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ABSTRACT
Game solving is a relatively less explored area in general game play-

ing. This paper introduces a translation from the Game Description

Language GDL to Quantified Boolean Formulas (QBF) that lets us

leverage QBF solvers to compute winning strategies in two-player

games described in GDL. We implement this approach and measure

the computation time needed by state-of-the-art QBF solvers on a

range of two-player zero-sum turn-taking games. We introduce a

variety of optimizations to the translation and evaluate them ex-

perimentally. Our empirical analysis establishes that our proposed

approach is suitable for solving small games and can potentially

help general game players evaluate endgame positions.
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1 INTRODUCTION
General game players are systems that can play strategic games

based on game descriptions supplied at runtime. These systems are

generally unaware of the game rules until the competition starts.

GDL, the general Game Description Language, is a widely used lan-

guage for describing the rules of games [9]. Various approaches to

general game playing have been developed in the past, most notably

Minimax with automatically generated heuristics [28], MCTS [4],

SCSP [17], and Deep Reinforcement Learning [13]. However, all

of these approaches target game-playing whereas relatively few

attempts were made in the direction of game-solving in general

game playing. While it is challenging to design a solver capable of

solving all the games that can be described in GDL, it is interesting

to investigate whether there are classes of games described in GDL

that can be played perfectly. Since GDL is a logic language, the use

of logical formula solvers to solve GDL games is a natural idea. One

important work on game-solving used answer set programming

(ASP) [8] to solve single-player games with perfect information [32].

This was achieved by converting single-player games described
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in GDL to ASP and applying the ASP-solver Clingo to compute

solutions to these games.

Two-player, zero-sum turn-taking games form a broader class

of games that has raised a lot of research interest over the years.

Examples of this type of game include Breakthrough [14], General-

ized Tic-Tac-Toe [6], Connect-4 [11], and Dots and Boxes [2]. One

particularly interesting approach to solving this type of game is

to encode the game by a QBF [5] and call a QBF solver [19, 24]

to evaluate the resulting expression. It has been shown in Gen-

eralized Tic-Tac-Toe that QBF solvers can solve the game faster

than proof number search solvers [6]. However, most existing QBF

encodings target specific games such as Connect-4 [11] or a specific

class of games such as positional games [22]. One piece of work

similar to ours is the concise translation from two-player zero-sum

turn-taking board games that are described in Board-game Domain

Definition Language (BDDL) to QBF [30]. Although that translation

covers both positional games and some non-positional games, it

can only convert a subclass of board games to QBF and is therefore

far from covering all two-player zero-sum turn-taking games with

perfect information.

In this paper, we present a translation from GDL to QBF that

applies to all two-player zero-sum turn-taking GDL games. Instead

of converting from GDL to QBF directly, we translate from GDL

to Quantified Answer Set Programming (QASP), and use existing

methods [7] to convert the resulting QASP to QBF. Furthermore,

we develop a variety of optimizations to the translation. We provide

an empirical analysis that shows that our proposed approach is

suitable for solving small games and can potentially help general

game players evaluate endgame position.

The rest of the paper is structured as follows. In Section 2, we

review some preliminaries on GDL and QASP. We then describe

our GDL to QASP translation method (Section 3). In Section 4, we

evaluate the efficiency of our translation on different families of

benchmarks. We conclude in Section 5.

2 PRELIMINARIES
2.1 Game Description Language (GDL)
The Game Description Language (GDL) can be used to describe the

rules of any finite perfect information game [32]. GDL describes

game rules in normal logic program syntax similar to Prolog [34].

There are preserved keywords to describe the different elements

of a game [9, 10]; these keywords are listed in Table 1. There are

some further restrictions for a set of GDL rules to be a valid game

description. Firstly, role can appear only in facts; init and next
can only appear as heads of rules; and true and does only appear in
rule bodies. Secondly, init is not connected to true, does, legal,
next, terminal, or goal in the predicate dependency graph [9];

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

807

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


role(R) R is a player

init(F) F holds in the initial position

true(F) F holds in current position

next(F) F holds in the next position

legal(R,M) M is a valid action for player R
does(R,M) Player R performs action M

terminal The current position is terminal

goal(R,V) Player R gets point V in current position

distinct(X,Y) X and Y are syntactically different

input(R,A) Action A is in the move domain of player R
base(P) P is a base proposition

Table 1: GDL keywords

moreover, there is no path from does to any of legal, terminal,
and goal in the predicate dependency graph. Finally, a GDL game

description must be stratified, allowed, and well-formed [9]. A strat-

ified logic program is known to admit a unique stable model [32].

GDL rules can be interpreted as a multiagent state transition sys-

tem of the given game. Let𝐺 be a valid game description and Σ the

set of ground terms in𝐺 . Suppose that 𝑆 = {𝑓1, 𝑓2, ..., 𝑓𝑛} ⊆ Σ is any

given position and 𝐴 = {𝑟1, ..., 𝑟𝑘 } → Σ any function that assigns

a move to each of the 𝑘 players. Position 𝑆 can be encoded as a set of

facts using keyword true: 𝑆𝑡𝑟𝑢𝑒 = {𝑡𝑟𝑢𝑒 (𝑓1) ., 𝑡𝑟𝑢𝑒 (𝑓2), ..., 𝑡𝑟𝑢𝑒 (𝑓𝑛).},
and the joint actions by the 𝑘 players are encoded as a set of facts us-

ing keyword does: 𝐴𝑑𝑜𝑒𝑠 = {𝑑𝑜𝑒𝑠 (𝑟1, 𝐴(𝑟1)) ., ..., 𝑑𝑜𝑒𝑠 (𝑟𝑘 , 𝐴(𝑟𝑘 )).}.
The state transition system is then obtained as follows.

Definition 1 ([29]). Let G be a GDL specification whose signature
determines the set of ground terms Σ. Let 2Σ be the power set of Σ. The
semantics of G is the state transition system (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) where:

• R = {r ∈ Σ | G |= role(r)} (the players);
• 𝑆1 = {f ∈ Σ | G |= init(f)} (the initial position);
• T = {S ∈ 2

Σ | G ∪ 𝑆𝑡𝑟𝑢𝑒 |= terminal} (the terminal positions);
• l = {(r, a, S) | G ∪ 𝑆𝑡𝑟𝑢𝑒 |= legal(r,a)}, where r ∈ R, a ∈ Σ, and

S ∈ 2
Σ (the legality relation);

• u(A, S) = {f ∈ Σ | G ∪ 𝑆𝑡𝑟𝑢𝑒 ∪ 𝐴𝑑𝑜𝑒𝑠 |= next(f)}, for all A : (R
→ Σ) and S ∈ 2

Σ (the update function);
• g = {(r, v, S) | G ∪ 𝑆𝑡𝑟𝑢𝑒 |= goal(r,v)}, where r ∈ R, v ∈ N, and

S ∈ 2
Σ (the goal relation).

Based on the above definition, we represent a valid game playing
sequence of 𝑛 steps as follows.

