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ABSTRACT
This paper investigates a general principle-based framework for

retrieving preferred repairs from inconsistent knowledge bases un-

der a broad family of strategies. To begin with, we define a set of

principles that ensure rational behaviours of repair selection strate-

gies. Then, we classify the strategies into two basic categories: (i)

comparing repairs without requiring formula information; and (ii)

comparing repairs based on formula information. Based on this clas-

sification, we present several novel repair selection strategies and

show that our framework encompasses various existing popular

strategies. Through a systematical analysis of these selection strate-

gies using the proposed principles, we conclude that our principles

allow for effective discrimination among the strategies. Finally, pre-

liminary experimental results are presented to show the feasibility

of our approach.
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1 INTRODUCTION
The study of preferences has a long tradition in various disciplines.

It has been recently applied in query answering over databases

[30], propositional logic knowledge bases (KBs) [22], description

logic KBs [6, 9, 32], and the existential rule language [12]. In this

context, existing approaches rely on the concept of repairs, that is,

the ⊆-maximal consistent subsets of an inconsistent KB.

The need of retrieving preferred repairs is justified by numerous

issueswith using all repairs. The first drawback of reasoningwith all

repairs is due to their usual large numbers in real-world applications

[25]. Moreover, repairs are often not equally important in practical

applications, for instance, when a data source is more reliable than

another or a piece of new information is preferred over earlier
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ones [11]. We may also prefer one repair over another if the former

contains less problematic information [17, 21, 28]. Therefore, in this

paper, we turn our attention to how to choose the most preferred

repairs among all the potential repairs of an inconsistent KB, while

filtering out undesired repairs. Unlike [6], and in line with [7, 9, 12,

32], we aim to guarantee that the retrieved consistent subsets are

still ⊆-maximal.

Despite their success, the aforementioned proposals on preferred

repairs-based query answering have been generally developed us-

ing ad hoc repair selection strategies. A basic strategy is based on

the cardinality of repairs. More advanced strategies often use some

aggregation functions of formula information (e.g., weight, priority

level, inconsistency measure), either provided as system inputs or

computed from the given KB. Without being limited to aggregation

functions, this paper provides a complementary principle-based

framework that allows us to define different repair selection strate-

gies to retrieve preferred repairs from inconsistent KBs. This paper

makes the following concrete contributions:

• We propose a set of logical principles that guarantee rational

behaviours of repair selection strategies. We also present

some (in)compatibility results that ensure which principles

can(not) be satisfied together (Section 3).

• We classify the repair selection strategies into two main

categories: the strategies that allow for comparing repairs

directly without using formula information (Section 4.1); and

the selection strategies that exploit formula information to

select preferred repairs (Section 4.2). We stress here that our

framework is broad enough to encompass several existing

popular repair selection strategies and also leads to other

novel strategies in particular for the first category.

• We systematically evaluate the different repair selection

strategies against the proposed principles (Table 1), showing

that these principles allow for an effective discrimination

among different repair selection strategies.

We also show that satisfying the same principles does not

necessary guarantee agreement on the preferred repair sets.

This confirms a similar finding regarding argument ranking

within abstract argumentation frameworks [2].

2 FORMAL PRELIMINARIES
Our framework is not restricted to a particular logic language. For

a convenient illustration of the notions presented in this paper, we

use propositional logic (PL) and description logic DL-Lite.

Propositional Logic (PL)We consider a propositional language

over a finite set of propositional variables V, the logical connectives,
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and the truth constants true (⊤) and false (⊥). We use Greek letters

𝛼, 𝛽, etc. to denote arbitrary formulas. We further denote by ⊢ the
classical inference relation in PL. A PL KB K is a non-empty finite

set of propositional formulas. K is said to be inconsistent if ∃𝛼
s.t. K ⊢ 𝛼 and K ⊢ ¬𝛼 . Let Ω = {𝑤1,𝑤2, . . .} denotes the set of
classical interpretations associated with the language, where𝑤𝑖 is

a mapping from V to {0, 1}. An interpretation𝑤 ∈ Ω is a model of
a formula 𝛼 , denoted𝑤 |= 𝛼 , if 𝛼 is true in𝑤 in the usual way.

DL-Lite Logic Concepts and roles of DL-Lite are formed by the

following syntax [13]: 𝐵 ::= 𝐴 | ∃𝑅, 𝑅 ::= 𝑃 | 𝑃−, 𝐶 ::= 𝐵 | ¬𝐵.
𝐴 and 𝑃 denote an atomic concept and an atomic role, respectively; 𝐵
denotes a basic concept (i.e., a concept of the form𝐴, ∃𝑅); 𝑅 denotes

a basic role (a role of the form 𝑃 , 𝑃− ), where 𝑃− denotes the inverse

of the atomic role 𝑃 ; 𝐶 denotes a general concept (a concept of

the form 𝐵, ¬𝐵). A DL-Lite TBox (denoted T ) is a set of inclusion

axioms of the form 𝐵 ⊑ 𝐶 . A DL-Lite ABox (denoted A) is a set

of membership assertions on atomic concepts and atomic roles:

𝐴(𝑎), 𝑃 (𝑎, 𝑏) called ABox axioms, where 𝑎, 𝑏 are individuals, saying

that𝑎 is an instances of𝐴, and𝑎 has 𝑃 relationwith𝑏. The semantics

of DL-Lite is given by an interpretation 𝐼 = (Δ𝐼 , ·𝐼 ), consisting of a

non-empty interpretation domain Δ𝐼
and an interpretation function

·𝐼 that assigns to each concept 𝐶 a subset 𝐶𝐼
of Δ𝐼

, and to each

role 𝑅 a binary relation 𝑅𝐼 over Δ𝐼 × Δ𝐼
. The extension of ·𝐼 to

general concepts follows the usual way. An interpretation satisfies

a DL-Lite KB K = ⟨T ,A⟩ (i.e., a model of K) iff it satisfies each

axiom in both ABox and TBox. A KB is satisfiable if it has at least

one model. A KBK logically implies an assertion 𝛼 , writtenK |= 𝛼 ,

if all models of K are also models of 𝛼 .

Formula and Knowledge Base In this paper, we use formulas to
refer to both DL-Lite axioms and PL formulas when no distinction

of language is necessary. Let L be DL-Lite or PL and Form(L) be
the infinite set of formulas over L. A knowledge base is a finite

subset of Form(L). We write K for the set of all knowledge bases

in L. Given {𝛼, 𝛽} ⊆ Form(L), 𝛼 and 𝛽 are logically equivalent,
denoted 𝛼 ≡ 𝛽 , if {𝛼} |= 𝛽 and {𝛽} |= 𝛼 . Now, let us recall the

equivalence relation between sets of formulas [3].

Definition 2.1. Let K,K′ ∈ K. Then, K and K′
are logically

equivalent, denoted K � K′
, iff ∀𝛼 ∈ K , there exists 𝛽 ∈ K′

s.t.

𝛼 ≡ 𝛽 , and ∀𝛼 ′ ∈ K′
, there exists 𝛽′ ∈ K s.t. 𝛼 ′ ≡ 𝛽′.

Repairs and Conflicts Handling inconsistencies is a vital aspect
in many intelligent systems, relying on two main notions, namely

the repairs and the conflicts. Formally, they are defined as follows.

Definition 2.2. Let K be a PL KB, and K′
be a subset of K . We

say K′
a repair (resp. conflict) of K if K′

is a ⊆-maximal con-

sistent (resp. ⊆-minimal inconsistent) subset of K . For a DL KB

K = ⟨T ,A⟩, an ABox repair is a ⊆-maximal subset A′
of A such

that T ∪A′
is consistent. An ABox conflict is a ⊆-minimal subset

A′′
of A s.t. ⟨T ,A′′⟩ |= ⊥. We denote by R(K) and C(K) the set

of all possible repairs and conflicts of K , respectively.

