝑓 ) ⪰𝑓 𝜇𝑊 (𝑓 ) for every firm 𝑓 ∈ 𝐹

and 𝜇𝑊 (𝑤) ⪰𝑤 𝜇 (𝑤) ⪰𝑤 𝜇𝐹 (𝑤) for every worker𝑤 ∈𝑊 .

Worker-proposing and firm-proposing algorithms. Twowell-known
algorithms for finding stable matchings are the worker-proposing

and firm-proposing deferred acceptance algorithms, denoted by

WPDA and FPDA, respectively. The WPDA algorithm proceeds in

rounds, with each round consisting of a proposal phase followed by
a rejection phase. In the proposal phase, every unmatched worker

proposes to its favorite acceptable firm that hasn’t rejected it yet.

Subsequently, in the rejection phase, each firm 𝑓 tentatively ac-

cepts its favorite 𝑐 𝑓 proposals and rejects the rest. The algorithm

continues until no further proposals can be made.

Under the FPDA algorithm, firms make proposals and workers

do the rejections. Each firm makes (possibly) multiple proposals in

each round according to its ranking over individual workers. Each

worker tentatively accepts its favorite proposal and rejects the rest.

Roth [33] showed that the WPDA and FPDA algorithms return the

worker-optimal and firm-optimal stable matchings, respectively.

5
One might ask about blocking coalitions, wherein a set of workers and firms together

block a given matching. It is known that if a coalition of workers and firms blocks a

matching, then so does some worker-firm pair [37, Theorem 3.3].
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Rural hospitals theorem. The rural hospitals theorem is a well-

known result which states that, for any fixed firm 𝑓 , the number of
workers matched with 𝑓 is the same in every stable matching [33].

Furthermore, if 𝑓 is unsaturated in any stable matching, then it is

matched with the same set of workers in every stable matching [35].

Proposition 2.2 (Rural hospitals theorem [33, 35]). Given
any instance I, any firm 𝑓 , and any pair of stable matchings 𝜇, 𝜇′ ∈
SI , we have that |𝜇 (𝑓 ) | = |𝜇′ (𝑓 ) |. Furthermore, if |𝜇 (𝑓 ) | < 𝑐 𝑓 for
some stable matching 𝜇 ∈ SI , then 𝜇 (𝑓 ) = 𝜇′ (𝑓 ) for every other
stable matching 𝜇′ ∈ SI .

Canonical one-to-one instance. Given a many-to-one instance

I = ⟨𝐹,𝑊 ,𝐶, ≻⟩ with responsive preferences, there exists an asso-

ciated one-to-one instance I′ = ⟨𝑃,𝑄, ≻′⟩ obtained by creating 𝑐 𝑓
men for each firm 𝑓 and one woman for each worker. Each man’s

preferences for the women mirror the corresponding firm’s prefer-

ences for the corresponding workers. Each woman prefers all men

corresponding to a more preferred firm over all men corresponding

to any less preferred firm (in accordance with the corresponding

worker’s preferences). For any fixed firm, all women prefer the man

corresponding to its first copy over the man representing its second

copy, and so on. Any stable matching in the one-to-one instance

I′
maps to a unique stable matching in the many-to-one instance

I, obtained by “compressing” the former matching in a natural

way (see Example 5 in [17]).

Proposition 2.3 (Canonical instance [16]). Given any many-
to-one instance I = ⟨𝐹,𝑊 ,𝐶, ≻⟩, there exists a one-to-one instance
I′ = ⟨𝑃,𝑄, ≻′⟩ such that there is a bijection between the stable match-
ings of I and I′. Furthermore, the instance I′ can be constructed in
polynomial time.

3 HOW DOES CAPACITY MODIFICATION
AFFECTWORKERS AND FIRMS?

In this section, we study how changing the capacity of a firm can af-

fect the outcomes of the firms and the workers. Specifically, we con-

sider the worker-proposing and firm-proposing algorithms (WPDA
and FPDA) and ask if a firm can improve/worsen when a unit ca-

pacity is added to it. Similarly, we will ask whether all workers can

improve or if some worker can worsen when a firm’s capacity is

increased. Table 1 summarizes these trends.

The trends for capacity decrease by a firm can be readily inferred

from Table 1. In particular, if increasing capacity can improve the

firm’s outcome, then going back from the new to the old instance

implies that decreasing its capacity makes it worse off.

