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ABSTRACT
Cooperation, a prosocial behavior enhancing collective rewards

in multi-agent games, intricately intertwines with coordination.

This study explores how interaction diversity and zero-sum gifting

influence cooperation and coordination in heterogeneous popula-

tions, where agents engage in threshold public goods games with

multiple equilibria. Our model accommodates two sources of in-

equality: variations in agents’ capabilities to provide public goods

and differences in the rewards they receive upon successful public

good provision. In the absence of gifting, we demonstrate the in-

evitability of intermediate interaction intensity in fostering global

cooperation, elucidating conditions for co-dominance, coexistence,

and the polarized state of cooperation. While gifting introduces

reciprocity opportunities, our findings highlight the importance

of maintaining moderate levels of gifting, as excessive gifting can

paradoxically undermine global cooperation. This research con-

tributes valuable insights into the emergence of cooperation and

coordination dynamics.
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1 INTRODUCTION
Cooperation, a behavior that entails incurring costs to benefit oth-

ers [49], is the backbone of maintaining large collective populations

(e.g., human society). Interaction among unrelated individuals al-

ways creates social dilemmas [18, 37], where each individual aims
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to maximize their own benefit, leading to a sub-optimal solution

for the collective. At its core lies the prisoner’s dilemma (PD) and

public goods game (PGG) [13, 46]. These games describe the situa-

tions in which natural selection favors defection over cooperation

and makes the mean population payoff lower than if everybody

had cooperated. Understanding the maintenance and evolution of

cooperation among selfish individuals prompted academic interest

during the past decades. The typical mechanism to explain emer-

gent cooperation includes kin and group selections [14, 42], direct,

indirect, and spatial reciprocities [2, 19, 28, 35]. Most research on co-

operation, however, has traditionally concentrated on agents with

homogeneous identities. Actually, agents often exhibit asymmetry

in many scenarios [4, 6]. Factors such as their position in social net-

works, inherent wealth inequality, and their history of interactions

can lead to differences in their abilities and behaviors, then create

situations of asymmetric interactions and games [16, 26].

Coordination plays a crucial role in fostering prosocial behav-

iors and tackling collective issues [29, 44], like climate change. It

involves overcoming multifaceted challenges due to various inter-

connected factors [23, 36]. Tackling a collective task necessitates

not only cooperation but also cooperation of a minimum number of

agents, constituting a coordination challenge [45]. For instance, a

village’s failure to gather enough resources or manpower to build a

dam demonstrates coordination challenges. Therefore, coordination

is often accompanied by the risk of failure [34], resulting in a waste

of resources (e.g., an unfinished dam would waste labor, funds, and

resources). The threshold public good game (TPGG) model [9, 22],

which integrates individual efforts towards a collective goal, high-

lights this aspect. Along this line, one can naturally consider the

heterogeneous composition of the population [12]. Different from

the conventional symmetry assumption, these participating indi-

viduals may differ: they can differ in what extent they are able

to contribute to the collective task (e.g., wealth and productivity)

and what consequences their actions have (e.g., success or failure

in achieving the target). Our research is dedicated to explaining

the emergence of cooperation and coordination in heterogeneous

multi-agent systems.

Extensive research has been conducted on wealth inequality and

productivity disparities in PGGs and TPGGs, utilizing evolutionary

game theory [43], learning theory [25, 27], and behavioral exper-

iments [17, 45]. These studies, however, have often overlooked
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specific aspects: i) the ability of individuals or a small group to

independently resolve collective issues; ii) interaction diversity, a
term defined to quantify the fraction of intrapopulation and inter-

population interactions [5, 51]. In community structures, where

diverse interactions are common, individuals often form stronger

connections within their own communities while having fewer

connections with other communities [51]. Given the presence of

inequality and diverse interactions, it is natural to contemplate the

consequences of reducing inequality in asymmetric interactions. To

this end, we introduce the concept of zero-sum gifting, frequently
associated with peer rewards in multi-agent reinforcement learn-

ing [21, 44]. However, this setup has been relatively unexplored in

heterogeneous populations. In light of these considerations, our

motivation questions are:

What are the evolutionary dynamics in a system where an indi-
vidual or a certain proportion of individuals can address public goods
provision? How does the interaction diversity influence the equilib-
rium selection? Can introducing gifting stimulate global cooperation
and coordination in these contexts?

To address these questions, we propose a novel model based

on evolutionary game theory (EGT), focusing on one-shot TPGG

where agents lack historical data or past interaction memory [11].

This model considers individual attributes like wealth and produc-

tivity as measures of capability, leading to the development of a

capability threshold public goods game (CTPGG). We primarily

focus on two-player games within heterogeneous populations to

simplify our analysis. The system encompasses two distinct popu-

lations: one identified as the weak population, and the other as the

strong population. Two forms of inequality manifest between the

weak and the strong populations: variations in agents’ capabilities

to provide public goods and the rewards they receive upon complet-

ing public good provision. Within this system, we aim to explore

the evolutionary dynamics of cooperation and coordination under

the interplay between interaction diversity and gifting.

Employing replicator dynamics [32], we provide definitive re-

sponses to our motivation questions. Specifically, in the scenario

of exclusive interpopulation interaction, the system converges to a

state wherein strong cooperators provide public goods while weak

agents free ride on it. However, introducing gifting at a moderate

level fosters global cooperation and coordination (Theorem 1). Our

study also elucidates the possibility of cyclic dynamics (Theorem

3). In scenarios incorporating intrapopulation and interpopulation

interactions, we showcase that global cooperation and coordination

can be achieved even in the absence of gifting, contingent upon

an intermediate level of interaction intensity (Theorem 4). Inter-

estingly, our results underscore the significance of maintaining

moderate gifting, as excessive gifting can paradoxically undermine

global cooperation. Furthermore, we derive the conditions for co-

dominance, coexistence, and the polarized state of cooperation.