In this way, if K1 � K2, then |R(K1) | = |R(K2) |. In what

follows, we define R(𝛼,K) = {𝑅 ∈ R(K) | 𝛼 ∈ 𝑅} and C(𝛼,K) =
{𝐶 ∈ C(K) | 𝛼 ∈ 𝐶}. A formula 𝛼 ∈ K is free iff C(𝛼,K) = ∅.
We denote by Free(K) the set of free formulas in K . Let us note

that a single formula can be a conflict (named a self-contradictory
formula), e.g.,𝐴(𝑎) w.r.t.T = {⟨𝐴 ⊑ 𝐵,𝐴 ⊑ ¬𝐵⟩}. If each formula of

K gives a conflict, then there will be no repair in K , i.e., R(K) = ∅.
Removing such formulas by existing reasoning algorithms makes

the KB they belong to empty and makes it no sense of selecting

repairs [7]. From now on, without loss of generality and for the sake

of simplicity, we shall assume that there is no self-contradictory

formulas nor tautologies.

Order and Preorder Let 𝑋 be a finite set of objects. A binary

relation is called an order if it is reflexive, transitive and total. A

preorder is a reflexive and transitive relation. If ⪰ is an order on 𝑋 ,

the induced strict order ≻ on 𝑋 is defined by 𝑥 ≻ 𝑦 if 𝑥 ⪰ 𝑦 and

𝑦 ⪰̸ 𝑥 , where 𝑥 , 𝑦 are arbitrary elements of 𝑋 . A binary relation

is said to be acyclic if it does not contains cycles. We further say

that ≻𝑐 is a completion of ≻ if ≻𝑐 is a total strict order and for any

𝑥 ≻ 𝑦, we have 𝑥 ≻𝑐 𝑦.

3 PRINCIPLE-BASED FRAMEWORK FOR
REPAIR SELECTION

Several inconsistency-tolerant semantics have been recently ex-

tended to query inconsistent knowledge and databases under pre-

ferred repairs, e.g., [6, 9, 12, 22, 30, 32]. Despite their potentially

fruitful success, these proposals have been generally developed

using basic strategies to retrieve the most preferred repairs. In fact,

the strategies are often some aggregation functions of formula in-

formation (e.g., weight, priority level), either provided as a system

parameter or computed from the input KB. That is why the main

goal in this paper is to define a complementary principle-based

framework to filter the slate of preferred repairs that can be used

to draw meaningful results from inconsistent KBs when consis-

tency cannot be restored. Such framework encompasses most of

the existing methods for selecting preferred repairs, which have

been previously used for both Database and Logic areas. Note here

that there is no single best strategy to express preferences among

sets [10]. In what follows, we introduce a broad family of selection

repair strategies which allows to identify the most appropriate strat-

egy according to the application context. One of our motivations

for this work is based on the following observation:

Proposition 3.1. Let K ∈ K. K is inconsistent iff |R(K)| ≥ 2.

That is, any inconsistent KB has multiple repairs, which makes

the task of comparing these repairs not obvious. In what follows,

the repairs of a given KB will be ordered according to some crite-

ria to determine only the most desired ones. More formally, our

framework returns the set of preferred repairs among the (large)

candidate set of repairs by taking as input three basic elements:

• a knowledge base K ∈ K,
• a formula characterisation 𝑐ℎ over formulas in L: 𝑐ℎ can be

a binary function or relation over Form(L), e.g., a weight, a
distance, or a priority relation between two formulas. Though

𝑐ℎ could be arbitrary, the following property is natural for 𝑐ℎ

to satisfy: If 𝛼 ≡ 𝛼 ′ and 𝛽 ≡ 𝛽′, then 𝑐ℎ(𝛼, 𝛽) = 𝑐ℎ(𝛼 ′, 𝛽′).
• a repair comparison strategy, written ≽𝑠⊆ R(K) × R(K), to
compare the repairs of K .

Note that the selection repair strategies defined in Section 4.1

are independent of any specific 𝑐ℎ, while the strategies based on

categories of 𝑐ℎ are discussed in Section 4.2.
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Definition 3.2. LetK ∈ K and 𝑅, 𝑅′ ∈ R(K). A repair compari-
son strategy ≽𝑠 is an acyclic preference relation over R(K) with
𝑅 ≽𝑠 𝑅

′
, meaning that 𝑅 is preferred over 𝑅′. Given a relation 𝑐ℎ, a

repair selection function is a mapping F : K × 𝑐ℎ× ≽𝑠→ Ξ s.t.

Ξ ∈ 2
R(K)

.

A classical way to select repairs is to pick the preferred repairs

according to the repair comparison strategy ≽𝑠 .

Definition 3.3. Given K ∈ K, an optimal repair selection
function is a repair selection function F such that there is no 𝑅 ∈
F (K, 𝑐ℎ, ≽𝑠 ) and 𝑅′ ∈ (R(K) \ F (K, 𝑐ℎ, ≽𝑠 )) such that 𝑅′ ≻𝑠 𝑅.

Note that the acyclicness of ≽𝑠 guarantees the existence of a set
of selected repairs by F . If the repair comparison strategy ≽𝑠 is a
strict total relation (i.e., transitive and anti-reflexive), besides the

optimal repair selection, one can also define a selection function

that outputs repairs ranking on the Top-𝑘 positions according to

≽𝑠 . Due to the space constraint, we focus in this paper on optimal

repair selection function. When the comparison strategy is a strict

partial order, the optimal repair selection returns the "skyline".

Rationality Principles
Definition 3.3 is general enough regarding the repair comparison

strategy ≽𝑠 and the formula characterisation 𝑐ℎ. To restrict the pos-

sible candidates, we first establish a set of desiderata that a suitable

optimal repair selection function F should satisfy. Such formal

principles are important for defining, characterizing, and compar-

ing selection functions. Below, we introduce the set of principles
1
.

Abstraction: For any K ∈ K and any isomorphism
2 𝛾 , we have

that ∀𝑅 ∈ R(K), 𝑅 ∈ F (K, 𝑐ℎ, ≽𝑠 ) iff 𝛾 (𝑅) ∈ F (𝛾 (K), 𝑐ℎ, ≽𝑠 ).
Equivalence Invariance: IfK1 � K2, then for each𝑅 ∈ F (K1, 𝑐ℎ, ≽𝑠
), there exists 𝑅′ ∈ F (K2, 𝑐ℎ, ≽𝑠 ) s.t. 𝑅 � 𝑅′.
Coverness: For any KB K ,

⋃
𝑅∈F(K,𝑐ℎ,≽𝑠 ) 𝑅 = K .

Non-Emptiness: F (K, 𝑐ℎ, ≽𝑠 ) ≠ ∅, if R(K) ≠ ∅.
Monotonicity: If 𝑐ℎ1, 𝑐ℎ2 are two relations s.t. 𝑐ℎ2 ⊆ 𝑐ℎ1, then

F (K, 𝑐ℎ1, ≽𝑠 ) ⊆ F (K, 𝑐ℎ2, ≽𝑠 ).
Non-Discrimination: F (K, 𝑐ℎ, ∅) = R(K).
Reducibility: If K ⊢ ⊥, then F (K, 𝑐ℎ, ≽𝑠 ) ⊂ R(K).
Consistency: If K ⊬ ⊥, then F (K, 𝑐ℎ, ≽𝑠 ) = {K}.
Improvement: Given K,K′ ∈ K, if K ⊆ K′

, then for any 𝑅 ∈
F (K, 𝑐ℎ, ≽𝑠 ) and 𝑅′ ∈ F (K′, 𝑐ℎ, ≽𝑠 ), 𝑅 ⊁𝑠 𝑅′.
Stability: Given K,K′ ∈ K, if K ⊆ K′

, for any 𝑅 ∈ F (K, 𝑐ℎ, ≽𝑠 ),
there exists 𝑅′ ∈ F (K′, 𝑐ℎ, ≽𝑠 ) such that 𝑅 ⊆ 𝑅′.
Uniqueness: |F (K, 𝑐ℎ, ≽𝑠 ) | = 1.

