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ABSTRACT
Aggregating pieces of information or beliefs held by (abstract)
agents is central to a variety of belief merging applications. When
the merging process aims at retrieving an underlying ground truth,
the Condorcet Jury Theorem (CJT) allows identifying voting rules
that almost surely track the true piece of information for large
groups of agents, given that specific conditions are met. As essen-
tial assumptions, the CJT relies on all agents being equally compe-
tent as well as independent from one another. In the search for a
generalization of the CJT applicable to real-world scenarios, both
aforementioned assumptions were weakened separately. In this
work, we provide a generalization of the CJT that allows, at the
same time, for heterogeneous competence levels across agents as
well as a degree of dependence modeled through an opinion leader
exerting influence on the electorate. Additionally, we derive a con-
crete bound on the number of agents necessary to successfully track
the underlying ground truth, and examine the bound’s tightness
by means of statistical simulations.
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1 INTRODUCTION
Frequently, it is necessary to gather data from potentially conflict-
ing sources in order to find the underlying ground truth. Combining
this information by suitable aggregation methods is central to disci-
plines across computer science such as belief merging, information
fusion, as well as multi-agent systems and can be realized through
voting. As theoretical cornerstone, the Condorcet Jury Theorem (CJT)
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provides probabilistic guarantees for determining the presumed
ground truth under specific conditions. Originally, the CJT assumes
agents to be equally competent (homogeneity), to be more likely to
vote for the correct alternative than for a competitor (reliability),
to not influence one another, or to be influenced by an external
factor, in the voting process (independence), and to choose exactly
one (completeness) from two alternatives only (dichotomy) under
majority voting. With that, the classical CJT [3] states the following.

Theorem 1 (Marqis de Condorcet [3]). For odd-numbered,
homogenous groups of independent and reliable agents in a dichotomic
voting setting, the probability that majority voting identifies the cor-
rect alternative
(1) increases monotonically with the number of agents and
(2) converges to 1 as the number of agents goes to infinity.

Typically, (1) is referred to as the non-asymptotic, and (2) as
the asymptotic part of the CJT. Since most applications to real-
world scenarios cannot be guaranteed to adhere to these ideal
conditions, it is central to CJT research to find generalizations
for the asymptotic part to hold under weakened assumptions. For
the non-asymptotic part it was shown, however, that it fails for
small numbers of agents when weakening homogeneity [13] and
that this failure holds for arbitrarily large numbers of voters [9].

Past Generalizations. Given the failure of the non-asymptotic
part, generalizing the CJT typically involves (i) weakening at least
one of the imposed assumptions and (ii) proving that the probability
to correctly identify the true state converges to 1 as the number of
voters approaches infinity under this weakened set of assumptions.
This gives rise to various ways of generalizing the CJT.

Weakening Voting Constraints. A first route of generalization
is to weaken the dichotomy assumption. In that regard, List and
Goodin [12] showed that the asymptotic part continues to hold
when dropping dichotomy from the original assumptions, and in-
stead allowing for any finite number of alternatives under plural-
ity voting, where the alternative that accumulates the most votes
wins. Subsequently, this result was further generalized by giving
up completeness: Everaere, Konieczny, and Marquis [4] showed the
asymptotic statement to remain valid under approval voting, where
any agent may simultaneously vote for any number of alternatives.

Weakening Homogeneity. Generalizing towards a different direc-
tion, Owen, Grofman, and Feld [13] proved, assuming independence,
completeness and dichotomy, the CJT to also hold true when we
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allow for heterogeneous competence levels under majority voting.
In this setting, it is only assumed that, when averaging across all
agents, they are more likely to vote for the correct alternative than
for any other. Finally, Karge and Rudolph [9] showed that the as-
ymptotic statement part of the CJT still holds when allowing for
heterogeneous competence levels, and, at the same time, for any
finite number of alternatives under approval voting.

Weakening Independence. When allowing for interdependent
choices among voters, numerous options to model dependence can
be considered. One standard approach introduces the concept of
an opinion leader (OL) representing an abstract, external influence
(such as extreme environmental conditions in sensor fusion sce-
narios, or actual human agents in political debates like lobbyists
or pundits). Typically, the OL herself does not take part in the vot-
ing process, but approves or disapproves presented alternatives
according to her own competency 𝑝 , i.e. the probability to approve
the correct alternative. Her choice then influences the agents’ vote:
each agent votes according to the OL’s preference rather than his
own “inner voice” with a certain probability 𝜋 .