In the following, we provide the related work in section 2. Sec-

tion 3 presents the details about the capability threshold public

good game in the two-player scenario and introduces evolution-

ary dynamics. Our findings, in both the presence and absence of

gifting, are presented in Section 4. Finally, we conclude our study

and outline avenues for future research in section 5. We present the

agent-based simulation results and provide proof for our theoretical

findings in the supplementary information (SI)
1
.

2 RELATEDWORK
This study investigates cooperation and coordination within hetero-

geneous multi-agent systems, drawing inspiration from established

game models like the threshold public goods game and the collec-

tive risk dilemma game. We propose a novel model, the capability

threshold public goods game, aimed at exploring the evolutionary

dynamics of cooperation and coordination. Leveraging the frame-

work of evolutionary game theory, this paper sheds light on the

emergence of global cooperation and coordination under the in-

terplay between inequalities and interaction intensity, combined

with the effect of gifting. Evolutionary game theory has provided

a powerful framework for studying human behavior and strategy

evolution and has become of interest to economists, statisticians,

sociologists, and computer scientists. It has been used to solve the

conundrum in opinion dynamics [50], the evolution of social con-

ventions [3], and social norms [31, 33], particularly in the realm

of cooperation evolution [30, 40, 46]. Over the past few decades,

EGT on cooperation has extended from symmetric scenarios to

asymmetric scenarios [24, 38].

Inequality or asymmetry, a pervasive phenomenon, has been

extensively studied in social dilemma games, including prisoner’s

dilemma games, as well as linear and threshold public good games.

Previous investigations on the impact of inequality in public goods

games have yielded mixed results [7, 8]. A comprehensive under-

standing of inequality in the evolution of cooperation and coordina-

tion remains elusive [1, 20]. In the context of one-shot games, EGT

provides a framework for exploring the role of heterogeneity in co-

operation through ecological and genotypic forms [24]. Ecological

asymmetry emerges mainly from the location of the agents (e.g. the

location in a structured population), whereas genotypic asymmetry

is derived from the players themselves (e.g. the productivity in the

provision of public goods). Heterogeneity introduced by resources

suggests that cooperation can be sustained when some agents re-

ceive more resources than others [20]. Additionally, studies have

demonstrated that asymmetric relationships within social networks

can enhance cooperation, particularly in the scenario involving a

moderate proportion of one-way interactions [39].

As the game is repeated, the historical information individuals

memorize makes it a complicated scenario. When considering en-

dowment and productivity inequality in games, empirical findings

have revealed that heterogeneous endowment exert a more negative

influence on human cooperation [45]. However, the negative effect

of endowment heterogeneity can be partially mitigated by peer

punishment [48]. Although strong inequality in wealth and pro-

ductivity has been proven to inhibit cooperation, slightly unequal

wealth may benefit cooperation when other inequalities exist [16].

Another typical behavior that triggers prosocial behavior includes

helping and gifting. Deliberate reward passing or gifting has been

identified as a powerful way of altering the learning progression of

multi-agent systems [21]. Without inequality, zero-sum gifting with

reinforcement learning algorithms has demonstrated its efficacy in

promoting the convergence of high-risk, general-sum coordination

1
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Figure 1: Schematic representation of population games. (A) The multi-agent system consists of two heterogeneous populations,
with agents well-mixed within each population. Connections between agents from the two populations are complete. Each
agent interacts with its counterpart from the same or a different population with a probability of 𝜌 or 1 − 𝜌 . (B) The weak
population participates in a coordination game (A1), while the strong population engages in an anti-coordinate game (A2).
Games involving agents from different populations (A3) are asymmetric. The lines illustrate the evolutionary dynamics of the
three games.

games to the prosocial equilibrium [44]. With inequality, it becomes

conceivable for the rich to sustain cooperation by assisting the poor

within a certain degree of uncertainty [1].

Unlike the aforementioned studies, whichmainly emphasized the

impact of endowment and productivity, our study expands its scope

to encompass individual capability, particularly scenarios involving

individuals capable of independently providing public goods. Given

the ubiquitous inequality in modern society, understanding and pro-

moting cooperation and coordination in such contexts constitutes

an interesting topic. To this end, we introduce two pivotal elements:

interaction diversity and gifting in heterogeneous populations. We

investigate the dynamics of cooperation and coordination in games

with multiple equilibria, and explore the influence of inequality,

interaction diversity, and gifting. Our study paves fertile avenues

for studying cooperation and coordination in the future.

3 AN EVOLUTIONARY GAME THEORETIC
MODEL

A public good is a common resource from which all individuals

may benefit regardless of their contributions [18]. Due to the non-

excludability of these resources, there is a temptation to free-ride on

the contribution of others. This scenario results in a social dilemma

effectively represented through public goods games. In the game,

although all individuals would be better off by cooperating, they are

all incentivized to choose defection, resulting in a sub-optimal out-

come. In PGGs with a threshold [22], the public goods are modeled

as a form of protection to ensure individual rewards. Specifically,

if and only if the group’s contribution reaches a certain threshold,

the public goods can be formalized, and each group member can be

rewarded. However, if the threshold is not met, contributing individ-

uals may even lose their invested resources, therefore introducing a

certain amount of risk. Building upon TPGGs, this study introduces

heterogeneous populations and extends the model to incorporate

inequality and interaction diversity. We develop a comparably sim-

ple set-up: a two-population, two-player capability threshold public

goods game. The payoff matrix for a general two-strategy game is

as follows:

A =

(
𝑎11, 𝑏11 𝑎12, 𝑏12
𝑎21, 𝑏21 𝑎22, 𝑏22

)
, (1)

where the first element is the payoff obtained by the row player,

and the second element represents the payoff for the column player.