Non-Triviality: There is K ∈ K such that F (K, 𝑐ℎ, ≽𝑠 ) ⊂R(K).
The intuition about the principles is as follows: The Abstraction

principle states that the selection of preferred repairs should be

independent from the variables’ names. The Equivalence Invari-
ance concerns the main intuition behind the logical equivalence

between two sets of formulas. It ensures that two equivalent KBs

exhibit the same behaviour according to the function F . The third

principle, called Coverness, requires that a KB should be covered

by its preferred repairs, i.e., each formula in K must belong to at

1
The three principles Non-Emptiness, Monotonicity, and Non-Discrimination have been

proposed by [30] for preferred consistent query answers in relational databases.

2
The isomorphism𝛾 renames all the variables (resp. concept, role names, and instances)

for PL (resp. DL). We apply 𝛾 to formulas and knowledge bases.

least one preferred repair. The Non-Emptiness principle says that
an optimal repair selection strategy F must return at least one

preferred repair. Monotonicity implies that looking at richer prefer-

ences among formulas can only narrow down the set of preferred

repairs. The Non-Discrimination principle states that the preferred

repairs are the set of all repairs when no repair comparison strategy

is expressed. Reducibility claims that there always exists a manner

to remove certain repairs from being the selected preferred ones.

Consistency states that if a KB is consistent, then the only preferred

repair is the base itself. The Improvement principle says that the
expansion of a KB can only result in better preferred repairs accord-

ing to ≽𝑠 . The Stability principle states that the expansion of a KB

K preserves all the formulas involved in the preferred repairs of K .

Uniqueness says that an optimal repair selection strategy should

return one unique preferred repair. Finally, the Non-Triviality prin-

ciple is to avoid repair selection functions that do not discriminate

between repairs and return all repairs for any KB K .

Proposition 3.4. Given an optimal repair selection function F ,
if F satisfies Uniqueness, then it satisfies Reducibility. If F satisfies
Reducibility, it satisfies Non-Triviality. But, the converses are false.

The following result shows that some principles are not necessar-

ily compatible with one another, that is, they cannot hold together

for the same optimal repair selection function.

Proposition 3.5. Let K ∈ K s.t. K ⊢ ⊥. There exists no opti-
mal repair selection function F which satisfies both Coverness and
Uniqueness. Moreover, there exists no optimal repair selection function
F which satisfies both Non-Discrimination and Uniqueness.

Below, we present a sufficient condition to satisfy the Improve-
ment principle via the notion of Subset-Dependence:

Definition 3.6. We say that a binary relation 𝑟𝑒𝑙 satisfies the

Subset-Dependence property if 𝑟𝑒𝑙 (𝑋,𝑌 ) holds for any sets 𝑌 ⊆ 𝑋 .

Proposition 3.7. If a repair comparison strategy ≽𝑠 is transitive
and satisfies the Subset-Dependence property, then the optimal repair
selection function F satisfies the Improvement principle.

Hopefully, there are nine compatible principles, i.e., they can be

satisfied all together by an optimal repair selection function.

Proposition 3.8. The properties Abstraction, Equivalence Invari-
ance, Non-Emptiness, Monotonicity, Non-Discrimination, Consistency,
Improvement, Stability and Non-Triviality are compatible.

Note that other combinations of compatible principles can be

found in Table 1 that enumerates the principles satisfied by the

optimal repair selection functions discussed below.

4 SELECTION OF PREFERRED REPAIRS
This section presents various optimal repair selection functions to

identify the most preferred repairs. Roughly speaking, these func-

tions can be classified into two main categories: the first category

is intended for the setting where no formula information is avail-

able; whilst the selection functions from the second category takes

formulas information into account during the selection process.

By abusing the notation a little bit without confusion, in the

sequel, we also use ≽𝑠 when we refer to F (K, 𝑐ℎ, ≽𝑠 ). In turn, we
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simply call ≽𝑠 a repair selection strategy. Sometimes, we use ≽𝑥𝑠
to indicate a specific selection strategy from the family 𝑠 with a

sub-type 𝑥 (e.g. see Definition 4.5).

4.1 𝑐ℎ-Free Selection Strategies
This subsection introduces our strategies for retrieving preferred

repairs without using the relation 𝑐ℎ (i.e., without any extra infor-

mation about the formulas of the KB). Obviously, in that case, the

Monotonicity principle is always satisfied.

4.1.1 Cardinality-based strategy. A straightforward way for fil-

tering preferred repairs involves employing a cardinality-based

criterion [9] that can be formalized in our notation as follows.

Given two repairs 𝑅, 𝑅′ ∈ R(K), 𝑅 ≽
card

𝑅′ iff. |𝑅 | ≥ |𝑅′ |. The key
idea underlying the cardinality-based method is to retain as many

information as possible.

Proposition 4.1. ≽
card

satisfies Abstraction, Non-Emptiness, Mono-
tonicity, Non-Discrimination, Consistency, Improvement, and Non-
Triviality principles. However, ≽

card
does not satisfy Equivalence In-

variance, Coverness, Reducibility, Stability or Uniqueness. For DL-Lite,
≽
card

satisfies the Equivalence Invariance principle.

Remark. Given K,K′ ∈ K, 𝑅 ∈ R(K) and 𝑅′ ∈ R(K′) satisfy-
ing K � K′

and 𝑅 � 𝑅′, it does not always hold that |𝑅 | = |𝑅′ |.
This is because one formula in K1 can have several logically equiv-

alent formulas in K2. Hence, ≽card does not satisfy Equivalence
Invariance.

The cardinality-based strategy ≽
card

treats all repairs indepen-

dently. A problem with this strategy is that no account is taken of

the possible interaction between repairs of a given KB.

4.1.2 Compatibility-based strategy. This second strategy, which

we call compatibility-based strategy, compares all pairs of repairs

based on the next criterion: we prefer the repairs having more com-

patibility with other repairs, i.e., opposed by less repairs. Formally,

Definition 4.2. Let K ∈ K and 𝑅 ∈ R(K). Then, the com-
patible set of 𝑅 w.r.t. R(K), written comp(𝑅,K), is defined as

comp(𝑅,K) = {𝑅′ ∈ R(K) | (𝑅 \ 𝑅′) ∪ (𝑅′ \ 𝑅) ⊬ ⊥}.
Since a repair is a maximal consistent subset, adding any ex-

tra formula will lead to inconsistency directly. However, it is still

relevant to consider the elements that distinguish the two repairs

without common parts (𝑖 .𝑒 ., (𝑅 \ 𝑅′) ∪ (𝑅′ \ 𝑅)) as claimed in [10].

Example 4.3. Let K = {𝑎,¬𝑎,¬𝑏,¬𝑎 ∨ 𝑏}. K has three repairs

𝑅1 = {¬𝑎,¬𝑏,¬𝑎 ∨ 𝑏}, 𝑅2 = {𝑎,¬𝑎 ∨ 𝑏}, and 𝑅3 = {𝑎,¬𝑏}. Then,
comp(𝑅1,K) = {𝑅1} and comp(𝑅2,K) = comp(𝑅3,K) = {𝑅2, 𝑅3}.
It is easy to see from Definition 4.2 that each repair belongs to the

compatible set of itself. A repair 𝑅 is contained in the compatible

set of a repair 𝑅′ iff 𝑅′ is also part of the compatible set of 𝑅.

Corollary 4.4. Let K ∈ K. Given two repairs 𝑅, 𝑅′ ∈ R(K),
it holds that 𝑅 ∈ comp(𝑅,K). Also, if 𝑅′ ∈ comp(𝑅,K), then 𝑅 ∈
comp(𝑅′,K).

Having defined the compatible sets of repairs, we are now ready

to introduce our compatibility-based strategy:

Definition 4.5. Let K ∈ K. For two repairs 𝑅, 𝑅′ ∈ R(K), we say
that 𝑅 is preferred to 𝑅′ in terms of cardinality (resp. set-inclusion),

written 𝑅 ≽#
comp

𝑅′ (resp. 𝑅 ≽⊇
comp

𝑅′), iff:
|comp(𝑅,K)| ≥ |comp(𝑅′,K)| (resp. comp(𝑅,K) ⊇ comp(𝑅′,K)).