In prior work generalizing the CJT under an OL’s influence,
Boland, Proschan, and Tong [2] assume homogeneous competence
levels, 𝑝 , across agents and an equally competent OL, 𝑝 = 𝑝 , in a
dichotomous voting setting under majority voting. Shortly after,
Berg [1] extended Boland et al.’s setting to dichotomous weighted
voting rules. Finally, the dichotomic voting setting of Goodin and
Spiekermann [15] allows for the OL’s competency to deviate from
the homogeneous competence levels across agents. Additionally,
they provide a specific threshold for when the asymptotic part of
the CJT breaks depending on 𝜋 and 𝑝 .

Other notions of dependence in CJT generalizations include
Ladha [11], who allows for pairwise correlations among voters
restricting the average correlation coefficients; Kaniovski [7], who
characterizes joint distributions that are, depending on the voter’s
competency and the correlation, beneficial or detrimental to a jury’s
overall competency; and Pivato [14], who admits dependencies but
restricts the average co-variance among voters.

Throughout this work, wemodel dependence along theOLmodel
as it is developed in Boland, Proschan, and Tong [2] which is suf-
ficiently transparent to be applicable to real-world scenarios, and,
at the same time, general enough to capture a variety of applica-
tions. We highlight that we consider a single OL instead of multiple
external influences as we provide a worst-case analysis of the suc-
cess probability to identify the correct alternative. In settings with
multiple OLs, it is typically assumed that the electorate is parti-
tioned into subgroups each being influenced by exactly one OL.
The worst case then occurs when all OLs are perfectly positively
correlated in that the votes across all subgroups are swayed in the
same direction. However, this case is equivalent to having a single
OL influencing the whole group of voters. More generally, it has
been argued that having more opinion leaders increases the group
competence compared to having a single one [15].

Our Contribution. In this work, we (i) generalize the asymptotic
part of the CJT to a setting that simultaneously relaxes all central
assumptions underlying the original CJT. This yields, to the best of
our knowledge, the most general variant of the CJT thus far. Most
prominently, we allow for heterogeneous competence levels across

agents as well as interdependence modeled by means of the OL
- two assumptions that are typically only weakened individually,
but not at the same time. Unlike previous work [14] that does, in
fact, weaken both assumptions, we do not require each agent to
be reliable, but explicitly allow for unreliable or even malicious
agents. Moreover, we (ii) provide a precise threshold for when the
asymptotic part breaks. In order to be better applicable to real-
world applications, we also provide (iii) a tight, implicit bound on
the number of agents necessary to guarantee a prescribed minimal
success probability in our setting, and a less tight, explicit bound
that requires fewer information on the underlying parameters in
an application. With this in mind, our objective is to address a void
in the current CJT literature, which predominantly emphasizes the
asymptotic behavior in the infinite but lacks specific estimations
for real-world scenarios. Finally, we (iv) examine the tightness of
both bounds by means of statistical simulations.

2 PRELIMINARIES
Before introducing our formal framework in depth, we informally
describe our approval voting setting under OL influence (see Fig-
ure 1). In a voting round, the opinion leader and each of the 𝑛 agents
are asked to approve any selection from𝑚 given alternatives (also
referred to as “worlds”). Then each agent determines his “inner
voice”, also referred to as “private signal”, giving rise to the ap-
proval choices he would make if not influenced. The OL reports
her approved alternatives as a “public signal”, announced to the
agents. All agents follow the OL’s public signal (rather than their
private one) with a certain pre-defined probability 𝜋 , which char-
acterizes the OL’s “influence strength”. The final voting result then
follows from aggregating all individual votes that either alternative
receives, where the world receiving the most approvals wins.

Voting. Let W = {𝜔1, . . . , 𝜔𝑚} denote a finite set of 𝑚 alter-
natives, also referred to as worlds or choices, and, likewise A =

{𝑎1, . . . , 𝑎𝑛} to be a finite set of 𝑛 agents. We can then represent a
single approval voting (instance) by𝑉 ⊆ A×W where (𝑎𝑖 , 𝜔 𝑗 ) ∈ 𝑉
means that agent 𝑎𝑖 approves choice 𝜔 𝑗 . Subsequently, we define
the score #𝑉 𝜔 of some choice 𝜔 ∈ W as

#𝑉 𝜔 = |{𝑎𝑖 ∈ A𝑛 | (𝑎𝑖 , 𝜔) ∈ 𝑉 }|.
Finally, the winner of𝑉 is defined to be the alternative that receives
a strictly higher score than any alternative

#𝑉 𝜔 > max
𝜔 ′∈W\{𝜔 }

#𝑉 𝜔 ′ .