𝑆1
𝐴1−−→ 𝑆2

𝐴2−−→ ... 𝑆𝑛
𝐴𝑛−−→ 𝑆𝑛+1

In the above game sequence, we write 𝑆𝑖
𝐴𝑖−−→ 𝑆𝑖+1 if 𝑆𝑖 ∉ 𝑇

and all moves are legal in the state in which they are taken, that

is, (𝑟, 𝐴(𝑟 ), 𝑆𝑖 ) ∈ 𝑙 for each 𝑟 ∈ 𝑅. We say a valid game playing

sequence terminates in 𝑛 steps if 𝑆𝑛+1 ∈ 𝑇 [33].

Because of the similarities of syntax and semantics, Answer

Set Programming [8] is a natural choice for reasoning about the

properties of a GDL game. To this end, GDL rules are often extended

by a “time” dimension. The Temporal Extension of a GDL game is

defined as follows.

Definition 2 ([32]). Let G be a valid GDL description. The Tem-

poral Extension of G is an Answer Set Program denoted by Ext(G)
which is obtained from 𝐺 as follows.

(1) Change all distinct(X,Y) to 𝑋 != 𝑌 .
(2) Change all true(𝜓) to true(𝜓,T), all next(𝜓) to

true(𝜓,T+1), and all init(𝜓) to true(𝜓,1).
(3) For all atoms of form p(𝑡1, 𝑡2, ...𝑡𝑛) such that p ∉ {true, init,

next, role, distinct} and there exists a path from does or
true to p in the predicate dependency graph, change it to
p(𝑡1, 𝑡2, ...𝑡𝑛,𝑇 ). Specifically, if p ∈ {goal, terminal, legal},
p is always extended with the time dimension.

(4) For each rule with next in the head originally, add mtdom(T)
to the body. For each rule whose head is not next but has been
extended by a “time” dimension, add the literal tdom(T) to
the body.

We also extend the definition of 𝐴𝑑𝑜𝑒𝑠 to

𝐴𝑑𝑜𝑒𝑠 (𝑖) = {𝑑𝑜𝑒𝑠 (𝑟1, 𝐴(𝑟𝑘 ), 𝑖), ..., 𝑑𝑜𝑒𝑠 (𝑟𝑘 , 𝐴(𝑟𝑘 ), 𝑖)}
In the above definition, the predicate tdom represents the time

domain of the game states while mtdom represents the timestamps

in which the players are making moves. For the rest of the paper,

we assume the domain of tdom is {1...𝑇𝑚𝑎𝑥 +1} while the domain of

mtdom is {1...𝑇𝑚𝑎𝑥 }, where𝑇𝑚𝑎𝑥 is the intended depth of the game.

The reason for the range of mtdom to be one less than tdom is that,

for GDL, the action taken at timestamp 𝑡 can only “affect” predicates

defining termination and outcome of a game (i.e., terminal and

goal) at time 𝑡 + 1 but not at time 𝑡 itself.

Note that the program 𝐸𝑥𝑡 (𝐺) is stratified whenever 𝐺 is. The

following theorem shows the semantics equivalence of 𝐸𝑥𝑡 (𝐺) and
valid game playing sequences in the original game description 𝐺 .

Theorem 1 ([33]). Consider a GDL description G with semantics
(𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) and a sequence

𝑆1
𝐴1−−→ 𝑆2

𝐴2−−→ ...𝑆𝑛
𝐴𝑛−−→ 𝑆𝑛+1.

Let 𝑃 = 𝐸𝑥𝑡 (𝐺) ∪𝐴𝑑𝑜𝑒𝑠
1

(1) ∪ . . .∪ 𝐴𝑑𝑜𝑒𝑠
𝑛 (𝑛). Then, for any predi-

cate symbol 𝑝 in the game description𝐺 and for all 1 ≤ 𝑖 ≤ 𝑛+1, such
that 𝑝 is not init or next and 𝑝 does not depend on does in the pred-
icate dependency graph, we have 1) 𝑆𝑖 = {𝑓 | 𝑃 |= 𝑡𝑟𝑢𝑒 (𝑓 , 𝑖)}, and
2)𝐺 ∪ 𝑆𝑡𝑟𝑢𝑒

𝑖
|= 𝑝 (𝑡) iff 𝑃 |= 𝑝 (𝑡, 𝑖). In particular, since legal does

not depend on does, 𝐺 ∪ 𝑆𝑡𝑟𝑢𝑒
𝑖

|= 𝑙𝑒𝑔𝑎𝑙 (𝑟, 𝑎) iff 𝑃 |= 𝑙𝑒𝑔𝑎𝑙 (𝑟, 𝑎, 𝑖).

2.2 Quantified Answer Set Programming
Similar to the difference between QBF [5] and SAT [21], allow-

ing quantifiers in ASP programs can provide a more expressive

language. The resulting language is called Quantified Answer Set

Programming (QASP). Its semantics is defined as follows.

Definition 3 ([7]). Suppose 𝑃 is a logic program with ground
atoms A. A quantified logic program over A has the form

𝑄1 𝑋1 ... 𝑄𝑛 𝑋𝑛 𝑃

where 𝑋𝑖 are pairwise disjoint subsets of A, every 𝑄𝑖 is either ∃ or
∀, and 𝑃 is a logic program over A. For convenience, let us define
fix (𝑋,𝑌 ), where 𝑌 ⊆ 𝑋 ⊆ A, as the logic program

{:- 𝑛𝑜𝑡 𝑥 . | 𝑥 ∈ 𝑌 } ∪ {:- 𝑥 . | 𝑥 ∈ 𝑋 \ 𝑌 }.
A normal logic program P is satisfiable iff it has a stable model.
Satisfiability of a QASP is recursively defined as follows.

(1) If the QASP has form ∃ 𝑋 𝑃 (resp. ∀ 𝑋 𝑃), the program is
satisfiable iff there exists (resp. for all) 𝑌 ⊆ 𝑋 such that the
program 𝑃 ∪ fix (𝑋,𝑌 ) is satisfiable.
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(2) If the QASP has form ∃ 𝑋 Q 𝑃 (resp. ∀ 𝑋 Q 𝑃 ), the program is
satisfiable iff there exists (resp. for all) 𝑌 ⊆ 𝑋 such that the
program Q (𝑃 ∪ 𝑓 𝑖𝑥 (𝑋,𝑌 )) is satisfiable.

QASP has the same expressive power as QBF, which allows us

to model many two-player games. Because of the existing work

on converting logic programs to propositional formulas such as

lp2sat [15], a QASP can be solved by converting it to an equal-

satisfiable QBF expression using tools like qasp2qbf [7] and calling a
QBF solver to evaluate the satisfiability of the converted expression.

The correctness of such an approach has been proved [7].

GDL and QASP use stable models for the semantics while QBF is

based on classical models [7]. Converting directly from GDL to QBF

is therefore challenging as it would require some form of completion

technique [1, 15]. Thanks to existingwork on converting fromQASP

to QBF [7], we do not need to deal with the completion task from

scratch as long as we can convert from GDL to QASP.