This definition can be generalized to compare two repairs 𝑅 ∈
R(K) and 𝑅′ ∈ R(K′) of two KBs K and K′

, which is necessary

to study the Improvement principle, as follows: 𝑅 ≽#
comp

𝑅′ (resp.
𝑅 ≽⊇

comp
𝑅′), if |comp(𝑅,K)| ≥ |comp(𝑅′,K′) | (resp. comp(𝑅,K) ⊇

comp(𝑅′,K′)).
The following two examples show that the compatibility-based

strategies are different from ≽
card

and R(K).

Example 4.6 (Example 4.3 contd.). We have F (K, ∅, ≽
card

) =

{𝑅1},F (K, ∅, ≽#
comp

) = {𝑅2, 𝑅3}, andF (K, ∅, ≽⊇
comp

) = {𝑅1, 𝑅2, 𝑅3}.

Example 4.7. Let K = {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6} with 𝛼1 = 𝑎 ∧ 𝑑 ,

𝛼2 = ¬𝑎 ∧ 𝑒 , 𝛼3 = ¬𝑎 ∨ 𝑓 , 𝛼4 = ¬𝑓 ∨¬𝑑 , 𝛼5 = ¬𝑒 ∨ 𝑐 , 𝛼6 = ¬𝑏 ∧¬𝑐 .
K has three conflicts: {𝛼1, 𝛼3, 𝛼4}, {𝛼1, 𝛼2}, {𝛼2, 𝛼5, 𝛼6}, and five re-
pairs:𝑅1 = {𝛼1, 𝛼3, 𝛼5, 𝛼6},𝑅2 = {𝛼1, 𝛼4, 𝛼5, 𝛼6},𝑅3 = {𝛼2, 𝛼3, 𝛼4, 𝛼5},
𝑅4 = {𝛼2, 𝛼3, 𝛼4, 𝛼6}, 𝑅5 = {𝛼3, 𝛼4, 𝛼5, 𝛼6}. Then, comp(𝑅1,K) =

comp(𝑅2,K) = {𝑅1, 𝑅2, 𝑅5}, comp(𝑅3,K) = comp(𝑅4,K) = {𝑅3, 𝑅4, 𝑅5},
and comp(𝑅5,K) = {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5}. SoF (K, ∅, ≽⊇

comp
) = {𝑅5} ⊂

R(K).

The compatibility-based strategy ≽𝑥
comp

(𝑥 ∈ {#, ⊇}) extends
≽
card

according to the following result:

Proposition 4.8. Let K ∈ K. If 𝑅 ∩ 𝑅′ = ∅ for any 𝑅, 𝑅′ ∈
R(K), then F (K, ∅, ≽#

comp
) = F (K, ∅, ≽

card
) and F (K, ∅, ≽⊇

comp

) = R(K).

That is, if all repairs ofK are pairwise disjoint, then comp(𝑅,K) =
{𝑅}, thus ≽

card
and ≽#

comp
coincide, and ≽⊇

comp
can be reduced to

no selection among repairs.

Proposition 4.9. ≽𝑥
comp

for 𝑥 ∈ {#, ⊇} satisfies Abstraction,
Equivalence Invariance, Non-Emptiness, Non-Discrimination, Mono-
tonicity, and Consistency properties. However, ≽𝑥

comp
does not satisfy

Coverness, Reducibility, Stability, or Uniqueness. The Improvement
and Stability holds for DL-Lite, but Non-Triviality is not satisfied by
DL-Lite.

Examples 4.6 and 4.7 are counter-examples for Coverness and
Uniqueness. The counter-examples for Reductibility, Improvement
and Stability are given below in Examples 4.10 and 4.11.

Example 4.10. Let K0 = {𝑎,¬𝑏,¬𝑎 ∨ 𝑏}. Then, K0 has three

repairs 𝑅1 = {¬𝑏,¬𝑎 ∨ 𝑏}, 𝑅2 = {𝑎,¬𝑎 ∨ 𝑏}, and 𝑅3 = {𝑎,¬𝑏}.
Thus, we have that the three repairs are pairwise compatible, i.e.,

comp(𝑅1,K) = comp(𝑅2,K) = comp(𝑅3,K) = {𝑅1, 𝑅2, 𝑅3}. So,
F (K, ∅, ≽⊇

comp
) = F (K, ∅, ≽#

comp
) = {𝑅1, 𝑅2, 𝑅3}. Consequently,

≽⊇
comp

and ≽#
comp

do not satisfy Reducibility.

Example 4.11 (Example 4.10 contd.). Let K′ = K0 ∪ {𝑎 ∧ 𝑏}.
K′

has three repairs: 𝑅′
1

= 𝑅1, 𝑅
′
2

= 𝑅2 ∪ {𝑎 ∧ 𝑏}, and 𝑅′
3

=

𝑅3. Moreover, comp(𝑅′
1
,K′) = {𝑅1, 𝑅3}, comp(𝑅′

2
,K′) = {𝑅′

2
},

and comp(𝑅′
3
,K′) = {𝑅1, 𝑅3}. So, F (K′, ∅, ≽⊇

comp
) = {𝑅1, 𝑅′

2
, 𝑅3}

and F (K′, ∅, ≽#
comp

) = {𝑅′
1
, 𝑅′

3
}. Recall that F (K, ∅, ≽⊇

comp
) =

{𝑅1, 𝑅2, 𝑅3}. Note that comp(𝑅3,K) ⊃ comp(𝑅′
3
,K′). By defini-

tion, 𝑅3 ≽
𝑥
comp

𝑅′
3
(𝑥 ∈ {⊇, #}), which violates the Improvement.

𝑅′
2
∉ F (K′, ∅, ≽#

comp
), so the Stability is unsatisfied.
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Unfortunately, the compatibility-based strategies are not specifi-

cally geared toward DL-Lite. In fact, the notion of compatible set of a

repair is trivial because it becomes a singleton and only contains the

repair itself. This result also explains the violation of Non-Triviality

and satisfaction of Stability of ≽𝑥
comp

(𝑥 ∈ {#, ⊆}) for DL-Lite.
Proposition 4.12. Given a KB K ∈ K, if ∀𝐶 ∈ C(K), |𝐶 | = 2,

then comp(𝑅,K) = {𝑅}, ∀𝑅 ∈ R(K).
4.1.3 Cover-based strategy. Our third strategy for selecting the

most relevant repairs, when no preference among formulas is ex-

pressed, is coined the cover-based strategy. Generally speaking,

one could only retrieve a set of repairs involving the most for-

mulas from the original KB. Then, this strategy aims to selecting

among the repairs the ones covering the KB. For that purpose,

let us first define the concept of coverness in KBs. Given a KB

K , Γ = {K1, . . . ,K𝑛 | K𝑖 ⊆ K, 1 ≤ 𝑖 ≤ 𝑛} is a cover of K iff⋃
1≤𝑖≤𝑛 K𝑖 = K . A cover Γ of K is minimal if there exists no other

cover Γ′ of K s.t. Γ′ ⊂ Γ. We call Γ a minimal repair cover of
K , if K𝑖 ∈ R(K) for 1 ≤ 𝑖 ≤ 𝑛. We write cover(K) for the set of
minimal repair covers of K .

Example 4.13. Let K = (T ,A) with T = {𝐴𝑖 ⊑ ¬𝐴′
𝑗
, 𝐴′

𝑖
⊑

¬𝐴′
𝑗
| 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 3} and A = {𝐴𝑖 (𝑎), 𝐴′

𝑖
(𝑎) | 1 ≤ 𝑖 ≤ 3}.

K has four repairs: 𝑅𝑖 = {𝐴𝑖 (𝑎), 𝐴′
𝑖
(𝑎)} (1 ≤ 𝑖 ≤ 3) and 𝑅4 =

{𝐴1 (𝑎), 𝐴2 (𝑎), 𝐴3 (𝑎)}. Note that 𝑅4 has the biggest cardinality, but
it is not in any minimal repair cover.