Formal Probabilistic Model. The described voting scenario is mod-
eled by a random process that generates 𝜔∗, the OL’s choice as well
as 𝑉 and is govenerd by a joint probability distribution P over
the Bernoulli (i.e., {0, 1}-valued) random variables 𝑋𝜔1

∗ , ..., 𝑋
𝜔𝑚
∗ ,

𝑋
𝜔1
𝑜 , ..., 𝑋

𝜔𝑚
𝑜 as well as 𝑋𝜔1

𝑖
, ..., 𝑋

𝜔𝑚

𝑖
for all agents 1, ..., 𝑖, ..., 𝑛 and

all alternatives 1, ..., 𝑗, ...,𝑚 such that the values taken by these ran-
dom variables represent the outcome of a voting event as follows:
• 𝑋

𝜔 𝑗

∗ is 1 if 𝜔 𝑗 is the true world state (i.e., 𝜔 𝑗 = 𝜔∗), else 0,
• 𝑋

𝜔 𝑗

𝑜 is 1 if the OL approves 𝜔 𝑗 , and 0 otherwise,
• 𝑋

𝜔 𝑗

𝑖
represents the private signal of the 𝑖th agent regarding

his approval of the 𝑗th world state: it is 1 if 𝑎𝑖 privately
approves 𝜔 𝑗 and otherwise 0.
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choose if (𝑎𝑛, 𝜔∗) ∈𝑉

...

choose if (𝑎1, 𝜔𝑖) ∈𝑉

...

choose if (𝑎1, 𝜔𝑚) ∈𝑉

𝜔∗ approved with 𝑝
𝜔∗
𝑛

...

approves 𝜔 𝑗 with 𝑝
𝜔 𝑗
𝑛

...

𝜔𝑚 approved with 𝑝
𝜔𝑚
𝑛

choose if (𝑎𝑖, 𝜔∗) ∈𝑉

...

choose if (𝑎1, 𝜔𝑖) ∈𝑉

...

choose if (𝑎1, 𝜔𝑚) ∈𝑉

𝜔∗ approved with 𝑝
𝜔∗
𝑖

...

approves with 𝜔 𝑗 𝑝
𝜔 𝑗

𝑖

...

𝜔𝑚 approved with 𝑝
𝜔𝑚

𝑖

𝜔 𝑗

...

𝜔∗

...

𝜔𝑚

approved with 𝑝 𝜔∗ =𝑝

approved with 𝑝 𝜔 𝑗

approved with 𝑝 𝜔𝑚

W

Opinion Leader

≥ Δ𝑝

≥ Δ𝑝

choose if (𝑎1, 𝜔∗) ∈𝑉

...

choose if (𝑎1, 𝜔𝑖) ∈𝑉

...

choose if (𝑎1, 𝜔𝑚) ∈𝑉

argmax

𝜋 (1 − 𝜋)

𝜋 (1 − 𝜋)

𝜋 (1 − 𝜋)

...

...

𝜔∗

...

𝜔 𝑗

...

𝜔𝑚

A

approved with 𝑝
𝜔∗
1

approved with 𝑝
𝜔 𝑗

1

approved with 𝑝
𝜔𝑚

1

Agent 𝑎1

Agent 𝑎𝑖
Agent 𝑎𝑛

} 𝑝𝜔∗

avg

} 𝑝𝜔𝑖

avg

} 𝑝𝜔𝑚

avg

} #𝑉𝜔∗
sum

} #𝑉𝜔𝑖

sum

} #𝑉𝜔𝑚

sum

Success:

=

...

...

...

...

...
...

Figure 1: Depiction of the voting process for 𝑛 agents and𝑚
worlds.

Given this joint distribution, we introduce the random vari-
able𝑉𝜔 𝑗

𝑖
representing the final outcome of an agent’s vote, i.e. after

the OL potentially exerted influence. According to our assump-
tion, 𝑉𝜔 𝑗

𝑖
is the probabilistic mixture of 𝑋𝜔 𝑗

𝑜 with probability 𝜋

and of 𝑋𝜔 𝑗

𝑖
with probability 1 − 𝜋 . From this, we obtain for any

𝑥 ∈ {0, 1} that

P(𝑉𝜔 𝑗

𝑖
= 𝑥) = 𝜋P(𝑋𝜔 𝑗

𝑜 = 𝑥) + (1 − 𝜋)P(𝑋𝜔 𝑗

𝑖
= 𝑥) .