3 TRANSFORMING GDL GAMES INTO QASP
We discuss how to transform the GDL description 𝐺 for a two-

player zero-sum turn-taking game to a QASP program. First, we

need to map 𝐺 to the temporal extended ASP program 𝐸𝑥𝑡 (𝐺)
according to Definition 2 and the domain of mtdom is 1 . . .𝑇𝑚𝑎𝑥

while the domain of tdom is 1 . . .𝑇𝑚𝑎𝑥 + 1. For simplicity, let us

assume the two players are called 𝑥 and 𝑜 respectively, and let

𝑔𝑚𝑎𝑥 be the value a player would achieve if it wins the game (in

most game descriptions, 𝑔𝑚𝑎𝑥 = 100). The goal is to ensure that

the QASP formula is true if, and only if, the original GDL game is

𝑥-winnable. We give a formal definition of two-player zero-sum

turn-taking games and 𝑥-winnability in the context of GDL.

Definition 4. A GDL game (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) is a two-player zero-
sum game iff for any valid play sequence

𝑆1
𝐴1−−→ ...

𝐴𝑛−−→ 𝑆𝑛+1

that terminates in 𝑛 steps, for (x, 𝑣𝑥 , 𝑆𝑛+1) ∈ 𝑔 and (o, 𝑣𝑜 , 𝑆𝑛+1) ∈ 𝑔

we have that 𝑣𝑥 + 𝑣𝑜 = 𝑔𝑚𝑎𝑥 . A game is two-player zero-sum turn-

taking iff it is a two-player zero-sum game and at any valid non-
terminal game position, at most one player has more than one legal
move.

Definition 5. A two-player zero-sum turn-taking GDL game 𝐺
with semantics (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) is x-winnable within 𝑁 steps at the

position 𝑆 iff the following recursive definition holds:
(1) 𝑆 ∈ 𝑇 , 𝑁 ≥ 0, and (x, 𝑔𝑚𝑎𝑥 , 𝑆) ∈ 𝑔 or,
(2) 𝑆 ∉ 𝑇 , 𝑁 > 0, and there exists 𝑎𝑥 such that (x, 𝑎𝑥 , 𝑆) ∈ 𝑙

and for all 𝑎𝑜 such that (o, 𝑎𝑜 , 𝑆) ∈ 𝑙 , the game𝐺 at position
𝑢 ({𝑎𝑥 , 𝑎𝑜 }, 𝑆) is x-winnable within 𝑁 − 1 steps.

In the latter case, such an action 𝑎𝑥 is called a winning action for 𝑥

at state 𝑆 .

For the second item, it seems we are making the strong assump-

tion assuming that in every round, the 𝑥 player is taking the action

before the 𝑜 player. However, the outcome of the game would be the

same if we let player 𝑜 choose the action before player 𝑥 because, in

turn-taking games, there exists at least one player who has no more

than one legal action. Hence, the quantification order of the actions

at the same turn cannot affect the game result under optimal play.

Based on these definitions, we will first provide a general QASP

encoding (GE) that can be applied to check the x-winnability of

any two-player zero-sum turn-taking games. In section 3.3 we will

then describe a more concise encoding for cases where the order

of play is fixed, that is, if we can infer which player’s turn it is in

every round before the game starts (SE).

3.1 General Encoding (GE)
We introduce the predicate terminated(T), meaning the game

ended at or before timestamp𝑇 , along with the following two rules.

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ) :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (𝑇 ). (1)

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 + 1) :- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ), 𝑡𝑑𝑜𝑚(𝑇 + 1) . (2)

To ensure that in non-terminal states both players are making

exactly one legal move per turn, we introduce the following rules.

:- 𝑑𝑜𝑒𝑠 (𝑃,𝑀,𝑇 ), 𝑛𝑜𝑡 𝑙𝑒𝑔𝑎𝑙 (𝑃,𝑀,𝑇 ) . (3)

1 {𝑑𝑜𝑒𝑠 (𝑃,𝑀,𝑇 ) :𝑚𝑑𝑜𝑚(𝑃,𝑀)} 1 :-𝑚𝑡𝑑𝑜𝑚(𝑇 ), 𝑟𝑜𝑙𝑒 (𝑃), (4)

𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ) .

:- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ), 𝑑𝑜𝑒𝑠 (𝑃,𝑀,𝑇 ). (5)

{𝑚𝑜𝑣𝑒𝐿(𝐿,𝑇 ) : 𝑙𝑑𝑜𝑚(𝐿)} :-𝑚𝑡𝑑𝑜𝑚(𝑇 ). (6)

For each mi that is in the move domain of player 𝑜 ,

𝑑𝑜𝑒𝑠 (𝑜, mi,𝑇 ) :- 𝑙𝑒𝑔𝑎𝑙 (𝑜, mi,𝑇 ), 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ), (7)

𝑚𝑜𝑣𝑒𝐿(𝜌1,𝑇 ), . . . ,𝑚𝑜𝑣𝑒𝐿(𝜌 𝑗 ,𝑇 ),
𝑛𝑜𝑡 𝑚𝑜𝑣𝑒𝐿(𝜇1,𝑇 ), . . . , 𝑛𝑜𝑡 𝑚𝑜𝑣𝑒𝐿(𝜇𝑘 ,𝑇 ).

where 𝜌1, . . . , 𝜌 𝑗 are the 1 bits in the binary representation of 𝑖 − 1,

and 𝜇1, . . . , 𝜇𝑘 are the 0 bits in the binary representation of 𝑖 − 1.

For this set of rules, (6) and (7) constitute a logarithmic encoding

of the actions of player 𝑜 that uses the idea of the so-called cor-

rective encoding of propositional games [22]. mdom(P,M) encodes
that M is in the move domain of the player P. This domain can be

derived by the rules defining the input predicate (cf. Table 1) or,

if not given, can be calculated and simplified with the help of the

domain dependency graph [10] (chapter 14). ldom is the logarithmic

move domain which represents the domain of the first parameter

of moveL. Suppose the size of the move domain of player 𝑜 is |𝑀 |,
then ldom is defined over 1 to |𝐿 | = ⌈log

2
|𝑀 |⌉. We create |𝑀 | rules

of the form (7), one for each action𝑚𝑖 in the move domain. The

logarithmic encoding ensures that 𝑜 will make exactly one legal

move before the terminal state without the need to introduce so-

called cheating variables [11]. It is important to note that |𝑀 | might

be less than 2
|𝐿 |
, which means there might be some binary com-

binations of moveL that do not correspond to a legal action in the

move domain. In this case, no action of player 𝑜 can be generated

by rule (7). However, (3) and (4) ensure that exactly one legal action

of player 𝑜 is generated in such a case.

Rule (5) is introduced to ensure that both players would not take

any action after the game has terminated. Note that eliminating this

rule would not affect the correctness of the encoding, but we believe

that after the QASP is translated to QBF, this rule is converted to

a set of binary clauses in the QBF which can trigger some unit

propagation [5] for the QBF solver, which is beneficial.
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The goal of player 𝑥 is to achieve a utility of 𝑔𝑚𝑎𝑥 after the game

terminates. This is modeled with the following two rules.

:- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ), 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 −1), 𝑛𝑜𝑡 𝑔𝑜𝑎𝑙 (𝑥,𝑔𝑚𝑎𝑥 ,𝑇 ) . (8)
:- 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (1), 𝑛𝑜𝑡 𝑔𝑜𝑎𝑙 (𝑥,𝑔𝑚𝑎𝑥 , 1). (9)

It is possible that under some play sequences, the game does not

terminate within 𝑇𝑚𝑎𝑥 steps. We treat all these game sequences as

a loss for player 𝑥 :

:- 0 {𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (𝑇 ) : 𝑡𝑑𝑜𝑚(𝑇 )} 0. (10)

We denote the answer set program (1) ∪ . . . ∪ (10) as 𝑃𝑔𝑒 .