3.1 Two-Player Games with Inequality
To explore the effect of inequality on cooperation and coordina-

tion, we develop a model involving two heterogeneous populations.

The first population is labeled as weak, composed of agents pos-

sessing limited capability to address collective tasks and deriving

modest rewards from the completed provisions. In contrast, the

second population is labeled as strong, consisting of agents with

heightened capabilities in resolving collective tasks and obtain-

ing substantial rewards from their completion. Consequently, two

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

754



forms of inequality manifest between these populations: unequal

capability and reward. We consider a two-player game that encom-

passes pairs of agents drawn from weak and strong populations.

Agents from either the weak or strong population face the same

strategy set denoted as S = {𝐶, 𝐷}, where 𝐶 and 𝐷 mean coopera-

tion and defection, respectively. Subsequently, there are four types

of agents: weak cooperators (𝑊𝐶s), weak defectors (𝑊𝐷s), strong

cooperators (𝑆𝐶s), and strong defectors (𝑆𝐷s). The model investi-

gates three interaction types: within the weak population, within

the strong population, and between agents from both populations

(see Fig. 1A).

In our proposed two-player CTPGG, these two agents confront

a threshold for the provision of public goods, denoted as 𝑐 (𝑐 > 0).

Each agent has to make a decision from the strategy set. Selecting

cooperation means the agent pays the cost or contributes to the

public goods. Selecting defection implies the agent free-rides on oth-

ers’ contributions and benefits without sowing. Specifically, asym-

metric capability is explained as follows: cooperators within the

strong population can independently achieve the required thresh-

old (𝛼𝑠 ≥ 𝑐), whereas those within the weak population can not. To

attain the threshold, agents in the weak population must cooperate

with their counterparts, denoting their capability as 𝛼 = 𝑐
2
. This

implies that the combined capabilities of the two weak agents are

precisely equal to the threshold. In other words, to achieve the

threshold, the minimum number of cooperators needed is one in

the strong population and two in the weak population.

3.2 Interaction Diversity
Interactions between strong agents. When two strong coopera-

tors interact, their cumulative capability satisfies 2𝛼𝑠 > 𝑐 . Therefore,

they evenly share the threshold and receive a benefit denoted as 𝑏𝑠 ,

resulting in a payoff of𝑏𝑠− 𝑐
2
. When a strong cooperator encounters

a strong defector, the former bears the cost alone, yielding a payoff

of 𝑏𝑠 −𝑐 , while the latter obtains a payoff of 𝑏𝑠 as a free rider. If both

opt for defection, they fail to meet the threshold and gain nothing.

The payoff ranking follows the sequence 𝑎21 > 𝑎11 > 𝑎12 > 𝑎22,

classifying this scenario as a snowdrift game [10], which is also

known as an anti-coordination game (see Fig. 1B A2). The pure

Nash Equilibria involve (𝐶, 𝐷) and (𝐷,𝐶), implying the optimal

choice is to diverge from your counterpart’s strategy.

Interactions between weak agents. In interactions within the

weak population (see Fig. 1B A1), a weak cooperator, due to its

inability to independently fulfill the collective task, suffers a loss of

𝛼 when interacting with a defector. Meanwhile, the defector gains

nothing as the collective threshold cannot be met. However, agents

can fulfill the provision of public goods by choosing cooperation.

Subsequently, mutual cooperation results in a payoff of 𝑏𝑤 − 𝑐
2
,

where 𝑏𝑤 (𝑏𝑤 < 𝑏𝑠 ) is the reward for weak agents. On the other

hand, mutual defection yields a payoff of 0. With payoff ranking

satisfying: (i) 𝑎11 > 𝑎22, 𝑏11 > 𝑏22; (ii) 𝑎11 = 𝑏11, 𝑎22 = 𝑏22, 𝑎21 =

𝑏12; (iii) 𝑎11 − 𝑎21 < 𝑎22 − 𝑎12, this game aligns with the stag hunt

game, which is also known as a kind of coordination game [15].

The pure Nash Equilibria involve (𝐶,𝐶) and (𝐷,𝐷), signifying the

optimal choice is to align your strategy with your counterpart’s.

Interactions between agents from different populations.
Shifting attention to interactions spanning both populations (see

Fig. 1BA3), notable differences arise in the𝑊𝐶 −𝑆𝐷 and𝑊𝐷 −𝑆𝐶

pairwise scenarios. In the case of a weak cooperator encountering

a strong defector, the former receives −𝛼 , while the latter obtains 0.
When aweak defector interacts with a strong cooperator, the former

gains𝑏𝑤 , whereas the latter receives𝑏𝑠−𝑐 . In this game, cooperation

is a dominant strategy for strong agents as both 𝑏11 > 𝑏12 and

𝑏21 > 𝑏22 are met. Consequently, the optimal choice for a weak

agent is defection, given that 𝑎21 > 𝑎11 always holds.

3.3 Population Setup
We consider twowell-mixed populations denoted asP𝑖 = {1, 2, · · · , 𝑁 },
encompassing both weak and strong populations. This studymainly

focuses on populations with infinitely many agents, i.e., 𝑁 → +∞.