One might intuitively expect that a firm should improve upon

increasing its capacity, as it can now be matched with a strict su-

perset of workers. Similarly, it is natural to think that increase in

a firm’s capacity can also make some workers better off because

an extra seat at a more preferable firm can allow some worker to

switch to that firm, opening up the space for some other interested

worker and so on, thus initiating a chain of improvements. Exam-

ple 3.1 confirms this intuition on an instance where the workers’

preferences are identical, also known as the master list setting.

Example 3.1 (All workers can improve). Consider an instance I
with two firms 𝑓1, 𝑓2 and two workers𝑤1,𝑤2. The firm 𝑓1 initially

has zero capacity, while the firm 𝑓2 has capacity 1 (i.e., 𝑐1 = 0

WPDA FPDA

Yes Yes

Can the firm improve?

[Ex 3.1] [Ex 3.1]

Can the firm worsen?

Yes Yes

[Ex 3.2], [39] [Ex 3.2], [39]

Yes Yes

Can all workers improve?

[Ex 3.1] [Ex 3.1]

Can some worker worsen?

No No

[Cor. 3.6], [Cor. 3.6],

[16, 37] [16, 37]

Table 1: The effect of one firm increasing its capacity by 1 on
itself and the workers, under the worker-proposing (WPDA)
and firm-proposing (FPDA) algorithms.
and 𝑐2 = 1). Both workers have the preference 𝑓1 ≻ 𝑓2 ≻ ∅, and
both firms have the preference 𝑤1 ≻ 𝑤2 ≻ ∅. The unique stable
matching for this instance is 𝜇1 = {(𝑤1, 𝑓2)}.

Now consider a new instanceI′
obtained by adding unit capacity

to firm 𝑓1 (i.e., 𝑐
′
1
= 1). The instance I′

has a unique stable matching

𝜇2 = {(𝑤1, 𝑓1), (𝑤2, 𝑓2)}. Observe that both workers𝑤1,𝑤2 as well

as the firm 𝑓1 that increased its capacity are better off under the new

matching 𝜇2. Furthermore, as there is only one stable matching, the

said trend holds under both FPDA andWPDA algorithms. Also note

that the two sets of stable matchings are disjoint. Thus, no matching

is simultaneously stable for both old and new instances. □
Somewhat surprisingly, it turns out that increasing capacity can

also worsen a firm. This observation follows from the construction

of Sönmez [39], who showed that any stable matching algorithm is

vulnerable to manipulation via underreporting of capacity by some

firm. We recall Sönmez’s construction in Example 3.2 below.

Intuitively, when workers propose under the WPDA algorithm,

a firm can worsen upon capacity increase (equivalently, improve

upon capacity decrease) because of the following reason: By having

fewer seats, and thus by being more selective, the firm can initiate

rejection chains which may prompt more preferable workers to

propose to it. On the other hand, by adding an extra seat, a firmmay

be forced to accept a suboptimal set of workers. This is precisely

what drives the manipulation in Example 3.2.

A similar reasoning works when the firms propose under the

FPDA algorithm: Due to extra seats, a firm may be forced to make

additional proposals to less-preferred workers, thus kicking off

rejection chains that prompt other firms to take away its more pre-

ferred workers. Again, this phenomenon is at play in Example 3.2.

Example 3.2 (Increasing capacity canworsen a firm [39]). Consider
an instance I with two firms 𝑓1, 𝑓2 and three workers 𝑤1,𝑤2,𝑤3.

The workers’ preferences are given by

𝑤1 : 𝑓2 ≻ 𝑓1 ≻ ∅ 𝑤2,𝑤3 : 𝑓1 ≻ 𝑓2 ≻ ∅

The firms have lexicographic preferences given by

𝑓1 : {𝑤1,𝑤2,𝑤3} ≻ {𝑤1,𝑤2} ≻ {𝑤1,𝑤3} ≻
{𝑤1} ≻ {𝑤2,𝑤3} ≻ {𝑤2} ≻ {𝑤3} ≻ ∅

𝑓2 : {𝑤1,𝑤2,𝑤3} ≻ {𝑤2,𝑤3} ≻ {𝑤1,𝑤3} ≻
{𝑤3} ≻ {𝑤1,𝑤2} ≻ {𝑤2} ≻ {𝑤1} ≻ ∅

Initially, each firm has unit capacity, i.e., 𝑐1 = 𝑐2 = 1. In this case,

there is a unique stable matching, namely

𝜇1 = {(𝑤1, 𝑓1), (𝑤3, 𝑓2)}.
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Now consider a new instance I′
derived from the instance I by

increasing the capacity of firm 𝑓1 by 1 (i.e., 𝑐′
1
= 2 and 𝑐′

2
= 1). The

stable matchings for the instance I′
are

𝜇2 = {({𝑤1,𝑤2}, 𝑓1), (𝑤3, 𝑓2)} and
𝜇3 = {({𝑤2,𝑤3}, 𝑓1), (𝑤1, 𝑓2)}.