3.2 Quantifier Prefix
The ground atoms of the program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 need to be correctly

quantified in such a way that the QASP is satisfied if, and only if,

the game 𝐺 at the initial position is x-winnable. In most existing

QBF encodings of specific games [6, 11, 22], the quantifier prefix of

the QBF expression is of form

∃𝐸0 ∀𝑈1 ∃𝐸1 ∀𝑈2 ... ∀𝑈𝑛 ∃𝐸𝑛
Here, 𝑛 is the maximum number of rounds of the game, and the

action variables of player 𝑥 (resp. 𝑜) for round 𝑖 are quantified

by 𝐸𝑖−1 (resp. 𝑈𝑖 ). A critical property of these game encodings

is that the values of all non-action variables in 𝐸0 ∪ . . . ∪ 𝐸𝑖 can

be uniquely determined by the assignment of action variables in

𝐸0 ∪ . . . ∪ 𝐸𝑖 ∪ 𝑈1 ∪ . . . ∪ 𝑈𝑖−1. This property ensures that the

variables describing the state of the game for the first 𝑖 rounds are

fully determined by the actions in the first 𝑖 rounds.

In handmade encodings, this property is normally satisfied based

on human knowledge about the dependencies of variables in the

QBF. In GDL, however, the set of ground atoms of the program

𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 changes across different games, which is why we

need an automated quantifier construction method for the program

𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 that satisfies the property as long as 𝐺 is a GDL de-

scription of a two-player zero-sum turn-taking game. Since 𝐸𝑥𝑡 (𝐺)
is a stratified program, there are many possible ways of quantifying

𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 . In the following, we consider several ways in which

a valid quantification method can be automatically generated.

To begin with, a naive method is obtained by quantifying does
and moveL according to the temporal order while placing all the

other atoms in the innermost existential quantifier block. This is

formalized by the following definition.

Definition 6 (Naive Quantification Method). Given a two-
player zero-sum turn-taking game G described in GDL and the maxi-
mum number 𝑇𝑚𝑎𝑥 of steps allowed in the game. Suppose A is the
set of ground atoms of the program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 and the quantifier
prefix Q𝑛 of the program is of the form

Q𝑛 = ∃𝐸0 ∀𝑈1 ∃𝐸1 ∀𝑈2 . . . ∀𝑈𝑇𝑚𝑎𝑥
∃𝐸𝑇𝑚𝑎𝑥

Then, for each 𝑎 ∈ A, the quantifier block it belongs to is determined
by the following four rules:

(1) If 𝑎 = moveL(𝐿, 𝑡) for some 𝑙, 𝑡 then 𝑎 ∈ 𝑈𝑡 .
(2) If 𝑎 = does(𝑥,𝑀, 𝑡) for some𝑀, 𝑡 then 𝑎 ∈ 𝐸𝑡−1.
(3) If 𝑎 = does(𝑜,𝑀, 𝑡) for some𝑀, 𝑡 then 𝑎 ∈ 𝐸𝑡 .
(4) Otherwise, 𝑎 ∈ 𝐸𝑛 .

For performance reasons, the ground atoms of the program

should be quantified as early as possible; in existing QBF encodings

of specific games [6, 11, 22], variables are always quantified in the

earliest possible quantifier block. Using the semantics of GDL and

the consequences of Theorem 1, once we fix the values of does
and moveL with timestamp no greater than 𝑇 , we can consider any

ground atom in 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 that is not an instance of does or

moveL and is extended by a timestamp 𝑡 ≤ 𝑇 . Whether this atom is

in a stable model of 𝐸𝑥𝑡 (𝐺)∪𝑃𝑔𝑒 can be uniquely determined by the

values of does and moveL. One natural quantification method using

this observation is to group the ground atoms by “timestamp”.

Definition 7 (Time BasedQuantification Method). Given
a two-player zero-sum turn-taking game G described in GDL and
the maximum number 𝑇𝑚𝑎𝑥 of steps allowed in the game. Suppose
A is the set of ground atoms of the program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 and the
quantifier prefix Q𝑡 of the program is of the form

Q𝑡 = ∃𝐸0 ∀𝑈1 ∃𝐸1 ∀𝑈2 . . . ∀𝑈𝑇𝑚𝑎𝑥
∃𝐸𝑇𝑚𝑎𝑥

Then, for each 𝑎 ∈ A, the quantifier block it belongs to is determined
by the following four rules:

(1) If 𝑎 = moveL(𝐿, 𝑡) for some 𝐿, 𝑡 then 𝑎 ∈ 𝑈𝑡 .
(2) If 𝑎 = does(𝑥,𝑀, 𝑡) for some𝑀, 𝑡 then 𝑎 ∈ 𝐸𝑡−1.
(3) If 𝑎 is not of form moveL(𝐿, 𝑡) or does(𝑥,𝑀, 𝑡) and is extended

by a timestamp 𝑡 , then 𝑎 ∈ 𝐸𝑡 .
(4) Otherwise, 𝑎 ∈ 𝐸0.

While an improvement over the naive quantification method,

the time-based one is still not ideal. For example, consider the

predicate legal. In a valid game description, legal at timestamp𝑇

does not depend on the values of does at time 𝑇 . In the time-based

quantification method, legal is always quantified later than does
with the same timestamp. We believe that it will be beneficial if we

use this dependency information and quantify legal before does.
Note that the same analysis also applies to predicates like goal,
terminal and true. In order to addresses this issue, we introduce

a quantification method based on atom dependency.

Definition 8 (Atom dependency). Consider a ground logic pro-
gram of 𝑃 with grounding A in smodels format [31], then for two
atoms 𝑝, 𝑞 ∈ A we say that 𝑞 depends on 𝑝 iff the following recursive
definition holds: Program 𝑃 contains a rule such that the variable 𝑞
appears in the head of the rule and the variable 𝑝 appears in the body
of the rule; or, there exists an atom 𝑧 ∈ A such that 𝑞 depends on 𝑧
and 𝑧 depends on 𝑝 . We denote that 𝑞 depends on 𝑝 by 𝑝 → 𝑞, and
that 𝑞 does not depend on 𝑝 by 𝑝 ↛ 𝑞.

Definition 9 (Dependency BasedQuantification Method).