Each agent has an equal opportunity to interact with any other

agent within the population. Notably, our analysis encompasses

not only intrapopulation interaction but also interpopulation inter-

action between the weak and strong populations. Agents between

two populations are fully connected as well. We denote the inter-

action intensity as 𝜌 , whereby the fraction of the intrapopulation

and interpopulation interactions are 𝜌 and 1 − 𝜌 , respectively (see

Fig. 1A).

Denote the fraction of cooperators in the weak and strong popu-

lations as 𝑥 and 𝑦, respectively. Correspondingly, 1 − 𝑥 and 1 − 𝑦

represent the fraction of defectors in weak and strong populations.

With the predefined payoff matrices, the expected payoff of coop-

eration and defection in the weak population can be calculated as

follows:

𝜋𝑊𝐶 = 𝜌 (𝑥 (𝑏𝑤 − 𝑐

2

) + (1 − 𝑥) (−𝛼))

+ (1 − 𝜌) (𝑦 (𝑏𝑤 − 𝑐

2

) + (1 − 𝑦) (−𝛼)),

𝜋𝑤𝐷 = (1 − 𝜌)𝑦𝑏𝑤 ,

(2)

where the first term of the right-hand side of 𝜋𝑊𝐶 represents the

payoff derived from intrapopulation interaction, while the second

term means the payoff obtained from interactions with strong

agents. Similarly, we can calculate the expected payoff of coop-

eration and defection in the strong population as follows:

𝜋𝑆𝐶 = 𝜌 (𝑦 (𝑏𝑠 −
𝑐

2

) + (1 − 𝑦) (𝑏𝑠 − 𝑐))

+ (1 − 𝜌) (𝑥 (𝑏𝑠 −
𝑐

2

) + (1 − 𝑥) (𝑏𝑠 − 𝑐)),

𝜋𝑆𝐷 = 𝜌𝑦𝑏𝑠 ,

(3)

where the first term of the right-hand side of 𝜋𝑆𝐶 represents the

payoff acquired from intrapopulation interaction, and the second

term means the payoff obtained from interacting with weak agents.

3.4 Replicator Dynamics
In this study, we assume that both weak and strong populations

evolve in accordance with the replicator dynamics. The replicator

equation is a differential equation commonly used to depict evolu-

tionary dynamics in infinitely large populations [32]. This equation

describes how the growth of a specific strategy is proportional to

the difference in payoffs. Therefore, the evolutionary dynamics of

our game model can be represented as follows:
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¤𝑥 = 𝑥 (1 − 𝑥) (𝜋𝑊𝐶 − 𝜋𝑊𝐷 ),
¤𝑦 = 𝑦 (1 − 𝑦) (𝜋𝑆𝐶 − 𝜋𝑆𝐷 ),

(4)

where ¤𝑥 and ¤𝑦 represent the derivative of weak and strong cooper-

ation with respect to time, respectively. We denote the difference

in expected payoffs as:

ℎ1 (𝑥,𝑦) = 𝜋𝑊𝐶 − 𝜋𝑊𝐷

= 𝑏𝑤𝜌𝑥 − 𝛼,

ℎ2 (𝑥,𝑦) = 𝜋𝑆𝐶 − 𝜋𝑆𝐷

= (1 − 𝜌)𝛼𝑥 − 𝜌 (𝑏𝑠 − 𝛼)𝑦 + 𝑏𝑠 − 2𝛼.

(5)

According to the game model described above, the parameters

consistently follow the rank: 𝑏𝑠 > 2𝛼 , 𝑏𝑠 > 𝑏𝑤 , and 𝑏𝑤 > 𝛼 .

3.5 Asymmetric Games with Gifting
Due to asymmetric rewards, strong agents consistently receive

higher payoffs from the completing provision of public goods (𝑏𝑠 >

𝑏𝑤 ). To mitigate this inequality while fostering prosocial behav-

ior [44], we introduce a zero-sum gifting mechanism during inter-

population interaction when mutual cooperation occurs. In this

setup, strong cooperators incur a cost 𝜂 while providing a bonus of

the same magnitude (𝜂) to weak cooperators. This form of gifting

can be interpreted as a reward for the cooperative behavior of weak

agents or as an exogenous incentive to encourage such behavior.

Consequently, the first element ofA3 is modified to 𝑎11 = 𝑏𝑤− 𝑐
2
+𝜂

and 𝑏11 = 𝑏𝑠 − 𝑐
2
− 𝜂. In this scenario, the difference in expected

payoffs becomes:

𝑔1 (𝑥,𝑦) = 𝜋𝑊𝐶 − 𝜋𝑊𝐷

= 𝑏𝑤𝜌𝑥 + (1 − 𝜌)𝜂𝑦 − 𝛼,

𝑔2 (𝑥,𝑦) = 𝜋𝑆𝐶 − 𝜋𝑆𝐷

= (1 − 𝜌) (𝛼 − 𝜂)𝑥 − 𝜌 (𝑏𝑠 − 𝛼)𝑦 + 𝑏𝑠 − 2𝛼.

(6)

By substituting Eq. 6 into Eq. 4, we can derive the evolutionary

dynamics of the system when gifting is included.

4 THEORETIC RESULTS
We organize our theoretical results from simpler to more complex

scenarios. When examining evolutionary dynamics with solely

intrapopulation interaction (see SI for details), we identify two

asymptotically stable equilibrium points in the stag hunt game

(matrixA1): a cooperation state (𝑥 = 1) and a defection state (𝑥 = 0).