We are in a position to define our cover-based strategy.

Definition 4.14. Let K ∈ K. For two repairs 𝑅, 𝑅′ ∈ R(K), we
say that 𝑅 ≽cover 𝑅

′
if there is Γ ∈ cover(K) such that 𝑅 ∈ Γ.

This definition implies that the set of the preferred repairs will be

the union of minimal covers, i.e., F (K, ∅, ≽cover) =
⋃

Γ∈cover(K) Γ.

Proposition 4.15. ≽cover satisfies Abstraction, Equivalence In-
variance, Coverness, Non-Emptiness, Monotonicity, Non-Discrimination,
Consistency, and Non-Triviality principles. However, ≽cover does not
satisfy Reducibility, Improvement, Stability, or Uniqueness.

Example 4.16 (Example 4.10 contd.). K0 has three minimal repair

covers, namely Γ1 = {𝑅1, 𝑅2}, Γ2 = {𝑅1, 𝑅3}, and Γ3 = {𝑅2, 𝑅3}.
Then, F (K, ∅, ≽cover) = Γ1 ∪ Γ2 ∪ Γ3{𝑅1, 𝑅2, 𝑅3} = R(K). Conse-
quently, ≽cover does not satisfy Reducibility.

Example 4.17 (Example 4.7 contd.). K has fourminimal repair cov-

ers: {𝑅1, 𝑅3}, {𝑅2, 𝑅3}, {𝑅1, 𝑅4}, {𝑅2, 𝑅4}. Therefore, F (K, ∅, ≽cover
) = {𝑅1, 𝑅2, 𝑅3, 𝑅4}. Let K′ = K ∪ {𝑏, 𝑒 ∧ ¬𝑐}. K′

has 9 repairs.

Three are the same as that of K : 𝑅′
1
= 𝑅1, 𝑅

′
2
= 𝑅2, 𝑅

′
5
= 𝑅5; two are

super-sets: 𝑅′
3
= 𝑅3 ∪ {𝑁7}, 𝑅′

4
= 𝑅4 ∪ {𝑁8}; and four new repairs

𝑅′
6
= {𝛼1, 𝛼3, 𝛼5, 𝛼7}, 𝑅′

7
= {𝛼1, 𝛼4, 𝛼5, 𝛼7}, 𝑅′

8
= {𝛼1, 𝛼3, 𝛼6, 𝛼8}, and

𝑅′
9
= {𝛼1, 𝛼4, 𝛼6, 𝛼8}. Then, the minimal covers for K′

are {𝑅′
3
, 𝑅′

8
},

{𝑅′
4
, 𝑅′

6
}, {𝑅′

4
, 𝑅′

7
}, {𝑅′

3
, 𝑅′

9
}, and {𝑅′

4
, 𝑅′

7
}, thus F (K′, ∅, ≽cover) =

{𝑅′
3
, 𝑅′

4
, 𝑅′

8
, 𝑅′

6
, 𝑅′

7
, 𝑅′

9
}. Hence, ≽cover does not satisfy Stability, but

it satisfies Non-Triviality.

Similarly, we can construct an example showing that ≽cover does
not satisfy Improvement by expanding the KB K in Example 4.3

with the formula 𝑎 ∧ 𝑏.

As it turns out, contrary to the previous repair selection strate-

gies, a key feature of the cover-based strategy is that the input KB

is always covered by the selected repairs.

Proposition 4.18. LetK ∈ K. If 𝑅∩𝑅′ = ∅ for any 𝑅, 𝑅′ ∈ R(K),
then F (K, ∅, ≽cover) = R(K).

The next example shows that even if the conflicts are binary,

which makes ≽comp strategy trivial by Proposition 4.12, the ≽cover
strategy is still able to give non-trivial results.

Example 4.19. Let K = (T ,A) with T = {𝐴 ⊑ 𝐸, 𝐷 ⊑ ¬𝐹,𝐶 ⊑
𝐹,𝐶 ⊑ 𝐴, 𝐷 ⊑ ¬𝐴, 𝐵 ⊑ ¬𝐹 } andA = {𝐴(𝑎), 𝐵(𝑎),𝐶 (𝑎), 𝐷 (𝑎)}. The
conflicts of K are binary, i.e., C(K) = {{𝐴(𝑎), 𝐷 (𝑎)}, {𝐵(𝑎),𝐶 (𝑎)},
{𝐶 (𝑎), 𝐷 (𝑎)}}. Then,K has three repairs, namely𝑅1 = {𝐴(𝑎), 𝐵(𝑎)},
𝑅2 = {𝐴(𝑎),𝐶 (𝑎)}, and 𝑅3 = {𝐵(𝑎), 𝐷 (𝑎)}. Then, cover(K) =

{{𝑅2, 𝑅3}}, thus F (K, ∅, ≽cover) = {𝑅2, 𝑅3} ⊂ R(K).

4.2 𝑐ℎ-based Selection Strategies
Now, we focus on the second category of repair selection strategies

that can take advantage of qualitative or quantitative information

attached to formulas by the formula characterisation 𝑐ℎ. For exam-

ple, if the characterisation of formulas is numeric, i.e. 𝑐ℎ(𝛼) ∈ R,
then we can apply any numeric aggregation function, such as sum-

mation, minimum, etc. In this work, besides this unary character-

isation, we also consider binary relations, binary functions, and

vector representations to characterise formulas in the input KB.

4.2.1 Improvement-based strategies. In the database and DL-Lite

settings, the conflict is always binary, and the priority relation

is suited for formulas forming a conflict. Here, we extend three

existing formula characterisation-based methods —studied by the

Database community [30] and applied to DL-Lite [7]— to an arbi-

trary binary relation ⪰ (without imposing any restriction on ⪰).
This leads to the following improvement-based strategy defined

through the repair selection strategies ≽𝑔 , ≽𝑝 and ≽𝑐 defined below:

Definition 4.20. Let K ∈ K, and 𝑅, 𝑅′ ∈ R(K). We say that:

• 𝑅 is a global improvement of 𝑅′ w.r.t. ⪰, written 𝑅 ≽𝑔 𝑅′,
if ∀𝛽 ∈ 𝑅′ \ 𝑅, ∃𝛼 ∈ 𝑅 \ 𝑅′ such that 𝛼 ≻ 𝛽 .

• 𝑅 is a pareto improvement of 𝑅′ w.r.t. ⪰, written 𝑅 ≽𝑝 𝑅′,
if ∃𝛼 ∈ 𝑅 \ 𝑅′ such that 𝛼 ≻ 𝛽 , ∀𝛽 ∈ 𝑅′ \ 𝑅.

• 𝑅 is a completion improvement of 𝑅′ w.r.t. ⪰, written 𝑅 ≽𝑐 𝑅′,
if 𝑅 ≽𝑔 𝑅′ holds w.r.t. a completion ≻𝑐 of ≻.

We call that 𝑅 ∈ F (K, ⪰, ≽𝑥 ) for 𝑥 ∈ {𝑔, 𝑝, 𝑐} a globally-optimal,
pareto-optimal, completion-optimal repair.

The global, pareto and completion improvement relations ≽𝑥
(𝑥 ∈ {𝑔, 𝑝, 𝑐}) are defined from the relations ⪰ of formulas. This

is in line with the intuition of our compatibility-based strategy,

but takes the formula ordering into account through the notion of

elementary improvement.

Now, let us introduce the priority relation, written ≻ | , by restrict-
ing the strict order ≻ merely to the conflicts in a given KB. More

formally, given 𝛼, 𝛽 ∈ K , 𝛼 ≻ | 𝛽 iff 𝛼 ≻ 𝛽 and there exists at least

one conflict 𝐶 ∈ C(K) s.t. {𝛼, 𝛽} ⊆ 𝐶 . The following result holds:

Proposition 4.21. Consider a KB K ∈ K and 𝑅, 𝑅′ ∈ R(K). If 𝑅
is a global (resp. pareto, completion) improvement of 𝑅′ w.r.t. ≻ | , then
𝑅 is a global (resp. pareto, completion) improvement of 𝑅′ w.r.t. ⪰.