Here, the firm-optimal stable matching (FOSM) is 𝜇2 and the worker-

optimal stable matching (WOSM) is 𝜇3.

Finally, consider another instance I′′
derived from I′

by in-

creasing the capacity of firm 𝑓2 by 1 (i.e., 𝑐′′
1
= 2 and 𝑐′′

2
= 2). The

unique stable matching for the instance I′′
is 𝜇3.

By virtue of being the unique stable matching, the matching 𝜇1
is FOSM and WOSM for the instance I, and the matching 𝜇3 is

FOSM and WOSM for the instance I′′
. Observe that firm 𝑓1 prefers

𝜇1 over 𝜇3. Thus, under WPDA algorithm, the transition from I to

I′
exemplifies that a firm (namely, 𝑓1) can worsen upon increasing

its capacity. Similarly, the firm 𝑓2 prefers 𝜇2 over 𝜇3. Thus, under

FPDA algorithm, the transition from I′
to I′′

exemplifies that a

firm (namely, 𝑓2) can worsen upon increasing its capacity. □

Note that Example 3.2 crucially uses the lexicographic preference

structure; indeed, firm 𝑓1 prefers being matched with the solitary

worker {𝑤1} over being assigned the pair {𝑤2,𝑤3}. One might ask

whether the implication of Example 3.2 holds in the absence of

the lexicographic assumption. Proposition 3.3, due to Konishi and

Ünver [28], shows that under strongly monotone preferences and
WPDA algorithm, a firm cannot worsen upon capacity increase.

Proposition 3.3 ([28]). Let 𝜇 and 𝜇′ denote the worker-optimal
stable matching before and after a firm 𝑓 with strongly monotone
preferences increases its capacity by 1. Then, 𝜇′ (𝑓 ) ⪰𝑓 𝜇 (𝑓 ).

The main idea in the proof of Proposition 3.3 is as follows: Under

WPDA, it can be shown that if the number of workers matched with

a firm 𝑓 does not change upon capacity increase, then the set of
workers matched with 𝑓 also remains the same. (Notably, this obser-

vation does not require the preferences to be strongly monotone.)

It can also be shown that the number of workers matched with firm

𝑓 cannot decrease upon capacity increase. (Again, this observation

does not require strong monotonicity.). Thus, in order for the firm’s

outcome to change, it must be matched with strictly more workers

in the new matching. Strong monotonicity then implies that the

firm must strictly prefer the new outcome.

In contrast to WPDA, a firm can worsen upon capacity increase

under the FPDA algorithm even under strongly monotone prefer-

ences (Example 3.4).

Example 3.4 (Increasing capacity can worsen a firm under strongly
monotone preferences [39]). Consider the following instance, with
two workers 𝑤1,𝑤2 and two firms 𝑓1, 𝑓2 with strongly monotone

preferences:

𝑤1 : 𝑓2 ≻ 𝑓1 ≻ ∅ 𝑓1 : {𝑤1,𝑤2} ≻ {𝑤1} ≻ {𝑤2} ≻ ∅
𝑤2 : 𝑓1 ≻ 𝑓2 ≻ ∅ 𝑓2 : {𝑤1,𝑤2} ≻ {𝑤2} ≻ {𝑤1} ≻ ∅

Initially, each firm has unit capacity, i.e., 𝑐1 = 𝑐2 = 1. In this case,

the firm-optimal stable matching is

𝜇1 = {(𝑤1, 𝑓1), (𝑤2, 𝑓2)}.

Upon increasing the capacity of firm 𝑓2 to 𝑐2 = 2 while keeping

𝑐1 = 1, the firm-optimal stable matching of the new instance is

𝜇2 = {(𝑤1, 𝑓2), (𝑤2, 𝑓1)},

which is worse for firm 𝑓2 compared to the old matching 𝜇1. □

Finally, we note that under both FPDA andWPDA algorithms, no

worker can worsen when a firm increases its capacity. The reason

is that increasing the capacity of a firm corresponds to “adding a

man” in the corresponding canonical one-to-one instance. Due to

the increased “competition” among the men, the outcomes of all

women weakly improve (Proposition 3.5).