We denote by 𝑝𝜔1 , . . . , 𝑝
𝜔
𝑛 the Bernoulli parameters of the “in-

ner voice” random variables 𝑋𝜔
1 , . . . , 𝑋𝜔

𝑛 , for all 𝜔 ∈ W, that
is, 𝑝𝜔 𝑗

𝑖
= P(𝑋𝜔 𝑗

𝑖
= 1). In a similar vein, for every 𝜔 ∈ W, we

let 𝑝𝜔1 , . . . , 𝑝𝜔𝑚 denote the Bernoulli parameters of the random
variables 𝑋𝜔1

𝑜 , . . . , 𝑋
𝜔𝑚
𝑜 . Whether the OL approves the correct al-

ternative, i.e. whether 𝑋𝜔∗
𝑜 = 1, is governed by the parameter,

𝑝 = P(𝑋𝜔∗
𝑜 = 1). For convenience, the expression

(𝑋𝜔 𝑗

∗ =1) ∧
∧

𝜔∈W\{𝜔 𝑗 }
(𝑋𝜔
∗ =0)

will be abbreviated by [𝜔∗ = 𝜔 𝑗 ].
In the following, we define the two central assumptions regard-

ing the joint distribution that are underlying our result; each of
them is also required for all previously presented generalizations
of the CJT. Conditioning upon the actual world state, we may then
formalize the first central assumption imposed on the joint distri-
bution.

Definition 1. A joint distribution satisfies private agent approval
independence if, conditioned on the actual world state, the private
decision to approve any given 𝜔 𝑗 is made independently across all
agents, i.e., for any 𝜔,𝜔 𝑗 ∈ W and any sequence 𝑣1, ..., 𝑣𝑛 of values
from {0, 1} the following holds:

P
( 𝑛∧
𝑖=1

𝑋
𝜔 𝑗

𝑖
= 𝑣𝑖 | [𝜔∗=𝜔]

)
=

𝑛∏
𝑖=1

P
(
𝑋
𝜔 𝑗

𝑖
= 𝑣𝑖 | [𝜔∗=𝜔]

)
.

That is, conditioned on the true world state, the joint probability
of any given pattern of private approval decisions with respect to
a given alternative can be computed by taking the product of the
corresponding marginal probabilities.

A further central assumption deals with the “internal compe-
tency” 𝑝𝜔

𝑘
of the 𝑘th agent regarding his capacity to identify the

true world state among any number of alternatives if no influence
is exerted. With

𝑝𝜔 =
1
𝑛

𝑛∑︁
𝑘=1

𝑝𝜔
𝑘

denoting the average over these “internal competencies”, we can
formalize this assumption as follows.

Definition 2. A joint probability distribution satisfies Δ𝑝-group
reliability for some Δ𝑝 > 0, if the probability, with respect to the
agent’s inner voice, to approve the true world state, averaged across
all agents, is at least by Δ𝑝 higher than the averaged probability for
approving any other state, i.e., for every 𝑛 and 𝜔† ∈ W \ {𝜔∗} holds

𝑝𝜔∗ ≥ Δ𝑝 + 𝑝𝜔† .

Now that we have specified the underlying assumptions, we
proceed to deriving the asymptotic result.

3 GENERALIZING THE CJT
Fixing Notation. Aiming to represent the proof of our generaliza-

tion of the CJT more succinctly, we consider 𝜔∗ fixed and rename
the remaining alternatives accordingly, i.e.W = {𝜔∗, 𝜔1, ..., 𝜔𝑚−1}.
As before, we consider 𝑝 to be the opinion leader’s competency and
𝜋 to be her “influence strength”, i.e., the (globally fixed) probability
for her choice superseding any agent’s own private signal.

Conditioning on the OL’s Choice. As general strategy to derive our
theoretical results, we distinguish the case where the OL chooses
the correct alternative from the case where she is wrong. This
case distinction allows to view the agents as independent in each
subcase.

To prepare the proof of the asymptotic result, we first character-
ize central properties of the random variables from the aforemen-
tioned joint distribution. Recall that, for discrete random variables
𝑋 and 𝑌 , the conditional expectation is given by

E(𝑋 | 𝑌=𝑦) =
∑︁
𝑥

𝑥 P(𝑋=𝑥 | 𝑌=𝑦)

From P
(
𝑉
𝜔 𝑗

𝑖
= 𝑥

)
as well as the conditional expectation for 𝑉𝜔 𝑗

𝑖
,

for every𝜔 𝑗 ∈ W, we obtain the distribution for the score received
by 𝜔 𝑗 and the corresponding expected values for the two different
OL behaviors:

𝑉𝜔 𝑗 =
∑𝑛
𝑘=1𝑉

𝜔 𝑗

𝑘

E(𝑉𝜔 𝑗 | 𝑋𝜔 𝑗

𝑜 =1) = 𝑛(𝜋 + (1−𝜋)𝑝𝜔 𝑗 )

E(𝑉𝜔 𝑗 | 𝑋𝜔 𝑗

𝑜 =0) = 𝑛(1−𝜋)𝑝𝜔 𝑗 .