Additionally, an unstable equilibrium point exists at 𝑥∗ = 𝛼
𝑏𝑤

. The

population converges to a defection state if the initial density of𝑊𝐶

is smaller than 𝑥∗, and to a cooperation state otherwise. The sketch

of evolutionary dynamics for A1 is shown in Fig. 1 B. Concerning

dynamics in the strong population (see SI for details), a unique

asymptotically stable equilibrium point exists at 𝑦∗ = 𝑏𝑠−2𝛼
𝑏𝑠−𝛼 in the

anti-coordinated game. In addition, two unstable equilibrium points

exist at 𝑦 = 0 and 𝑦 = 1. The sketch of evolutionary dynamics for

A2 is shown in Fig. 1B. In contrast, evolutionary dynamics with

solely interpopulation interaction converge to the state 𝑥 = 0 and

𝑦 = 1. The sketch of evolutionary dynamics for A3 is shown in

Fig. 1B.
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Figure 2: Phase diagram of equilibrium in the scenario in-
volving only interpopulation interaction with gifting. The
blue regions show the conditions under which the unique
asymptotically stable state is achieved. In the green region,
the interior equilibrium point is neutrally stable. The closed
and open circles represent stable and unstable equilibria, re-
spectively. Parameters are fixed at 𝑏𝑤 = 2, 𝜌 = 0, and 𝑏𝑠 = 4.
The insets, arranged from bottom to top, correspond to fixed
gifting values of 0.5, 2, and 4, given 𝛼 = 1.

4.1 The Role of Gifting under Interpopulation
Interaction

In the scenario with solely interpopulation interaction, i.e., 𝜌 = 0,

the evolutionary dynamics in the presence of gifting are given as

follows:

¤𝑥 = 𝑥 (1 − 𝑥) (𝜂𝑦 − 𝛼),
¤𝑦 = 𝑦 (1 − 𝑦) ((𝛼 − 𝜂)𝑥 + 𝑏𝑠 − 2𝛼). (7)

By solving the replicator equations, we can derive five fixed (or

equilibrium) points, including:

• 𝐹1 = (0, 0): 𝑥 = 0 and 𝑦 = 0, signifying the co-extinction of

WC and SC.

• 𝐹2 = (1, 0): 𝑥 = 1 and 𝑦 = 0, signifying a polarized state with

the dominance of WC and the extinction of SC.

• 𝐹3 = (0, 1): 𝑥 = 0 and 𝑦 = 1, signifying a polarized state with

the extinction of WC and the dominance of SC.

• 𝐹4 = (1, 1): 𝑥 = 1 and 𝑦 = 1, signifying a global cooperation

and coordination state with the co-dominance ofWC and SC.

• 𝐹5 = ( 2𝛼−𝑏𝑠𝛼−𝜂 , 𝛼𝜂 ): 𝑥
∗ =

2𝛼−𝑏𝑠
𝛼−𝜂 and 𝑦∗ = 𝛼

𝜂 , signifying the

coexistence ofWC,WD, SC, and SD. Note that this interior
equilibrium point exists if and only if 0 < 𝑥∗ < 1 and 0 <

𝑦∗ < 1.
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Figure 3: Equilibrium as a function of the (𝜌,𝑏𝑠 ) pair in the
absence of gifting. (A) The phase diagram illustrates how the
asymptotically stable equilibria vary. The blue regions show
the monostable state, where the equilibrium is insensitive to
the initial values of (𝑥,𝑦) pair. The red region indicates the
bi-stable state, where the equilibrium to which the system
converges relies on the domain of attraction. (B) The fraction
of cooperation as a function of 𝜌 , given 𝑏𝑠 = 2.3. (C) and (D)
Phase portrait with different values of 𝜌 , given 𝑏𝑠 = 4.

To analyze the stability conditions of these equilibria, we employ

Lyapunov’s indirect method (see SI for details). It’s essential to

note that the conditions 𝑏𝑠 > 𝑏𝑤 , 𝑏𝑠 > 2𝛼 , and 𝑏𝑤 > 𝛼 consis-

tently hold. We begin by addressing the question, "Can introducing

gifting stimulate global cooperation and coordination?" in solely

interpopulation interaction.

Theorem 1. In the scenario of solely interpopulation interaction
with gifting, i.e., 𝜂 > 0, the equilibrium point (1, 1) is asymptotically
stable if 𝛼 < 𝜂 < 𝑏𝑠 − 𝛼 .

This theorem demonstrates that gifting can indeed stimulate

global cooperation and coordination when 𝛼 < 𝜂 < 𝑏𝑠 − 𝛼 . These

conditions significantly restrict the acceptable range of gifting.

The rationale behind these conditions is straightforward: (i) 𝜂 >

𝛼 ensures that 𝑎11 > 𝑎21, thereby incentivizing weak agents to

choose cooperation; (ii) 𝜂 < 𝑏𝑠 − 𝛼 guarantees the condition 𝑏11 >

𝑏21, preserving the advantage of cooperation for strong agents.

Therefore, when gifting occurs at a moderate level, it promotes

global cooperation and coordination.

Theorem 2. In the scenario of solely interpopulation interaction
with gifting, i.e., 𝜂 > 0, the equilibrium point (0, 1) is asymptotically
stable if 𝜂 < 𝛼 , given 𝑏𝑠 > 2𝛼 .