Proposition 3.5 ([16, 37]). Given any one-to-one instance I =

⟨𝑃,𝑄, ≻⟩, let I′ = ⟨𝑃 ∪ {𝑝}, 𝑄, ≻′⟩ be another one-to-one instance
derived from I by adding the man 𝑝 such that the new preferences ≻′

agree with the old preferences ≻ on 𝑃 and 𝑄 . Let 𝜇𝑃 and 𝜇𝑄 be the
men-optimal and women-optimal stable matchings, respectively, for
I, and let 𝜇′

𝑃
and 𝜇′

𝑄
denote the same for I′. Then, for every woman

𝑞 ∈ 𝑄 , we have 𝜇′
𝑃
(𝑞) ⪰′

𝑞 𝜇𝑃 (𝑞) and 𝜇′
𝑄
(𝑞) ⪰′

𝑞 𝜇𝑄 (𝑞).

Using Proposition 3.5 on the canonical one-to-one instance, we

obtain that increasing a firm’s capacity can never worsen the out-

come of any worker under either worker-optimal or firm-optimal

stable matching.

Corollary 3.6. Let 𝜇𝑊 and 𝜇′
𝑊

denote the worker-optimal stable
matching before and after a firm increases its capacity by 1, and let
𝜇𝐹 and 𝜇′

𝐹
be the corresponding firm-optimal matchings. Then, for

all workers𝑤 ∈𝑊 , 𝜇′
𝑊

(𝑤) ⪰𝑤 𝜇𝑊 (𝑤) and 𝜇′
𝐹
(𝑤) ⪰𝑤 𝜇𝐹 (𝑤).

4 COMPUTATIONAL RESULTS
In this section, we will study the algorithmic aspects of capacity

modification. We will take the perspective of a central planner

who can modify the capacities of the firms to achieve a certain

objective.Wewill focus on two natural (andmutually incomparable)

objectives: (1)Match a pair (𝑓 ∗,𝑤∗), where the goal is to determine

if a fixed firm 𝑓 ∗ and a fixed worker 𝑤∗
can be matched under

some stable matching in the modified instance, and (2) stabilize a
matching 𝜇∗, where the goal is to check if a given matching 𝜇∗ can
be realized as a stable outcome of the modified instance. These

objectives have previously been studied in the one-to-one stable

matching problem motivated by control problems [9, 19].

We will assume that the central planner can modify the firms’

capacities in one of the following two natural ways: (1) By adding
capacity, wherein the firms can receive some extra seats (the dis-

tribution can be unequal), and (2) by deleting capacity, wherein

some of the existing seats can be removed. Under both addition

and deletion problems, we will assume that there is a global budget
ℓ ∈ N that specifies the maximum number of seats that can be

added (or removed) in aggregate across all firms.

The two objectives (match the pair and stabilize) and two actions

(add and delete) together give rise to four computational problems.

One of these problems—adding capacity to match a pair—is formally

defined below. The other problems are defined analogously.
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Match the pair (𝑓 ∗,𝑤∗) Stabilize the matching 𝜇∗

Add Capacity Delete Capacity Add Capacity Delete Capacity

Unbudgeted Poly time Poly time Poly time Poly time

[Theorem 4.1] [Theorem 4 in [17]] [Theorem 7 in [17]] [Theorem 9 in [17]]

Budgeted NP-hard NP-hard Poly time Poly time

[Theorem 4.2] [Theorem 5 in [17]] [Theorem 6 in [17]] [Theorem 8 in [17]]

Table 2: Summary of our computational results for adding and deleting capacity under two problems: matching a worker-firm
pair (columns 2 and 3) and stabilizing a given matching (columns 4 and 5). The top row contains the results for the unbudgeted
problem (when only the aggregate change in firms’ capacities is constrained) while the bottom row corresponds to the budgeted
problem (with additional constraints on individual firms). The missing theorems and proofs are in the full version [17].

Add Capacity To Match Pair

Given: An instance I = ⟨𝐹,𝑊 ,𝐶, ≻⟩, a worker-firm pair

(𝑤∗, 𝑓 ∗ ) , and a global budget ℓ ∈ N ∪ {0}.
Question: Does there exist a capacity vector𝐶 ∈ (N ∪ {0})𝑛 such

that𝐶 ≥ 𝐶 , |𝐶 −𝐶 |1 ≤ ℓ , and 𝑓 ∗ and 𝑤∗
are matched in

some stable matching of the instance I′ = ⟨𝐹,𝑊 ,𝐶, ≻⟩?