It can be checked by Definition 4.20 that a repair 𝑅 ∈ F (K, ⪰, ≽𝑥 )
implies that 𝑅 ∈ F (K, ≻ | , ≽𝑥 ) for 𝑥 ∈ {𝑔, 𝑝, 𝑐}, where the latter is
introduced in [7] for DL-Lite.
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Table 1: Principles vs. repair selection strategies:
√
(resp.

√∗) means that the strategy satisfies the property (resp. under certain
condition), ⊗ stands for unsatisfaction, and NA means inapplicability.

Principle
Category I Category II

≽
card

Compatibility

≽cover
Improvement Distance

≽#
comp

≽⊇
comp

𝑔≻ 𝑝≻ 𝑐≻ ≽𝑑𝑣
dist

≽𝑑Hsdf
dist

≽𝑑∞
dist

≽𝑑1
dist

Abstraction

√ √ √ √ √ √

Equivalence Invariance ⊗ √ √ √ ⊗ √∗

Coverness ⊗ ⊗ √ ⊗ ⊗ ⊗
Non-Emptiness

√ √ √ √ √ √

Monotonicity

√ √ √ √
NA NA

Non-Discrimination

√ √ √ √ √ √

Reducibility ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Consistency

√ √ √ √ √ √

Improvement

√ √
(DL-Lite), ⊗ (PL) ⊗ √ √ ⊗

Stability ⊗ √
(DL-Lite), ⊗ (PL) ⊗ √ ⊗ ⊗

Uniqueness ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
Non-Triviality

√ ⊗ (DL-Lite),

√
(PL)

√ √ √ √

Proposition 4.22. ≽𝑔 , ≽𝑝 and ≽𝑐 satisfy Abstraction, Equiva-
lence Invariance, Non-Emptiness, Monotonicity, Non-Discrimination,
Consistency, Improvement, Stability, and Non-Triviality principles,
except Coverness, Reducibility and Uniqueness.

Note that the Improvement and Stability properties hold due

to the fact that if 𝑅 ≽𝑥 𝑅′ (𝑥 ∈ {𝑔, 𝑝, 𝑐}), then 𝑅 ∪ {𝛼} ≽𝑥 𝑅′,
where 𝛼 ∈ Form(L). Satisfying these two principles shows the

interestingness of the improvement-based strategies.

4.2.2 Distance-based strategy. Another way to compare repairs is

by their distances to the original KB
3
. The basic intuition here is

that the closer a repair 𝑅 ∈ R(K) is toK , the better 𝑅 is. This leads

to a new repair selection strategy given below:

Definition 4.23. Let K ∈ K and 𝑅, 𝑅′ ∈ R(K). Given a distance

𝑑 (𝑅,K) between a repair 𝑅 and K , we say that 𝑅 is preferred to 𝑅′,
noted 𝑅 ≽𝑑

dist
𝑅′, iff 𝑑 (𝑅,K) ≤ 𝑑 (𝑅′,K).

This strategy takes into account the closeness between repairs

and the KB for the optimal repair selection.We distinguish twoways

for defining such a distance. The first one concerns the case where

the formulas are attached with weights. The second is dedicated to

the case where a distance between formulas is provided, which can

be then lifted to a distance among sets of formulas.

A widely used distance is the hamming distance [14] between
two sets, here a KB K and a repair 𝑅 ∈ R(K), which returns

the number of formulas on which 𝑅 and K differ. We denote by

𝑑ℎ (𝑅,K) = |K \𝑅 | the hamming distance between 𝑅 andK . When

the formulas are not equally reliable, they can be associated with

different values using a function 𝑣 : K ↦→ R+. Based on this, one

can define the weighted hamming distance induced by 𝑣 as follows:

Definition 4.24. For K ∈ K, the weighted hamming distance
between a repair 𝑅 ∈ R(K) and K is: 𝑑𝑣 (𝑅,K) = ∑

𝛼∈K\𝑅 𝑣 (𝛼) .

Observe that minimising the distance from a repair 𝑅 ∈ R(K) to
the KBK implies the maximization of the overall weight associated

to 𝑅. We point out here that the weighted hamming distance-based

strategy ≽𝑑𝑣
dist

follows the optimal subset repairs principle that mini-

mizes the number of facts deletion in Databases [23].

3
The notion of distance was employed in repairing inconsistent databases (see [5]).

The next result shows that the repair selection strategy ≽𝑑𝑣
dist

generalizes two existing repair selection methods: the cardinality-

based strategy, the hamming distance-based strategy, the scoring

function-based strategy ≥score [22], and the weight-based strategy

≥𝑤 [9], where the last two strategies are defined below:

• 𝑅 ≥score 𝑅
′
if

∑
𝛼∈𝑅 |R(𝛼,K)| ≥ ∑

𝛼∈𝑅′ |R(𝛼,K)|.
• 𝑅 ≥𝑤 𝑅′ if

∑
𝛼∈𝑅 𝑤 (𝛼) ≥ ∑

𝛼∈𝑅′ 𝑤 (𝛼).
Proposition 4.25. Let K ∈ K. The following results hold:
• If 𝑣 (𝛼) = 𝑣 (𝛽) for any 𝛼, 𝛽 ∈ K , ≽𝑑𝑣

dist
=≽𝑑ℎ

dist
=≽

card
.

• If 𝑣 (𝛼) = |R(𝛼,K)|, then ≽𝑑𝑣
dist

=≽score.

• If 𝑣 (𝛼) = 𝑤 (𝛼), then ≽𝑑𝑣
dist

=≥𝑤 .

Proposition 4.26. ≽𝑑𝑣
dist

satisfies Abstraction, Non-Emptiness, Non-
Discrimination, Consistency, Improvement, and Non-Triviality princi-
ples. However, ≽𝑑𝑣

dist
does not satisfy Equivalence Invariance, Coverness,

Reducibility, Stability, or Uniqueness. Note that the Monotonicity is
not applicable.

Now, we refer to the case where there exists a distance between

every pair of formulas, as we will see later. Then, such a distance

can be lifted to a distance between subsets using for instance the

Hausdorff distance [15]. In detail, the Hausdorff distance is a classical

mathematical object to measure how far two subsets of a metric

space are from each other.

Definition 4.27 ([29]). Let K ∈ K. We assume that each pair of

formulas 𝛼, 𝛽 ∈ K is associated with a distance 𝑑 (𝛼, 𝛽) ∈ R+. The
Hausdorff distance between two sets 𝑆1, 𝑆2 ⊆ K is defined as:

𝑑Hsdf (𝑆1, 𝑆2) = max( sup
𝛼∈𝑆1

inf

𝛽∈𝑆2
𝑑 (𝛼, 𝛽), sup

𝛼∈𝑆2
inf

𝛽∈𝑆1
𝑑 (𝛼, 𝛽)).

By Definition 4.27, it is clear to see that for a given repair 𝑅 ∈
R(K), 𝑑Hsdf (𝑅,K) = sup𝛼∈K inf𝛽∈𝑅 𝑑 (𝛼, 𝛽).

Proposition 4.28. ≽
𝑑Hsdf

dist
satisfies Abstraction, Non-Emptiness,

Non-Discrimination, Consistency, and Non-Triviality principles. How-

ever, ≽
𝑑Hsdf

dist
does not satisfy Coverness, Reducibility, Improvement,

Stability, or Uniqueness. Note that the Monotonicity is not applica-
ble. If 𝑑 (𝛼, 𝛽) = 𝑑 (𝛼 ′, 𝛽′) for 𝛼 ≡ 𝛼 ′ and 𝛽 ≡ 𝛽′ s.t. {𝛼, 𝛽} ⊆ K ,

{𝛼 ′, 𝛽′} ⊆ K′, then ≽
𝑑Hsdf

dist
satisfies Equivalence Invariance.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

912



In some circumstances, a repair 𝑅 ∈ R(K) can be represented as

a vector by considering, for instance, the inconsistency measures

of the formulas in 𝑅, e.g., [22, 32]. Using such a representation, we

have several ways to define the distance between a repair and a KB.