This theorem clearly reveals that when 0 < 𝜂 < 𝛼 , the asymptoti-

cally stable equilibrium point remains unchanged from the scenario

without gifting. Consequently, the system converges to a polarized

state in which all agents in the weak population defect while all

agents in the strong population cooperate. It’s evident that gifting

can not make sense if the values are not substantial enough. Having

established these results for 𝜂 < 𝑏𝑠 − 𝛼 , it is interesting to see how

the equilibrium changes if gifting exceeds 𝑏𝑠 − 𝛼 .

Theorem 3. In the scenario of solely interpopulation interaction
with gifting, i.e., 𝜂 > 0, the equilibrium point ( 2𝛼−𝑏𝑠𝛼−𝜂 , 𝛼𝜂 ) is neutrally
stable with all the boundary equilibrium points are unstable if 𝜂 >

𝑏𝑠 − 𝛼 .

This theorem reveals that the system enters an oscillatory state

when gifting is sufficiently large, satisfying 𝜂 > 𝑏𝑠 − 𝛼 . In the weak

population, cyclic dominance unfolds between𝑊𝐶 and𝑊𝐷 , while

in the strong population, a cyclic dominance of 𝑆𝐶 → 𝑆𝐷 → 𝑆𝐶

emerges. Regarding other equilibrium points, they are always un-

stable. To visually represent the stable states based on the (𝛼, 𝜂)
pair, we provide a phase diagram in Fig. 2. The blue regions rep-

resent monostable states, where only one asymptotically stable

equilibrium exists. The insets show the evolutionary dynamics for

various initial values of the (𝑥,𝑦) pair. In the monostable state, the

equilibrium to which the system converges is irrespective of the

initial conditions. In scenarios with a fixed capability (e.g., 𝛼 = 1),

as gifting increases, the system transitions from state (0, 1) to state

(1, 1). If 𝜂 continues to increase beyond 𝑏𝑠 − 𝛼 , the system enters

the cyclic dominance state. In the green area, the inset demon-

strates numerous clockwise cycles surrounding the neutrally stable

equilibrium 𝐹5.

4.2 The Role of Interaction Diversity and
Gifting

This section concentrates on the scenario considering both intrapop-

ulation and interpopulation interactions, i.e., 0 < 𝜌 < 1 condition.

By substituting Eq. 6 into Eq. 4 and solving the replicator equations,

we derive nine equilibrium points, including:

• 𝐹1 = (0, 0), 𝐹2 = (1, 0), 𝐹3 = (0, 1), and 𝐹4 = (1, 1).
• 𝐹5 = ( 𝛼

𝑏𝑤𝜌
, 0): 𝑥∗

1
= 𝛼

𝑏𝑤𝜌
and 𝑦 = 0, signifying the existence

of WC in the extinction of SC. Note that this equilibrium

exists if and only if 0 < 𝑥∗
1
< 1.

• 𝐹6 = ( 𝜂𝜌+𝛼−𝜂
𝑏𝑤𝜌

, 1): 𝑥∗
2
=

𝜂𝜌+𝛼−𝜂
𝑏𝑤𝜌

and 𝑦 = 1, signifying the

existence of WC in the dominance of SC. Note that this

equilibrium exists if and only if 0 < 𝑥∗
2
< 1.

• 𝐹7 = (0, 𝑏𝑠−2𝛼
𝜌 (𝑏𝑠−𝛼 ) ): 𝑥 = 0 and 𝑦∗

1
=

𝑏𝑠−2𝛼
𝜌 (𝑏𝑠−𝛼 ) , signifying

the existence of SC in the extinction ofWC. Note that this
equilibrium exists if and only if 0 < 𝑦∗

1
< 1.

• 𝐹8 = (1, 𝜌 (𝜂−𝛼 )+𝑏𝑠−𝜂−𝛼
𝜌 (𝑏𝑠−𝛼 ) ): 𝑥 = 1 and 𝑦∗

2
=

𝜌 (𝜂−𝛼 )+𝑏𝑠−𝜂−𝛼
𝜌 (𝑏𝑠−𝛼 ) ,

signifying the existence of SC in the dominance ofWC. Note
that this equilibrium exists if and only if 0 < 𝑦∗

2
< 1.

• 𝐹9 = (𝑥∗, 𝑦∗): 𝑥∗ =
𝜌𝛼 (𝑏𝑠−𝛼 )+𝜂 (2𝛼−𝑏𝑠 ) (1−𝜌 )
(1−𝜌 )2𝜂 (𝛼−𝜂 )+𝜌2𝑏𝑤 (𝑏𝑠−𝛼 ) and 𝑦∗ =

𝛼 (1−𝜌 ) (𝛼−𝜂 )+𝑏𝑤𝜌 (𝑏𝑠−2𝛼 )
(1−𝜌 )2𝜂 (𝛼−𝜂 )+𝜌2𝑏𝑤 (𝑏𝑠−𝛼 ) , signifying the coexistence ofWC,
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Figure 4: Phase portrait and time series of cooperation under various gifting values 𝜂, with parameters set at 𝜌 = 0.2, 𝛼 = 1,
𝑏𝑤 = 2, and 𝑏𝑠 = 3.

WD, SC, and SD. Note that this equilibrium exists if and only

if 0 < 𝑥∗ < 1 and 0 < 𝑦∗ < 1.

We continue to employ Lyapunov’s indirect method to analyze

the stability conditions for the aforementioned equilibria. We em-

phasize discerning the interplay between inequality and interaction

diversity in these equilibria in the absence and presence of gifting.