The aforementioned problems can be naturally generalized by

considering individual budgets for the firms. For example, in the

add capacity problem, in addition to the global budget ℓ , we can

also have an individual budget ℓ𝑓 for each firm 𝑓 specifying the

maximum number of additional seats that can be given to firm

𝑓 . We call this generalization the budgeted version, and use the

term unbudgeted to refer to the problem with only global—but

not individual—budget. Formally, the budgeted version of Add

Capacity to Match Pair problem is defined as follows:

Budgeted Add Capacity To Match Pair

Given: An instance I = ⟨𝐹,𝑊 ,𝐶, ≻⟩, a worker-firm pair

(𝑤∗, 𝑓 ∗ ) , a global budget ℓ ∈ N∪ {0}, and an individual

budget ℓ𝑓 ∈ N ∪ {0} for each firm 𝑓 .

Question: Does there exist a capacity vector𝐶 ∈ (N ∪ {0})𝑛 such

that𝐶 ≥ 𝐶 , |𝐶 − 𝐶 |1 ≤ ℓ , |𝑐 𝑓 − 𝑐 𝑓 | ≤ ℓ𝑓 for each firm

𝑓 , and 𝑓 ∗ and 𝑤∗
are matched in some stable matching

of the instance I′ = ⟨𝐹,𝑊 ,𝐶, ≻⟩?

The consideration of individual budgets results in eight compu-

tational problems overall. Table 2 summarizes our results on the

computational complexity of these problems.

A special case of the budgeted/unbudgeted problems is when

the global budget is zero, i.e., ℓ = 0. In this case, the capacities

of the firms cannot be changed, and the goal is simply to check

whether a worker-firm pair (𝑤∗, 𝑓 ∗) are matched in some stable

matching for the original instance I, or whether a given match-

ing 𝜇∗ is stable for I. The latter problem is straightforward. To

solve the former problem, it is helpful to consider the canonical

one-to-one instance of the given instance I. For the one-to-one
stable matching problem, a polynomial-time algorithm is known for

listing all man-woman pairs that are matched in one or more stable

matchings [20]. Using the bijection between the stable matchings

of the two instances (Proposition 2.3), we obtain an algorithm to

check if the worker𝑤∗
is matched with any copy of firm 𝑓 ∗ in any

stable matching.

Thus, the zero budget case can be efficiently solved for all of the

aforementioned problems. In the remainder of the section, we will

consider the case of global budgets.

Adding Capacity to Match A Pair: Unbudgeted
Let us start with the problem of adding capacity to match a worker-

firm pair (𝑤∗, 𝑓 ∗) in the unbudgeted setting, i.e., with global but

without individual budgets.

In order to check whether the worker-firm pair (𝑤∗, 𝑓 ∗) can
be matched in some stable matching in the given instance I by

adding capacity to the firms, our algorithm (see Algorithm 1 in

[17]) considers a modified instance I′
where𝑤∗

and 𝑓 ∗ are already
matched, and checks if it is possible to construct a stable matching

of the remaining agents satisfying some additional conditions.

More concretely, the algorithm considers the set of firms 𝐷𝐹

(short for “distracting firms”) that the worker 𝑤∗
prefers more

than the firm 𝑓 ∗, and the set of workers 𝐷𝑊 (short for “distracting

workers”) that the firm 𝑓 ∗ prefers more than 𝑤∗
. Note that once

the worker𝑤∗
is matched with the firm 𝑓 ∗, the firms in 𝐷𝐹 are the

only ones that it could potentially form a blocking pair with (due

to responsive preferences). Similarly, the workers in 𝐷𝑊 are the

only ones that can block with 𝑓 ∗ due to the forced assignment of

𝑤∗
to 𝑓 ∗.
The algorithm creates the modified instance I′

by truncating the

preference lists of the firms in𝐷𝐹 (respectively, the workers in𝐷𝑊 )

by having them declare all workers ranked below𝑤∗
(respectively,

all firms ranked below 𝑓 ∗) as unacceptable. The truncation step is

motivated from the following observation: In the original instance

I, there is a stable matching that matches (𝑤∗, 𝑓 ∗) after adding
capacities to the firms if and only if there exists a stable matching in

the truncated instance I′
such that, after the added capacities, all

firms in the set 𝐷𝐹 are saturated (and thus, matched with workers

they prefer more than 𝑤∗
), and all workers in the set 𝐷𝑊 are

matched (and thus, matched either with 𝑓 ∗ or with firms they

prefer more than 𝑓 ∗).
The key observation in our proof is that the desired matching

exists in the truncated instance I′
after adding capacities to the

firms if and only if there exists a stable matching in the instance

I′
when the entire capacity budget is given to the firm 𝑓 ∗. This

observation readily gives a polynomial-time algorithm. We defer

the detailed proof of this observation to the full version [17].