Definition 4.29. Let K ∈ K and 𝑅 ∈ R(K). Let −→𝑅 = ⟨𝑣1, . . . , 𝑣𝑛⟩
and

−→
K = ⟨𝑢1, . . . , 𝑢𝑛⟩ be the vector representations of 𝑅 and K ,

respectively
4
. We consider two vector-based distances between

K and 𝑅 defined as:

𝑑∞ (𝑅,K) = ∥
−→
K − −→

𝑅 ∥∞ = max

1≤𝑖≤𝑛
|𝑣𝑖 − 𝑢𝑖 | (∞-norm)

𝑑1 (𝑅,K) = ∥
−→
K − −→

𝑅 ∥1 =
∑︁

1≤𝑖≤𝑛
|𝑣𝑖 − 𝑢𝑖 | (1-norm)

Proposition 4.30. ≽𝑑∞
dist

and ≽𝑑1
dist

satisfy Abstraction, Consis-
tency, Non-Emptiness, Non-Discrimination, and Non-Triviality prin-
ciples. However, ≽𝑑∞

dist
and ≽𝑑1

dist
do not satisfy Coverness, Reducibility,

Improvement, Stability, or Uniqueness. Note that the Monotonicity

is not applicable. If
−→
𝑅 =

−→
𝑅′ for 𝑅 � 𝑅′, then ≽𝑑∞

dist
and ≽𝑑1

dist
satisfy

Equivalence Invariance.

Proposition 4.31 shows that the (weighted) hamming distance is

a special case of the 1-norm vector-based distance.

Proposition 4.31. Let K ∈ K s.t. K = {𝛼1, . . . , 𝛼𝑛}. Then:
• 𝑑ℎ (𝑅,K) = 𝑑1 (𝑅,K) by taking

−→
K = ⟨1, . . . , 1⟩,−→𝑅 = ⟨𝑣1, . . . , 𝑣𝑛⟩

with 𝑣𝑖 = 1 if 𝛼𝑖 ∈ 𝑅 and 𝑣𝑖 = 0, otherwise.

• 𝑑𝑣 (𝑅,K) = 𝑑1 (𝑅,K) by taking
−→
K = ⟨𝑣 (𝛼1), . . . , 𝑣 (𝛼𝑛)⟩,

−→
𝑅 =

⟨𝑣1, . . . , 𝑣𝑛⟩ with 𝑣𝑖 = 𝑣 (𝛼𝑖 ) if 𝛼𝑖 ∈ 𝑅 and 𝑣𝑖 = 0, otherwise.

In [32], the authors defined a preference relation 𝐿⪰
max

among

repairs, which compares the Top-1 elements of two vectors —sorted

in decreasing order— composed by the inconsistency measures of

the concerned formulas. This can be viewed as a special case of 𝑑∞.

Proposition 4.32. LetK ∈ K and𝑅, 𝑅′ ∈ R(K). Then,𝐿⪰
max

(𝑅′, 𝑅)
iff 𝑑∞ (𝑅,K) ≥ 𝑑∞ (𝑅′,K) for

−→
K =

−→
0 .

As discussed above, our second category of repair selection strate-

gies is based on certain formulas characterisation. In particular,

such category can be instantiated in different ways. A basic method

is to use inconsistency measures [1, 4, 16, 18, 26, 27] to rank or-

der the formulas according to their contribution to make the KB

inconsistent.

For the distance-based strategies, we can achieve it by the conflict-

based partition approach. Formally, we say the conflict-based par-
tition ofK ∈ K is P(K) = (P1, . . . ,P𝑚) with𝑚 = |C(K)| +1 such
that P𝑖 = {𝛼 ∈ K | |C(𝛼,K)| = 𝑖 − 1}. One can use such a conflict-

based partition of K to have a formula weight, formula distance

function, and a vector representation of its repairs as follows:

• The conflict-based weight of 𝛼 ∈ K is 𝑣 (𝛼) = 1/𝑖 , if 𝛼 ∈ P𝑖 .

• For 𝛼 ∈ P𝑖 , 𝛽 ∈ P𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑚), the level-based distance
between 𝛼 and 𝛽 , written𝑑𝐿 (𝛼, 𝛽), is defined as (i)𝑑𝐿 (𝛼, 𝛽) =
|𝑖 − 𝑗 | + 1 if 𝛼 ≠ 𝛽 , and (ii) 𝑑𝐿 (𝛼, 𝛼) = 0.

• For a repair 𝑅 ∈ R(K), the partition-based repair vector
of 𝑅 is

−→
𝑅 = ⟨𝑣1, . . . , 𝑣𝑚⟩ with 𝑣𝑖 = |𝑅⋂P𝑖 | for 1 ≤ 𝑖 ≤ 𝑚.

4
We assume that

−→R and

−→
K have the same dimension by (possibly) adding 0 for the

missing values in 𝑅.

Example 4.33 (Example 4.3 contd.). K has two conflicts: C1 =

{𝑎,¬𝑎} and C2 = {𝑎,¬𝑏,¬𝑎 ∨ 𝑏}. So, PC (K) = (∅, {¬𝑎,¬𝑏,¬𝑎 ∨
𝑏}, {𝑎}). We have 𝑣 (𝑎) = 1/3, 𝑣 (¬𝑎) = 𝑣 (¬𝑏) = 𝑣 (¬𝑎 ∨ 𝑏) = 1/2.
Recall the three repairs R1,R2,R3 of K in Example 4.3. Then,

𝑑𝑣 (R1,K) = 1/3, 𝑑𝑣 (R2,K) = 𝑑𝑣 (R3,K) = 1/2 + 1/2 = 1. Hence,

R1 is optimal w.r.t. ≽𝑑𝑣dist, coinciding with the ≽
card

strategy.

For 𝛽1, 𝛽2 ∈ {¬𝑎,¬𝑏,¬𝑎 ∨ 𝑏} and 𝛽1 ≠ 𝛽2, we have 𝑑𝐿 (𝛽1, 𝑎) = 2,

𝑑𝐿 (𝛽1, 𝛽2) = 1. So,𝑑Hsdf (R1,K) = 2, 𝑑Hsdf (R2,K) = 𝑑Hsdf (R3,K) =
1. Hence, R2,R3 are the preferred repairs w.r.t. the ≽𝑑Hdsfdist strat-

egy, which coincides with ≽#
comp

(Example 4.6), as well as with

≽cover. Moreover, we have

−→R1 = ⟨0, 3, 0⟩, −→R2 =
−→R3 = ⟨0, 1, 1⟩, and

−→
K = ⟨0, 3, 1⟩. By the definition of ∞-norm and 1-norm, we have

that R1 is the preferred repair w.r.t. ≽𝑑∞dist and ≽
𝑑1
dist strategies.

Example 4.33 shows that the strategy ≽𝑑Hsdfdist yields a different

result from other strategies (e.g., ≽𝑑∞dist and ≽
𝑑1
dist) though they share

the same principles as described in Table 1. We conclude that satis-

fying the same principles does not guarantee agreement on optimal

repair selection, which confirms the same conclusion for ranking of

arguments in abstract argumentation frameworks [2]. In addition,

we observe that ≽𝑑𝑣dist and ≽
𝑑∞
dist provide the same result for the KB

K . However, they differ from each other in terms of Equivalence
Invariance and Improvement principles (see Table 1). It is clear that
these two strategies cannot return the same result on all KBs. This

shows that our principles give an abstract and effective way to

discriminate among these optimal repair selection strategies.