Given a two-player zero-sum turn-taking game G described in GDL
with semantics (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) such that 𝑅 = {𝑥, 𝑜} and the maxi-
mum number 𝑇𝑚𝑎𝑥 of steps allowed in the game. Suppose A is the
set of ground atoms of the program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 and the quantifier
prefix Q𝑑 of the program is of form

Q𝑑 = ∃𝐸0 ∀𝑈1 ∃𝐸1 ∀𝑈2 . . . ∀𝑈𝑇𝑚𝑎𝑥
∃𝐸𝑇𝑚𝑎𝑥

Then, for each 𝑎 ∈ A, the quantifier block it belongs to is determined
by the following three rules:

(1) If 𝑎 = moveL(𝐿, 𝑡) for some 𝐿, 𝑡 then 𝑎 ∈ 𝑈𝑡 .
(2) If 𝑎 = does(𝑥,𝑀, 𝑡) for some𝑀, 𝑡 then a ∈ 𝐸𝑡−1.
(3) Otherwise, 𝑎 ∈ 𝐸𝑡 with 𝑡 the maximum 1 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥 such

that moveL(𝐿, 𝑡) → 𝑎 for some moveL(𝐿, 𝑡) ∈ A. If no such 𝑡
exists then 𝑎 ∈ 𝐸0.
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The correctness of the encoding GE is given by the following

theorems. Here, Theorem 2 shows that every valid game-playing

sequence with length no greater than 𝑇𝑚𝑎𝑥 such that player x
wins corresponds to some stable models of the answer set program

𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 . Theorem 3 shows that every stable model of the

answer set program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 corresponds to a valid game-

playing sequence with length no greater than 𝑇𝑚𝑎𝑥 and player x
wins. Theorem 5 shows the correctness of the overall encoding.

Theorem 2 and 3 are similar to Theorems 2, 3 in the single-player

paper [32], hence we follow the notations defined in that paper.

Theorem 2. Given a two-player zero-sum turn-taking game G
described in GDL with semantics (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) such that 𝑅 = {𝑥, 𝑜}
and the maximum number𝑇𝑚𝑎𝑥 of steps allowed in the game. Suppose
there is a valid playing sequence of length 0 ≤ 𝑛 ≤ 𝑇𝑚𝑎𝑥

𝑆1
𝐴1−−→ 𝑆2

𝐴2−−→ . . . 𝑆𝑛
𝐴𝑛−−→ 𝑆𝑛+1

such that 𝑆𝑛+1 ∈ 𝑇 , and (𝑟, 𝑔𝑚𝑎𝑥 , 𝑆𝑛+1) ∈ 𝑔. Then, 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒
admits at least one answer set such that

𝑑𝑜𝑒𝑠 (𝑥,𝐴1 (𝑥), 1), 𝑑𝑜𝑒𝑠 (𝑜,𝐴1 (𝑜), 1), 𝑑𝑜𝑒𝑠 (𝑥,𝐴2 (𝑥), 2),
𝑑𝑜𝑒𝑠 (𝑜,𝐴2 (𝑜), 2), . . . , 𝑑𝑜𝑒𝑠 (𝑥,𝐴𝑛 (𝑥), 𝑛), 𝑑𝑜𝑒𝑠 (𝑜,𝐴𝑛 (𝑜), 𝑛)

are the only positive instances of does.

Proof. Because of the consequence of Theorem 1, the fact that

the program 𝐸𝑥𝑡 (𝐺) is stratified, and the fact that only 𝑆𝑛+1 is

a terminal state, there must be a stable model for the program

𝐸𝑥𝑡 (𝐺) ∪ (1)∪ (2)∪ (3)∪ (4)∪ (5)∪ (10) that admits the above set of

does as the only positive instances of this predicate in the model.

Note that because of the logarithmic encoding of the actions of

player 𝑜 , for each of that player’s legal action there exists a binary

combination of moveL that would derive the legal action, hence

this stable model also satisfies rules (6) and (7). Since 𝑆𝑛+1 is a

terminal position with 𝑥 as the winner, this stable model moreover

satisfies rules (8) and (9); hence, it is also a stable model of program

𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 . □

Theorem 3. Given a two-player zero-sum turn-taking game G
described in GDL with semantics (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) such that 𝑅 = {𝑥, 𝑜}
and the maximum number𝑇𝑚𝑎𝑥 of steps allowed in the game. Suppose
the program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 admits an answer setM, then there exists
0 ≤ 𝑛 ≤ 𝑇𝑚𝑎𝑥 such that

𝑑𝑜𝑒𝑠 (𝑥,𝐴1 (𝑥), 1), 𝑑𝑜𝑒𝑠 (𝑜,𝐴1 (𝑜), 1), 𝑑𝑜𝑒𝑠 (𝑥,𝐴2 (𝑥), 2),
𝑑𝑜𝑒𝑠 (𝑜,𝐴2 (𝑜), 2), . . . , 𝑑𝑜𝑒𝑠 (𝑥,𝐴𝑛 (𝑥), 𝑛), 𝑑𝑜𝑒𝑠 (𝑜,𝐴𝑛 (𝑜), 𝑛)

are the only positive instances of does in M, and there is a valid
game playing sequence

𝑆1
𝐴1−−→ 𝑆2

𝐴2−−→ . . . 𝑆𝑛
𝐴𝑛−−→ 𝑆𝑛+1

such that 𝑆𝑛+1 ∈ 𝑇 ,and (𝑟, 𝑔𝑚𝑎𝑥 , 𝑆𝑛+1) ∈ 𝑔.

Proof. Firstly note that does only appears in the head of rules

(4) and (7) of 𝐸𝑥𝑡 (𝐺) ∪𝑃𝑔𝑒 . Because of rules (1), (2), (4), (10) and the

logarithmic encoding of the actions of player 𝑜 such that the legal

action of player 𝑜 can always be expressed by a binary combina-

tion of𝑚𝑜𝑣𝑒𝐿, we conclude that there exists a sequence of actions

𝐴𝑑𝑜𝑒𝑠
1

(1), . . . , 𝐴𝑑𝑜𝑒𝑠
𝑛 (𝑛) (0 ≤ 𝑛 ≤ 𝑇𝑚𝑎𝑥 ) in the stable modelM such

that these are the only positive instances of does. Because of the
consequence of Theorem 1 and rules (4) and (10), there must exist

states 𝑆1, . . . , 𝑆𝑛+1 such that 𝑆1
𝐴1−−→ 𝑆2

𝐴2−−→ . . . 𝑆𝑛
𝐴𝑛−−→ 𝑆𝑛+1,

and 𝑆𝑛+1 ∈ 𝑇 . Because of rules (8) and (9), (𝑟, 𝑔𝑚𝑎𝑥 , 𝑆𝑛+1) ∈ 𝑔. □

Theorem 4. Given a two-player zero-sum turn-taking game G
described in GDL with semantics (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) such that 𝑅 = {𝑥, 𝑜}
and the maximum number 𝑇𝑚𝑎𝑥 of steps allowed in the game. For
any valid play sequence

𝑆1
𝐴1−−→ 𝑆2

𝐴2−−→ . . . 𝑆𝑖
𝐴𝑖−−→ . . .

such that 𝑖 ≤ 𝑇𝑚𝑎𝑥 , the ASP program

𝑃 = 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 ∪𝐴𝑑𝑜𝑒𝑠
1

(1) ∪ . . . ∪𝐴𝑑𝑜𝑒𝑠
𝑖−1 (𝑖 − 1)

has the following properties:
(1) For any stable model M of 𝑃 , 𝑆𝑖 = {𝑓 | 𝑡𝑟𝑢𝑒 (𝑓 , 𝑖) ∈ M}.
(2) For any stable model M of 𝑃 , 𝐺 ∪ 𝑆𝑡𝑟𝑢𝑒

𝑖
|= 𝑙𝑒𝑔𝑎𝑙 (𝑟, 𝑎) iff

𝑙𝑒𝑔𝑎𝑙 (𝑟, 𝑎, 𝑖) ∈ M.
(3) For any 𝑎𝑥 such that 𝐺 ∪ 𝑆𝑡𝑟𝑢𝑒

𝑖
|= 𝑙𝑒𝑔𝑎𝑙 (𝑥, 𝑎𝑥 ) and any

𝑎𝑜 such that 𝐺 ∪ 𝑆𝑡𝑟𝑢𝑒
𝑖

|= 𝑙𝑒𝑔𝑎𝑙 (𝑜, 𝑎𝑜 ), both 𝑎𝑥 and 𝑎𝑜 are
in the move domain and there exists a binary combination of
𝑚𝑜𝑣𝑒𝐿(𝐿, 𝑖) that can generate 𝑑𝑜𝑒𝑠 (𝑜, 𝑎𝑜 , 𝑖).