Theorem 4.1. Add Capacity To Match Pair can be solved in
polynomial time.
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Adding Capacity to Match A Pair: Budgeted
Next, we will consider a more general problem where, in addition to

the global budget of ℓ seats, we are also given an individual budget

ℓ𝑓 for each firm 𝑓 specifying the maximum number of seats that

can be added to the firm 𝑓 . The goal, as before, is to determine if,

after adding capacities as per the given budgets, it is possible to

match the pair (𝑤∗, 𝑓 ∗) under some stable matching.

Note that our algorithm for the unbudgeted problem assigns the

entire additional capacity to the firm 𝑓 ∗, which may no longer be

feasible in the budgeted problem. It turns out that, unless 𝑃 = 𝑁𝑃 ,

no polynomial-time algorithm can be developed for this problem.

Theorem 4.2. Budgeted Add Capacity To Match Pair is NP-
hard.

To prove Theorem 4.2, we leverage a result of Boehmer et al.

[9] on control problems in the one-to-one stable matching prob-

lem (which, as per our convention, involves a matching between

men and women). Specifically, Boehmer et al. [9] study the problem

of adding a set of at most ℓ agents (men or women) such that in

the resulting instance, a fixed man-woman pair are matched under

some stable matching.

Interestingly, the reduction of Boehmer et al. [9] holds even

when only men (but not women) are required to be added. Due to

this additional feature, we slightly redefine the problem of Boehmer

et al. [9] and call it Constructive-Exists-Add-Men. The formal

definition of this problem is as follows:

Constructive-Exists-Add-Men

Given: An instance I = ⟨𝑃𝑜𝑟𝑖𝑔,𝑄, ≻⟩, a set of addable men

𝑃𝑎𝑑𝑑 with the preference relation ≻ defined over the

entire set of agents 𝑃𝑜𝑟𝑖𝑔 ∪𝑃𝑎𝑑𝑑 ∪𝑄 , a man-woman pair

(𝑝∗, 𝑞∗ ) from the original set of agents, and a budget

ℓ ∈ N ∪ {0}.
Question: Does there exist a set 𝑃 ⊆ 𝑃𝑎𝑑𝑑 such that |𝑃 | ≤ ℓ

and (𝑝∗, 𝑞∗ ) is part of at least one stable matching in

⟨𝑃𝑜𝑟𝑖𝑔 ∪ 𝑃,𝑄, ≻⟩?

The result of Boehmer et al. [9] shows that Constructive-

Exists-Add-Men is NP-hard. We now use their result to show

NP-hardness for Budgeted Add Capacity To Match Pair using

the following straightforward construction: For each man in the

set 𝑃𝑜𝑟𝑖𝑔 , we create a firm with capacity 1 and individual budget

ℓ𝑓 = 0, while for each man in the addable set 𝑃𝑎𝑑𝑑 , we create a

firm with capacity 0 and individual budget ℓ𝑓 = 1. Adding a seat to

an individual firm corresponds to adding the associated man. The

equivalence now follows.

5 CAPACITY MODIFICATION V/S
PREFERENCE MANIPULATION

So far, we have discussed qualitative (Section 3) and computational

(Section 4) aspects of capacity modification from the perspective of

a central planner. We will now adopt the perspective of a firm and

compare the different manipulation actions available to it. Specif-

ically, we will consider preference manipulation (abbreviated as

Pref), wherein a firm can misreport its preference list without

changing its capacity, and compare it with the two capacity mod-

ification actions we have already seen, namely Add and Delete

capacity, wherein the firm can increase or decrease its capacity

without changing its preferences. These actions are formally de-

fined below.

• Pref: Under this action, a firm can report any permutation
of its acceptable workers without changing its capacity.

6

That is, if a firm 𝑓 ’s true preference is ≻𝑓 , then ≻′
𝑓
is a valid

preference manipulation if for any worker𝑤 ,𝑤 ≻𝑓 ∅ if and

only if𝑤 ≻′
𝑓
∅.

• Add/Delete: Under Add (respectively, Delete), the firm 𝑓

strictly increases (respectively, decreases) its capacity 𝑐 𝑓 by

an arbitrary amount without changing its preferences.

Our goal is to examine which mode of manipulation—Pref, Add,
or Delete—is always/sometimes more beneficial for the firm com-

pared to the others under the FPDA and WPDA algorithms.