In this context, we present the subsequent theorems:

Theorem 4. In the absence of gifting, i.e., 𝜂 = 0, the equilibrium
point (1, 1) is asymptotically stable if 𝑏𝑠 > 𝛼

1−𝜌 and 𝑏𝑤 > 𝛼
𝜌 . In

the presence of gifting, i.e., 𝜂 > 0, the equilibrium point (1, 1) is
asymptotically stable if 𝑏𝑠 >

𝛼+𝜂 (1−𝜌 )
1−𝜌 and 𝑏𝑤 >

𝜂 (𝜌−1)+𝛼
𝜌 .

This theorem demonstrates that introducing interaction intensity

𝜌 can stimulate the system converging to global cooperation and

coordination even without gifting. Notably, the critical values of

𝑏𝑠 and 𝑏𝑤 for stable equilibrium are closely related to 𝛼 and 𝜌 .

When gifting is considered, we observe that global cooperation

and coordination can still be achieved. The difference is that the

inclusion of gifting modifies these critical conditions by increasing

the threshold for 𝑏𝑠 while reducing the threshold for 𝑏𝑤 .

Theorem 5. In the absence of gifting, i.e., 𝜂 = 0, the equilibrium
point (0, 1) is asymptotically stable if 𝑏𝑠 >

(2−𝜌 )𝛼
1−𝜌 . In the presence

of gifting, i.e., 𝜂 > 0, the equilibrium point (0, 1) is asymptotically
stable if 𝜂 < 𝛼

1−𝜌 and 𝑏𝑠 >
(2−𝜌 )𝛼
1−𝜌 .

We’ve revealed that equilibrium point (0, 1) is asymptotically

stable when there is only interpopulation interaction. However,

when both intrapopulation and interpopulation interactions are

considered, this theorem indicates that the critical value for 𝑏𝑠 is

enlarged. The reason behind this finding is that incorporating the

intrapopulation interaction opposes the dominance of cooperation

in strong population. Moreover, even though the presence of gifting

can further reduce the payoff of 𝑆𝐶 , the polarized state with the

dominance of 𝑆𝐶 and the extinction of𝑊𝐶 remains asymptotically

stable as long as 𝜂 < 𝛼
1−𝜌 can be satisfied.

Theorem 6. In the absence of gifting, i.e., 𝜂 = 0, the equilibrium
point (1, 0) is unstable. In the presence of gifting, i.e., 𝜂 > 0, the
equilibrium point (1, 0) is asymptotically stable if 𝑏𝑤 > 𝛼

𝜌 and 𝜂 >

𝑏𝑠−(1+𝜌 )𝛼
1−𝜌 .

Interaction diversity, on its own, cannot promote the polarized

state where cooperation dominates in the weak population while

vanishing in the strong population. However, when gifting is con-

sidered, the equilibrium (1, 0) can become stable under the interplay

between inequality and interaction intensity.

Theorem 7. In the absence of gifting, i.e., 𝜂 = 0, the equilibrium
point (0, 𝑏𝑠−2𝛼

𝜌 (𝑏𝑠−𝛼 ) ) is asymptotically stable, given 0 < 𝑦∗
1
< 1. In the

presence of gifting, i.e., 𝜂 > 0, the equilibrium point (0, 𝑏𝑠−2𝛼
𝜌 (𝑏𝑠−𝛼 ) ) is

asymptotically stable if 𝜂 <
𝜌𝛼 (𝑏𝑠−𝛼 )

(1−𝜌 ) (𝑏𝑠−2𝛼 ) , given 0 < 𝑦∗
1
< 1.

Recall that the equilibrium in a strong population with only

intrapopulation interaction is
𝑏𝑠−2𝛼
𝑏𝑠−𝛼 . In comparison, this theorem

demonstrates that incorporating interpopulation interaction can

significantly enhance the prevalence of 𝑆𝐶 . However, if gifting

is introduced, the equilibrium remains stable only if the gifting

amount is below the threshold
𝜌𝛼 (𝑏𝑠−𝛼 )

(1−𝜌 ) (𝑏𝑠−2𝛼 ) . This condition is
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crucial for maintaining the desired equilibrium in the presence of

gifting.

Theorem 8. In the absence of gifting, i.e., 𝜂 = 0, the equilibrium
point (1, 𝑏𝑠−𝛼−𝛼𝜌

𝜌 (𝑏𝑠−𝛼 ) ) is asymptotically stable if 𝛼
𝑏𝑤

< 𝜌 < 1, given
0 < 𝑦∗

2
< 1. In the presence of gifting, i.e., 𝜂 > 0, the equilibrium point

(1, 𝜌 (𝜂−𝛼 )+𝑏𝑠−𝜂−𝛼
𝜌 (𝑏𝑠−𝛼 ) ) is asymptotically stable if 𝑏𝑤 >

𝛼−(1−𝜌 )𝜂𝑦∗
2

𝜌 ,
given 0 < 𝑦∗

2
< 1.

In scenarios involving interaction diversity, it becomes attainable

to achieve a state of complete cooperation in the weak population

along with the presence of 𝑆𝐶 . The prevalence of 𝑆𝐶 in these set-

tings is notably higher than in purely intrapopulation interaction.

Although distinct from global cooperation and coordination, ad-

justing interaction intensity proves to be an effective method for

boosting cooperation in both weak and strong populations. Further-

more, this equilibrium remains stable when gifting is considered,

though it requires a stricter critical threshold. Unsurprisingly, the

critical threshold for rewards of weak agent 𝑏𝑤 lowers as gifting

advantages to the weak cooperators.