(4) If 𝑃 does not have a stable model, then 𝑆𝑖 is not x-winnable
within 𝑇𝑚𝑎𝑥 − 𝑖 + 1 steps.

Proof (Sketch). Firstly, it is trivial to see that if we add rule (1)

and (2) to 𝐸𝑥𝑡 (𝐺), Theorem 1 still holds. Using the fact that only

does and moveL appear in the head of (3)∪(4)∪ . . .∪(10), properties
1 and 2 are a direct consequence of Theorem 1. Since the move

domain is a superset of all possible actions of both players at all

positions, it is a superset of all the legal actions at position 𝑆𝑖 , hence

both 𝑎𝑥 and 𝑎𝑜 are in the move domain. The logarithmic encoding

ensures that any action in the move domain can be expressed by

a binary combination of moveL, and the legal action of player 𝑜

at position 𝑆𝑖 can definitely be expressed as a binary combination

of moveL as well. Hence, property 3 holds. Finally, we prove the

contrapositive statement of property 4. If 𝑆𝑖 is x-winnable within

𝑇𝑚𝑎𝑥 − 𝑖 + 1 steps, then there must exist a valid play sequence of no

more than 𝑇𝑚𝑎𝑥 − 𝑖 + 1 steps with 𝑥 achieving the value of 𝑔𝑚𝑎𝑥 at

the end. This means that there exists a valid play sequence with no

more than 𝑇𝑚𝑎𝑥 steps with 𝐴𝑑𝑜𝑒𝑠
1

(1), . . . , 𝐴𝑑𝑜𝑒𝑠
𝑖−1 (𝑖 − 1) as the first

𝑖−1 actions such that 𝑥 achieves the value of 𝑔𝑚𝑎𝑥 at the end. Using

Theorem 2, we know that 𝑃 must have at least one stable model.

This establishes property 4. □

Theorem 5. Given a two-player zero-sum turn-taking game G
described in GDL with semantics (𝑅, 𝑆1,𝑇 , 𝑙, 𝑢, 𝑔) such that 𝑅 = {𝑥, 𝑜}
and the maximum number 𝑇𝑚𝑎𝑥 of steps allowed in the game. Let Q
be the quantifier prefix of the program 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 constructed
using either Definition 6, 7 or 9. The QASP program

Q 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒

is satisfiable iff the game 𝐺 at position 𝑆1 is x-winnable within 𝑇𝑚𝑎𝑥

steps.

Proof (Sketch). We only show the case when Q is constructed

based on the dependency-based quantification method according

to Definition 9. Rules 1 and 2 in this definition ensure that the

quantification order of the action atoms in 𝑃 matches the temporal

order of the original game 𝐺 . The third rule ensures that no atom

in 𝐸𝑥𝑡 (𝐺) ∪ 𝑃𝑔𝑒 that depends on an action is quantified before that
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action atom. Considering the definition of x-winnable, this theorem

is then a direct consequence of Theorems 2, 3 and 4. □

Thanks to Theorem 5 and the existing technique of converting

any QASP program to an equal-satisfiable QBF expression [7], we

can use a QBF solver to solve all two-player zero-sum turn-taking

games described in GDL.

3.3 Strictly Turn-Taking Encoding (SE)
For many turn-taking games, which player’s turn it is solely de-

pends on the round number. For example, in Connect-4 [11], we

know that player 𝑥 (resp. 𝑜) is taking turn at the odd (resp. even)

steps. In other games, however, such as Dots and Boxes [2], whose

turn it is is not determined by the round of the game but the game

state. We call turn-taking games in which the player taking turn is

only related to the step of the game as strictly turn-taking games.

Note that in the encoding GE, we create an existential quantifier

block and a universal quantifier block for each round of the game.

For strictly turn-taking games, we only need a single existential or

universal quantifier block for each step. For example, in Connect-4,

player 𝑥 takes turn in the first step while player 𝑜 has only one

legal action noop. Generally speaking, we can use the following

rule to force player 𝑜 into taking the only available action in this

round, and so the universal quantifier block 𝑈1 can be removed:

𝑑𝑜𝑒𝑠 (𝑜,𝑀, 1) :- 𝑙𝑒𝑔𝑎𝑙 (𝑜,𝑀, 1), 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 (1) . (11)

With such a technique, we can obtain an encoding with fewer quan-
tifier blocks when the game is strictly turn-taking provided that

we can determine the turn-taking player for each step of the game.

For general GDL games, this can be determined with the help of

automated theorem proving methods [33].

4 EXPERIMENTAL RESULTS
We evaluate different variants of the translation method on a num-

ber of popular two-player GDL games. We consider both games

that are strictly turn-taking and games that are not: Generalized

4×4 Tic-Tac-Toe (GT-1-1, and GT-2-2) [6], Connect-3 (C-3) [11],

Connect-4 (C-4) [11], Breakthrough (BT) [14], and Dots and Boxes

(D&B) [2]. We test the efficiency of our translation method on dif-

ferent configurations of the games. For C-3, C-4, BT, and D&B,

different configurations refer to different board sizes whereas in

GT-1-1 and GT-2-2, different configurations indicate different win-

ning domino shapes [6]. The GDL rules of these games are created

and modified based on the GGP Base repository [12]. Among these

games, C-3, C-4, BT, and GT-1-1 are not only strictly turn-taking but

in fact, the two players take turns alternatingly. GT-2-2 is strictly

turn-taking too, but both players take two consecutive turns. As

mentioned above, Dots and Boxes is not strictly turn-taking.

Valid GDL games must be finite and terminating. We employ

iterative deepening to solve any game 𝐺 [22, 30] by gradually in-

creasing the depth considered in our encoding,𝑇𝑚𝑎𝑥 , and checking

if𝐺 is x-winnable within𝑇𝑚𝑎𝑥 steps from the initial position. For a

game 𝐺 , we denote by 𝜇𝐺 the length of the longest valid playing

sequence with player 𝑥 as the winner.

Iterative deepening is complete and terminates as long as we are

provided with 𝜇𝐺 : If 𝐺 is not x-winnable for any depth not greater

than 𝜇𝐺 then it is not x-winnable at all. Computing 𝜇𝐺 for some

GDL

𝑇𝑚𝑎𝑥

QASP QBF T/F

encode translate solve

preprocess

Figure 1: Solving games with QBF

GDL games can be automated [33], but this is beyond the scope

of this paper and so we used human domain knowledge [30] to

determine it.