On first glance, each manipulation action may seem to offer a dis-

tinctive ability to the firm: Add allows the firm to either tentatively

accept more proposals (under WPDA) or make more proposals

(under FPDA), thus facilitating larger-sized (and possibly more

preferable) matches. Delete, on the other hand, can allow a firm

to be more selective, which, as we have seen in Section 3, can be

advantageous in certain situations. Finally, Pref can allow a firm

to trigger specific rejection chains, resulting in a potentially better

set of workers. Given the unique advantage of each manipulation

action, a systematic comparison among them is well motivated.

We compare the manipulation actions under two algorithms,

WPDA and FPDA, and focus on a fixed firm 𝑓 . An action 𝑋 is said

to outperform action 𝑌 (where 𝑋,𝑌 ∈ {Pref, Add, Delete}) if there
exists an instance such that the outcome for firm 𝑓 when it performs

𝑋 is strictly more preferable to it than that under 𝑌 .

An important insight from our analysis is that the usefulness of

a manipulation action depends on a threshold on the firm’s capacity

which we call its peak. For fixed preferences of all agents and fixed

capacities of the other firms, the peak of firm 𝑓 is the size of the

largest set of workers matched to 𝑓 under any stable matching

when 𝑓 is free to choose its capacity 𝑐 𝑓 ∈ N.
Formally, given an instance I = ⟨𝐹,𝑊 ,𝐶, ≻⟩, a firm 𝑓 ∈ 𝐹 and

any 𝑏 ∈ N, let I𝑏 = ⟨𝐹,𝑊 , (𝐶−𝑓 , 𝑏), ≻⟩ denote the instance derived
from I where the capacity of firm 𝑓 is changed from 𝑐 𝑓 to 𝑏 (and

no other changes are made); here, 𝐶−𝑓 denotes the capacities of

firms other than 𝑓 . Recall that the set of stable matchings for an

instance I is denoted by SI . The peak 𝑝 𝑓 for firm 𝑓 is defined as

the size of the largest set of workers 𝑓 is matched with under any

stable matching in the instance I𝑏
for an arbitrary choice of 𝑏, i.e.,

𝑝 𝑓 (I) B max

𝑏∈N, 𝜇∈SI𝑏
|𝜇 (𝑓 ) |.

Observe that when a firm’s capacity is above its peak (i.e., 𝑐 𝑓 >

𝑝 𝑓 ), it must necessarily be unsaturated in any stable matching.

Similarly, by the rural hospitals theorem (Proposition 2.2), it follows

that peak is themaximumnumber of proposals a firm receives under

WPDA for an arbitrarily chosen capacity.

Figure 1 illustrates the comparison between the various manipu-

lation actions under the FPDA andWPDA algorithms. Observe that

in each of the three regimes in Figure 1—below peak (i.e., 𝑐 𝑓 < 𝑝 𝑓 ),

6
Manipulation via permutation has been studied by several works in the stable match-

ing literature [18, 24, 25, 38, 41, 42].
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WPDA:

Pref

DelAdd

(a) Below peak

Pref

DelAdd

(b) At peak

Pref

DelAdd

(c) Above peak

FPDA:

Pref

DelAdd

(d) Below peak

Pref

DelAdd

(e) At peak

Pref

DelAdd

(f) Above peak

Figure 1: Manipulation trends for theWPDA (top) and FPDA (bot-
tom) algorithm in the below peak/at peak/above peak regimes. An
arrow from action𝑋 to action 𝑌 denotes the existence of an instance
where 𝑋 is strictly more beneficial for the firm than 𝑌 . Each missing
arrow from𝑋 to𝑌 denotes that there is (provably) no instance where
𝑋 is more beneficial than 𝑌 .
at peak (i.e., 𝑐 𝑓 = 𝑝 𝑓 ), and above peak (i.e., 𝑐 𝑓 > 𝑝 𝑓 )—there exist

scenarios where Delete is strictly more beneficial than Add (and
similarly, more beneficial than Pref). In fact, Delete is the only

manipulation that can be beneficial above peak. The Add operation

is only beneficial to a firm if its capacity is below peak irrespective

of the matching algorithm. By contrast, Pref is beneficial to a firm

at peak under FPDA but is unhelpful under WPDA.
In the rest of this section, we will discuss the comparison be-

tween Delete and Pref under the WPDA algorithm. In the full

version [17], we discuss the other comparisons as well as the ma-

nipulation trends for strongly monotone preferences.

Delete vs Pref
Below Peak. When the capacity of a firm is below its peak (i.e.,

𝑐 𝑓 < 𝑝 𝑓 ), there exists an instance where Pref can outperform

Delete (as well as Add) under WPDA. We defer the example of

Delete outperforming Pref under the WPDA algorithm to [17].