Theorem 9. In the absence of gifting, i.e., 𝜂 = 0, the equilibrium

point ( 𝛼
𝑏𝑤𝜌

,
𝑏𝑠𝑏𝑤𝜌−2𝛼𝑏𝑤𝜌−𝛼2𝜌+𝛼2

𝑏𝑤𝜌2 (𝑏𝑠−𝛼 ) ) is unstable. In the presence of
gifting, i.e., 𝜂 > 0, the equilibrium point (𝑥∗, 𝑦∗) is asymptotically
stable if 𝑏𝑤𝜌𝑥∗ (1 − 𝑥∗) − 𝜌 (𝑏𝑠 − 𝛼)𝑦∗ (1 − 𝑦∗) < 0 and 𝜌2𝑏𝑤 (𝑏𝑠 −
𝛼) + (1 − 𝜌)2𝜂 (𝛼 − 𝜂) < 0, given 0 < 𝑥∗ < 1 and 0 < 𝑦∗ < 1.

The interior equilibrium point remains unstable even though

intrapopulation and interpopulation interactions exist simultane-

ously. However, introducing gifting stabilizes this point, as specified

by the theorem, though identifying the precise parameter values

meeting these conditions requires numerical methods due to their

complexity. It’s important to note that the interaction diversity and

gifting may not significantly affect the stability of certain equilib-

rium points, such as (0, 0), ( 𝛼
𝑏𝑤𝜌

, 0), and ( 𝜂𝜌−𝜂+𝛼
𝑏𝑤𝜌

, 1), which stay

consistently unstable.

We visualize how equilibria change with varying pairs of (𝜌, 𝑏𝑠 )
in the absence of gifting, as depicted in Fig. 3. Fig. 3A shows that

when 𝜌 < 1

2
, the system falls into a monostable state where only

one stable equilibrium exists. In such cases, the weak population

typically shifts towards complete defection, falling into either the

𝐹3 or 𝐹7 region. Meanwhile, the strong population can achieve

complete cooperation if 𝑏𝑠 >
2−𝜌
1−𝜌 (see Fig. 3C), or the coexistence

of 𝑆𝐶 and 𝑆𝐷 (𝐹7) if 𝑏𝑠 <
2−𝜌
1−𝜌 . For 𝜌 > 0.5, the system enters a

bi-stable state where two stable equilibria exist for specific (𝜌, 𝑏𝑠 )
pairs. In this region, the system’s final state is influenced by the

initial values of 𝑥 and 𝑦. These starting points thus determine the

system’s trajectory towards equilibrium. Fig.3D demonstrates that

the system’s trajectory leads to the left closed circle if starting

in the blue area, and to the right circle otherwise. Fig. 3A and

B reveal that with a fixed 𝑏𝑠 , intermediate values of 𝜌 stimulate

global cooperation and coordination. Also, a rise in 𝑏𝑠 consistently

enhances 𝑆𝐶 (see Fig. 3A). The impact of gifting on equilibrium

selection, as shown in Fig.4, reveals that moderate levels of gifting

promote global cooperation (see Fig. 4B). Excessive gifting can

undermine cooperation in the strong population (see Fig. 4C) and

even diminish cooperation in the weak population (see Fig. 4D),

thereby destroying global coordination.

5 CONCLUSION
In this study, we introduce a novel evolutionary game theoretic

model to explore the puzzle of cooperation and coordination. Dif-

ferent from traditional symmetric TPGGs, we consider two hetero-

geneous populations with diverse interactions. Agents can differ in

their capabilities to provide public goods and the rewards they re-

ceive upon completing public goods provision. The study delves into

both intrapopulation and interpopulation interactions, highlighting

how these populations impact each other. It introduces gifting as

a means of peer rewards within interpopulation interactions, ac-

knowledging the inherent asymmetries between populations and

exploring global cooperation and coordination.

Our analysis of CTPGGs reveals that when one agent can inde-

pendently finish public goods provision, the agent with less capa-

bility opts for free-riding. Specifically, in the scenario exclusively

involving interpopulation interaction, two populations converge to

divergent behaviors, with the weak one defecting entirely and the

strong one fully cooperating. This state can be improved when con-

sidering gifting: global cooperation and coordination are realized at

an intermediate gifting level, while excessive gifting elucidates the

possibility of cyclic dynamics. In scenarios with both intrapopula-

tion and interpopulation interactions, global cooperation becomes

attainable by intermediate interaction intensity, even in the ab-

sence of gifting. Moreover, we derive and analyze the conditions

governing coexistence, co-dominance, and the polarized state of

cooperation in the two populations. The introduction of gifting also

exhibits an effective setup to promote global cooperation and coor-

dination. However, it is necessary to maintain gifting at moderate

levels, as excessive gifting can paradoxically undermine global co-

operation. These findings are further validated through agent-based

simulations.

In future work, there exist several intriguing and fertile avenues

to explore. This paper has examined a two-player game in hetero-

geneous populations with diverse interactions. This forms a basis

that can be expanded to 𝑁 -player scenarios. Essential factors such

as threshold (e.g., the minimum number of cooperators) and group

composition (e.g., the number of weak players in the 𝑁 -player

group) have not been well studied. Addressing the challenges re-

garding cooperation and coordination in 𝑁 -player games can offer

valuable insight into global issues such as climate change and dis-

ease transmission. On the other hand, this study has considered

only evolutionary dynamics with the same time scale. Exploring

dynamics with fast-and-slow systems could be a compelling av-

enue [41, 47]. Last but not least, another promising way forward

is to build connections between theoretical models and human

behavior experiments in the future.
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