Our overall approach is given in Figure 1.
1
The GDL to QASP

translation is done with one of the following encodings: naive quan-
tification (GN), time-based quantification (GT), dependency-based
quantification (GD) and dependency-based SE quantification (SD)
when applicable. We use qasp2qbf [7] for the QASP to QBF trans-

lation. For the QBF preprocessing, we use bloqqer [3]. Finally, we
solve the preprocessed formulas with state-of-the-art QBF solvers

Caqe [24] and DepQBF [19]. Caqe is an expansion-based QBF solver

that uses the technique of counterexample guided abstraction re-

finement (CEGAR) [24] while DepQBF is a search-based QBF solver

that applies the QCDCL algorithm [19]. Preliminary experiments

showed that alternative implementations for preprocessors (HQSPre
and QratPre++ [20, 35]) and solvers (Qute and RAReQS [16, 23]) lead
to drastically worse performance. For the sake of clarity, they are

therefore omitted from our formal experimental analysis.

For comparison purposes, we include the performance of Caqe
and DepQBF on instances generated by the existing general transla-

tion method from BDDL to QBF (BL) [30]. We also add a comparison

with a Minimax solver with transposition tables [26] (Minx) imple-

mented in C++ that uses Prolog [34] as the GDL reasoner for legal

actions [27]. All the experiments were run on a Latitude 5430 laptop

with a solving time limit of 1000 seconds and a preprocessing time

limit of 500 seconds. None of the instances we tested timed out

during the translation and preprocessing phase.

In Table 2, we record the value of 𝜇𝐺 and the smallest depth𝑇𝑚𝑎𝑥

of the game in bold if the game can be proved to be x-winnable

within 𝑇𝑚𝑎𝑥 steps by any solver under any encoding within the

solving time limit. If the game is not x-winnable at all depths, and

the game can be proved not to be x-winnable within 𝜇𝐺 steps by

any solver under any encoding in the solving time limit, we let

𝑇𝑚𝑎𝑥 = 𝜇𝐺 and record 𝑇𝑚𝑎𝑥 in plain format. For games that can

neither be proved to be x-winnable at some depth nor be proved

not to x-winnable for all depth within the solving time limit, we

record the maximum refuted depth 𝑇𝑚𝑎𝑥 [30] (i.e., the maximum

𝑇𝑚𝑎𝑥 such that the game is proved not to be x-winnable at depth

𝑇𝑚𝑎𝑥 by any solver under any encoding within the solving time

limit) of the unsolved games in italic format.

In Table 2, we also record the solving time of Caqe and DepQBF
for each game at depth 𝑇𝑚𝑎𝑥 under each translation method and

the solving time of the minimax solver. We also record the bloqqer
preprocessing time (in seconds) for instances generated by the

method GD in column Bloq.

1
The interested reader can find the code used in our experiments here: https://github.

com/hharryyf/gdl2qbf
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DepQBF Caqe Minx
Game Config 𝜇𝐺 𝑇𝑚𝑎𝑥 Bloq GN GT GD SD BL GN GT GD SD BL

2×5 21 21 5.72 0.97 1.09 0.74 0.74 * 26.02 0.41 0.13 0.17 * 0.36

2×6 29 15 5.34 10.45 7.54 7.15 8.13 * 62.94 14.93 6.44 8.18 * 2.86
BT 3×4 19 19 9.39 0.62 0.38 0.59 0.46 * 12.26 0.52 0.11 0.12 * 1.09

3×5 31 19 19.71 * * * * * * * 827.60 655.64 * 92.41
4×4 25 25 50.50 370.27 200.19 109.23 69.46 * * 131.09 19.13 17.37 * 106.20

4×4 15 9 0.61 0.07 0.06 0.03 0.05 1.17 0.08 0.08 0.06 0.07 11.56 0.21

C-3 5×5 25 9 0.83 0.16 0.12 0.09 0.16 69.01 0.11 0.32 0.29 0.27 339.30 0.75

6×6 35 9 1.26 0.15 0.41 0.31 0.37 392.07 0.49 1.04 0.57 0.45 709.80 1.37

4×4 15 15 0.91 0.53 0.46 0.57 0.63 189.97 2.03 0.46 0.30 0.37 327.94 1.42

C-4 5×5 25 21 2.52 646.22 665.92 370.33 563.55 * * 370.83 135.52 167.21 * 517.50

6×6 35 19 3.80 * * * * * * * 593.76 381.30 * *

elly 15 7 3.65 1.57 1.75 3.26 1.71 5.40 3.44 1.79 0.73 1.21 70.89 9.75

fat. 15 15 15.22 317.69 284.75 188.89 237.42 * * * 396.69 372.24 * 307.38

GT-1-1 knob. 15 15 15.53 616.85 546.85 363.81 664.69 * * * 690.24 * * *

skin. 15 15 14.29 340.83 480.12 380.18 496.28 * * * * * * 206.59
tip. 15 9 5.98 12.31 6.06 11.01 10.12 35.48 6.03 16.33 2.44 3.43 756.81 30.94

elly 14 6 2.63 0.08 0.10 0.18 0.08 n/a 0.17 0.08 0.07 0.03 n/a 0.23

fat. 14 14 12.77 327.41 285.92 148.66 285.90 n/a * 781.80 313.55 208.85 n/a *

GT-2-2 knob. 14 6 2.36 0.07 0.11 0.13 0.09 n/a 0.08 0.11 0.04 0.03 n/a 0.83

skin. 14 14 12.12 798.62 * 378.89 872.61 n/a * * 548.99 633.94 n/a 662.32

tip. 14 6 2.57 0.06 0.05 0.09 0.11 n/a 0.16 0.08 0.06 0.04 n/a 3.87

D&B 2×2 12 12 1.57 3.48 11.57 5.13 n/a n/a 47.75 19.58 5.89 n/a n/a 0.63
2×3 17 17 5.35 * * * n/a n/a * * 599.74 n/a n/a 15.06

Table 2: Solving time (in seconds) for DepQBF and Caqe under different translation and quantification methods (GN, GT, GD, SD,
BL). The solving time for a minimax + transposition table solver on the original GDL game is also included. * means the solver
timed out after 1000 seconds. n/a means the game is not strictly turn-taking or the game is not available in the BDDL project.

GD-plain GD-bloq SD-plain SD-bloq BL-plain BL-bloq

# var 29957 1072 17525 988 2366 431

# ∀ 95 41 45 42 67 65

# cl 93986 10459 51107 9744 6875 3715

# qb 39 19 19 19 21 21

DepQBF (s) 557.79 0.59 403.00 0.46 * *

Caqe (s) 150.36 0.11 29.46 0.12 * *

Table 3: Instance information for the game Breakthrough-3x4 of depth 19.

4.1 Comparing GE and SE
For strictly turn-taking games, theorem-proving methods can be

applied to calculate the player whose turn it is at each step of the

game [33]. As a result, we can design a more concise encoding for

games that are strictly turn-taking. It might be expected that for

these games, SE outperforms GE because it has fewer quantifier

blocks. For the particular instance Breakthrough-3×4 at depth 19,

we count the number of variables (# 𝑣𝑎𝑟 ), the number of clauses(# 𝑐𝑙 ),

the number of universal variables (#∀), and the number of quantifier

blocks (# 𝑏𝑙 ) of the instance under the encoding and quantification

methods GD and SD with (-bloq) and without (-plain) preprocessing.