Example 5.1 (Pref outperforms Delete and Add underWPDA).
Consider an instance I with three firms 𝑓1, 𝑓2, 𝑓3 and four workers

𝑤1,𝑤2,𝑤3,𝑤4. The firms have unit capacities (i.e., 𝑐1 = 𝑐2 = 𝑐3 = 1)

and have lexicographic preferences given by

𝑤1 : 𝑓2 ≻ 𝑓1 ≻ 𝑓3 ≻ ∅ 𝑓1 : 𝑤4 ≻ 𝑤1 ≻ 𝑤2 ≻ 𝑤3

𝑤2 ,𝑤3 : 𝑓1 ≻ 𝑓2 ≻ 𝑓3 ≻ ∅ 𝑓2 : 𝑤3 ≻ 𝑤2 ≻ 𝑤1 ≻ 𝑤4

𝑤4 : 𝑓3 ≻ 𝑓1 ≻ 𝑓2 ≻ ∅ 𝑓3 : 𝑤1 ≻ 𝑤4 ≻ 𝑤2 ≻ 𝑤3

Under the WPDA algorithm, firm 𝑓1 is matched with {𝑤1}. If
𝑓1 uses Add by switching to any capacity 𝑐1 ≥ 2, itsWPDA match

is the set {𝑤2,𝑤3}. It is easy to verify that the peak for firm 𝑓1 is

𝑝 𝑓 (I) = 2. Thus, under I, the capacity of firm 𝑓1 is below peak.

If 𝑓1 uses Pref in the instance I by misreporting its preferences

to be𝑤4 ≻ 𝑤2 ≻ 𝑤3 ≻ 𝑤1, then its WPDA match is {𝑤4}, which is

more preferable for 𝑓1 (according to its true preferences) than its

match under Add. On the other hand, using Delete in the instance

I (by reducing the capacity to 𝑐1 = 0) is the worst outcome for 𝑓1
as it is left unmatched. □

At Peak. When the capacity of the firm is equal to the peak (i.e.,

𝑐 𝑓 = 𝑝 𝑓 ), Pref becomes unhelpful underWPDA. This is because in
this case, the number of proposals received by the firm under the

WPDA algorithm is equal to its capacity. Thus, regardless of which

permutation of the acceptable workers it reports, the firm does not

reject any worker and is therefore matched with the same set.

Above Peak. When the capacity of the firm is above its peak, Pref
again turns out to be unhelpful underWPDA. To show this, we first

make the following observation: For any above-peak instance, the

set of workers matched with firm 𝑓 in any stable matching is the

same as its worker-optimal match in the at-peak instance.

Lemma 5.2. Let I = ⟨𝐹,𝑊 ,𝐶, ≻⟩ be an instance with a firm 𝑓

such that 𝑐 𝑓 > 𝑝 𝑓 . Let 𝜇∗ be the worker-optimal stable matching
of the at-peak instance I𝑝𝑓 , and 𝜇 be any stable matching of any
above-peak instance I𝑏 (where 𝑏 > 𝑝 𝑓 ). Then, 𝜇 (𝑓 ) = 𝜇∗ (𝑓 ).

In particular, Lemma 5.2 shows that the set of proposals made to

the firm 𝑓 under WPDA algorithm stays the same at or above peak.

Aziz et al. [6] have shown that underWPDA algorithm, a nec-

essary condition for beneficial preference manipulation by a firm

is that it must be saturated and receive more proposals than its ca-

pacity. By combining Lemma 5.2 with the observation of Aziz et al.

[6], we get that Pref is ineffective in the at-peak and above-peak

regimes under the WPDA algorithm. In fact, using Lemma 5.2, we

can make a similar inference for any stable matching algorithm.

Theorem 5.3. Under any stable matching algorithm, a firm cannot
improve via preference manipulation (Pref) if its capacity is strictly
greater than its peak.

The proof of Lemma 5.2 and Theorem 5.3 can be found in the

full version [17].

6 CONCLUDING REMARKS
We studied capacity modification in the many-to-one stable match-

ing problem from qualitative, computational, and strategic perspec-

tives, and provided a comprehensive set of results. Going forward,

it would be interesting to explore algorithms for capacity modifica-

tion when both add and delete operations are allowed. It would also

be relevant to study situations where a firm can simultaneously

misreport its preferences and change its capacity [27]. Finally, ex-

periments on synthetic or real-world data to evaluate the frequency

of availability of various manipulation actions is another natural

direction to explore [36].
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