5 FEASIBILITY STUDY
In this paper, we presented several novel strategies for selecting

preferred repairs. Due to space constraints, we focus on a prelimi-

nary empirical study comparing the compatibility-based and the

cardinality-based strategies. Given an inconsistent KB, our algo-

rithm takes a set of conflicts as input and outputs its preferred

repairs. This is a reasonable setting because the number of conflicts

is often of limited size [6, 8, 32]. One main difference in our setting

compared to existing literature is that the conflicts are not only

binary as in the classical DL-Lite [6, 8]. To better implement the

compatibility-based strategy, we mention the next two remarks:

Remark 1. For 𝑅1, 𝑅2 ∈ R(K), if 𝑅1 and 𝑅2 are compatible, there

exists a conflict 𝐶 ∈ C(K) and 𝑎, 𝑏, 𝑐 ∈ 𝐶 such that 𝑎 ∈ 𝑅1 \ 𝑅2, 𝑏 ∈
𝑅2 \ 𝑅1, and 𝑐 ∈ 𝑅1 ∩ 𝑅2. Due to this fact, binary conflicts can be

avoided while checking the compatibility of two repairs.

Remark 2. Consider the graph representation𝐺C (K) ofK [20]:

Each vertex is labeled by a conflict 𝐶 ∈ C(K); For each 𝐶,𝐶′ ∈
C(K) such that 𝐶 ∩ 𝐶′ ≠ ∅, there exists an edge between 𝐶 and

𝐶′
. Let𝐺𝑖 (1 ≤ 𝑖 ≤ 𝑛) be the connected components of 𝐺C (K) and

𝑂𝑅(K) be the preferred repairs of K . Then, 𝑂𝑅(K) = 𝑂𝑅(𝐺1) ⊗
· · · ⊗ 𝑂𝑅(𝐺𝑖 ) ⊗ · · · ⊗ 𝑂𝑅(𝐺𝑛) (where S1 ⊗ S2 B {𝑆1 ∪ 𝑆2 | 𝑆1 ∈
S1, 𝑆2 ∈ S2} for a set 𝑆 and S1, S2 ⊆ 2

𝑆
). So, the computation of

preferred repairs of a KB can be decomposed into the computation

of the preferred repairs of the connected components of 𝐺C (K).
To test the feasibility of our framework, we construct a KB using

the National Downloadable File given by the Centers for Medicare

and Medicaid Services
5
, as outlined in [8]. The file contains data

5
https://data.cms.gov/provider-data/
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on healthcare professionals and their respective affiliations. Unlike

[8], which only constructs binary conflicts, we also incorporated a

query stipulating that the same location cannot have more than a

certain number of physicians. This addition enables us to generate a

substantial number of non-binary conflicts, with sizes ranging from

11 to 51. In total, we obtained 35710 (9134 binary and 26576 non-

binary) conflicts for our experiments, resulting in 1888 connected

components. The maximal/minimal/median/average number of

formulas (resp. conflicts) in these components are 2469/2/17/25

(resp. 2438/1/6/20). The repairs are computed using the PySAT tool

[19] for enumerating minimal hitting sets. All experiments were

conducted on a laptop equipped with a 2-Core Intel core i5 CPU

running at 2.70 GHz and 8 GB of RAM. The timeout was set to one

minute for each connected component.

We have the following observations: (1) Among the 1888 com-

ponents, 1588 (84.1%) succeeded in computing the ≽#
comp

preferred

repairs and all (100%) in computing the ≽
card

preferred repairs.

Moreover, the sum of the obtained ≽#
comp

(resp. ≽
card

) preferred

repairs is 10850 (resp. 36489), highlighting that the ≽#
comp

strategy

cuts off more repairs than the ≽
card

one. (2) The ≽
card

preferred

repairs of the whole KB have a fixed size, which contains 32516

facts, while the ≽#
comp

preferred repairs vary from 22895 facts (min)

to 32516 facts (max) with the average equal to 31396. Therefore,

there are cases where the ≽#
comp

are also ≽
card

preferred. (3) The

total facts of our dataset is 46603, among which 34493 (resp. 33947)

appear in some ≽#
comp

(resp. ≽
card

) preferred repairs. This means

that the ≽#
comp

recovers more facts than ≽
card

. We conclude that

computing preferred repairs are feasible for real-world KBs.

6 RELATEDWORK
While a number of methods for selecting preferred repairs exist in

knowledge and databases, this topic is still underdeveloped.

In [30], the authors proposed to select preferred repairs, under

the improvement-based strategies, in relational databases based

on acyclic preference relations among facts appearing in the same

conflict (i.e., the facts that violate the same integrity constraint). Our

framework considers the general case without imposing restriction

on the preference relation, i.e., the preference ordering can hold

between any pair of formulas.

Moreover, Staworko et al. studied some basic properties of re-

pair selection functions [30], namely Non-Emptiness, Monotonicity,
Non-Discrimination, Categoricity (a stricter version of Uniqueness),
and Conservativeness (i.e., a preferred repair must be a repair). Note

that Conservativeness is not relevant in our case since it is trivial.

We enrich this principle set by introducing Abstraction, Equivalence
Invariance, Coverness, Consistency, Reducibility, Improvement, Stabil-
ity, and Non-Triviality principles. We show that the new principles

allow us to discriminate different repair selection strategies. For

example, ≽𝑑𝑣dist behaves differently from the other distance-based

strategies in terms of Equivalence Invariance and Improvement.
Another study which tackled the notion of preference among

repairs in prioritized DL KBs was carried out by [7, 9]. In that

setting, the authors proposed an inconsistency-tolerant framework

to deal with query answering based onmaximum cardinality repairs.

Moreover, Bienvenu et al. applied the improvement-based strategies

to filter preferred repairs from prioritized DL KBs [30]. In this

paper, we identified two categories of repair selection strategies

for arbitrary KBs, and studied their properties w.r.t. a set of 12

principles for PL and DL Lite.

To deal with conflicts over prioritized DL-Lite KBs, the authors

in [6] studied methods for selecting only one preferred repair (w.r.t.

priorities, deductive closure, cardinality and consistency criteria).

However, the selected repair is not necessary ⊆-maximal. Such

limitation is not encountered in our framework since all the outputs

of the presented selection strategies are indeed repairs. Indeed,

Uniqueness contradicts with Coverness and Conservativeness, and is

rejected by all the repair selection strategies studied in this paper.

Recently, [11] presented an inconsistency-tolerant query answer-

ing framework based on the selection from existential rules KBs the

repairs that satisfy an ⊆-maximal set of user preference rules. The

authors have shown that their framework satisfies Non-Emptiness,
Non-Discrimination, and Conservativeness. They also point out that

if no priority relation among formulas is expressed, all repairs are

selected as preferred repairs.

Note that the aforementioned works assume that the priority

between formulas exists, which is not always the case in practice.

In the absence of such priority, we provide two solutions. One is via

selection strategies that require formula information, and the other

is to discriminate among repairs by relying solely on the inherent

structure of a KB.

Meanwhile, some closely related works used inconsistency mea-

sures [18, 31] to select the “less inconsistent" repairs, i.e., repairs

containing formulas with less inconsistency values, in PL KBs [22]

and in the ontology-based data access setting [32]. This is done by

various aggregation functions, e.g. sum, max, lexmax, etc. Then, a

set of desirable properties were considered to characterise the scor-

ing and lifting functions. However, no principle has been designed

to study the behaviour of the proposed preferred repair selection

strategies. We showed that their strategies are encompassed by our

framework. In particular, we proposed a family of principles for

optimal repair selection strategies, instead of mere lifting functions.

Indeed, to the best of our knowledge, this is the first principle-based

framework handling the problem of selecting preferred repairs.

7 SUMMARY AND OUTLOOK
This paper introduced a principle-based framework to retrieve best

repairs from inconsistent KBs under a broad family of strategies.

Table 1 summarises the repair selection strategies, classified into

two categories, and their satisfaction of a rich set of rationality

principles. It is shown that our principles give an effective way to

discriminate among these optimal repair selection strategies.

We plan to investigate more principles to analyse repair selection

strategies in a fine-grained way, e.g. identifying the equivalence

and the incompatibility among strategies [2]. We will deploy the

strategies studied in this paper in the context of the well-known

inconsistency-tolerant semantics. Moreover, we will study expla-

nations for positive and negative query answers for the semantics

under different optimal repair selection strategies [24].
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