We observe from Table 3 that without preprocessing, the number of

variables, the number of clauses, the number of universal variables,

and the number of quantifier blocks in GD-plain are all approxi-

mately twice the ones in SD-plain. As a consequence, the instance
created by GD-plain should be more difficult to solve than SD-plain
for both DepQBF and Caqe. However, after bloqqer preprocessing,
the instance created by GD-bloq has a similar size to that of SD-bloq,

and both DepQBF and Caqe take a similar amount of time to solve

these preprocessed instances. More importantly, the preprocessed

instances are much simpler to solve than the unpreprocessed ones.

A similar observation holds for other games. We observe from Ta-

ble 2 that for both DepQBF and Caqe, instances created by SD are

not simpler to solve than GD after the instances are preprocessed

by bloqqer . Since bloqqer preprocessing is critical for the solver’s
performance, and calculating the player taking turns using the

theorem-proving [33] method is time-consuming, our experimental

results somewhat surprisingly suggest that the strictly turn-taking

property is not beneficial for the solver’s performance in practice

thanks to the existence of QBF preprocessors.

4.2 Comparing Different Quantification
Methods

We can observe from Table 2 that under GE, the three different

quantification methods GN, GT, and GD have similar performance

for the search-based QBF solver DepQBF [19]. By using any of
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the three different quantification methods, DepQBF can solve most

of the small-sized games in a feasible amount of time. However,

for the CEGAR-based QBF solver Caqe [24], the solver’s perfor-

mance is closely related to the quantification method. Caqe can
solve significantly more small-sized games when we apply GE with

the dependency-based quantification method than the naive or

the time-based one. In fact, for the 23 games we tested, Caqe plus
the encoding and quantification method GD gives the best overall

performance. Hence, we believe that the dependency-based quan-

tification method is an important part of the encoding. A likely

explanation for the performance difference between GD and oth-

ers is that in GD, atoms like legal and terminal at timestamp 𝑇

are quantified before does at timestamp 𝑇 since neither predicate

depends on does in a valid GDL description. By quantifying these

atoms earlier than does, the solver is forced to fix the value of

these predicates before branching on does at timestamp 𝑇 . This

can ensure that the QBF solver does not branch on a does variable

that corresponds to an illegal action at timestamp 𝑇 , thus pruning

the search space. Our result that GD is more important to Caqe
than to DepQBF could be explained by the effect of unit propaga-

tion [5] in DepQBF. Although in GN and GT, atoms like legal and

terminal at timestamp𝑇 are quantified after does at timestamp𝑇 ,

their value may be uniquely derived by unit propagation after the

does instances for timestamps 1 to 𝑇 − 1 have been assigned. In

some cases, even if we apply the GN or GT quantification method,

DepQBF would not branch on a does variable that corresponds to
an illegal action. In comparison, Caqe is not a search-based solver,

which is why such a simplification procedure is unlikely to happen,

and as a result, GD is more important to the performance of Caqe
than to DepQBF.

4.3 Comparison With Other Methods
We first compare the encoding and quantification method GD with

existing general QBF encoding methods for turn-taking games.

Prior to our work, there were no encoding methods that could

convert all two-player zero-sum turn-taking games with perfect

information that can be expressed in the general game description

language GDL to QBF. One of the most general frameworks was

the translation method to convert general two-player zero-sum

turn-taking board games that can be described in the board-game

specification language [30]. We can observe in Table 2 that for both

DepQBF and Caqe, the instances created by our translation method

GD are significantly easier to solve than the ones created by the

BDDL method (BL). However, this does not necessarily imply that

our translation method is strictly “better” than the BDDL-based

translation. This is not just because we construct QBF instances

from GDL as opposed to BDDL, but also because the method dis-

cussed in our paper only works for small-sized games when the

grounding of the ASP program is of feasible size. The authors of the

BDDL-based translation emphasized the aim to create a correct and

concise translation from two-player zero-sum turn-taking board

games to QBF that potentially works for large games too. We can

observe from Table 3 that the size of the encoding created by the

BDDL method is smaller than that resulting from our translation.

Next, we compare the encoding and quantification method GD

with the minimax and transposition table solver. The result of this

comparison is mixed. We observe from Table 2 that for games from

the C-3, C-4, GT-1-1, and GT-2-2 families after the instances gen-

erated by GD are preprocessed by bloqqer, both Caqe and DepQBF
use less time to solve the majority of the QBF instances than the

minimax method to solve the original GDL games. For the BT fam-

ily, Caqe can solve all the instances generated by the method GD
and outperforms the minimax solver in around half of the instances.

However, for the D&B family, the minimax solver outperforms

our encoding method GD by 1 to 2 orders of magnitude. Note that

the above comparison only considers the solving time of the QBF

solvers on the preprocessed instances. In practice, the bloqqer pre-
processing time should be considered as well. For the 23 games in

the experiment, the bloqqer preprocessing time never exceeds 60

seconds. Even if the bloqqer preprocessing time is included (column

Bloq in Table 2), the encoding and quantificationmethodGD is more

efficient for most games from the C-4, GT-1-1, and GT-2-2 families.

Most importantly, although our translation method outperforms

the minimax and transposition table solver in only some games, the

performance of the QBF method is comparable with search-based

game-solving methods. This means that our QBF-based method can

be an alternative approach for general game players to evaluate

endgame positions of small-sized games. This is in line with the

conclusion of the work on solving single-player GDL games with

ASP while generalizing it to two-player games [32].

5 CONCLUSION AND FUTUREWORK
Game solving in General Game Playing is a relatively less explored

field. Before this paper, one of the first results in general game “solv-

ing” was to solve general single-player GDL games with ASP [32].

In this paper, we have described a translation method that gen-

eralizes the techniques for the single-player case to two-player

zero-sum turn-taking perfect information games. We have devel-

oped a method of constructing the quantifier prefix of the program

with the use of the atom dependencies. We have shown that with

the help of existing tools like qasp2qbf [7], the QASP instances

can then be converted to QBF and solved by state-of-the-art QBF

solvers. Experimental results have shown that the efficiency of the

state-of-the-art QBF solvers on these translated instances is accept-

able when the size of the games is relatively small. Although this

paper only focuses on the two-player case, our approach can be

easily extended to solving multiplayer games under the paranoid

assumption [25] (i.e., all the other players are cooperatively playing

against a single agent). Our method can also be applied to estimat-

ing the maximin or minimax bound [18] of two-player zero-sum

simultaneous move games.

One shortcoming of our method is that the translation size is

related to the grounding of the temporal-extended answer set pro-

gram, which can be very large for many games. Although we have

shown in the experimental results that the encoding size is not

directly related to the solving time, creating a more concise transla-

tion from GDL to QBF is important when the program’s grounding

is too large. One challenging future work is to see if the lifted-

encoding techniques that have been used in the BDDL method [30]

can be applied in the context of two-player zero-sum turn-taking

GDL games as well to create a more concise translation in cases

when the GDL specification has a large grounding.
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