In the following we will establish lower bounds for the proba-
bility that an electorate of agents successfully tracks the correct
alternative through approval voting under the assumption of agent
approval independence as well as Δ𝑝-group reliability. We will first
establish these bounds separately for the cases of the OL being right
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or wrong and combine them afterward, taking into account the
OL’s competency.

In either case, as general strategy, we consider, agent by agent,
the value 𝑉𝜔∗

𝑖
−𝑉𝜔†

𝑖
. The “composite random variable” 𝑉𝜔∗

𝑖
−𝑉𝜔†

𝑖
can have three possible outcomes:
• 1, if agent 𝑎𝑖 votes for 𝜔∗ but not for 𝜔†,
• −1, if he votes for 𝜔† but not for 𝜔∗, and
• 0 if he votes for both or for none of the two.

We now consider the aggregated random variable 𝑉𝜔∗−𝜔† defined
by

𝑉𝜔∗−𝜔† =
𝑛∑︁

𝑘=1
(𝑉𝜔∗

𝑘
−𝑉𝜔†

𝑘
) =

𝑛∑︁
𝑘=1

𝑉
𝜔∗
𝑘
−

𝑛∑︁
𝑘=1

𝑉
𝜔†
𝑘

= 𝑉𝜔∗−𝑉𝜔†

and observe that 𝜔∗ wins against 𝜔† exactly if 𝑉𝜔∗−𝜔† > 0. In
order to find good probability estimates for this, we utilize Hoeffd-
ing’s inequality [6], which provides a tail estimate for the sum of
independent random variables with the property of exhibiting zero
probability outside a finite interval.

Lemma 1 (Hoeffding [6]). Let𝑋1, . . . , 𝑋𝑛 be independent random
variables satisfying P(𝑙𝑖 ≤ 𝑋𝑖 ≤ 𝑢𝑖 ) = 1 for reals 𝑙𝑖 , 𝑢𝑖 . Consider
the sum of these random variables, 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 . Then for every real

number 𝑡 > 0 holds

P(𝑋 − E(𝑋 ) ≥ 𝑡) ≤ 𝑒
− 2∑𝑛

𝑖=1 (𝑢𝑖−𝑙𝑖 )2
𝑡2

.

We recall that the agent-wise distributions of 𝑉𝜔∗
𝑖
−𝑉𝜔†

𝑖
dis-

cussed above are of this type with 𝑙𝑖 = −1 and 𝑢𝑖 = 1.

The OL is right. We start by conditioning on the fact that the OL
approves the correct alternative. In order to correctly reflect the
worst case, we assume that, for any number of alternatives, the OL
always approves all competitors of𝜔∗. In the following, consider an
arbitrarily chosen but fixed competing alternative 𝜔† ∈ W \ {𝜔∗}
in the approval vote. In a first step, we derive a lower bound for the
probability of 𝜔∗ winning against this fixed competitor, 𝜔†.

Intuitively, the worst-case success probability increases with
growing𝑛, since for𝑋𝜔∗

𝑜 = 1, the distributions for 𝑉
𝜔∗
𝑛 and 𝑉

𝜔†
𝑛 will

get concentratedmore andmore narrowly around 𝜋+(1−𝜋)𝑝𝜔∗ and
𝜋 + (1−𝜋)𝑝𝜔† , respectively, since the OL approves both alternatives
in the worst case. Then, using the strategy described above, we can
obtain a lower bound for the probability that in the course of an
approval vote, the correct choice 𝜔∗ receives more votes than some
fixed competitor 𝜔†. In a next step, we can derive a lower bound
for probability for the winning against all competitors (see the top
part of Table 1 for the details).

The OL is wrong. In a similar vein, we consider the case of 𝑋𝜔∗
𝑜 = 0.

Then, we expect the distributions for 𝑉𝜔∗
𝑛 and 𝑉

𝜔†
𝑛 to be concen-

trated around the values (1−𝜋)𝑝𝜔∗ and 𝜋 + (1−𝜋)𝑝𝜔† , respectively.
This also gives rise to a threshold for 𝜋 for which the asymptotic

part holds. In the worst case, we obtain under the group reliability
assumption that 𝑝𝜔∗ ≥ 𝑝𝜔† + Δ𝑝 . Taking into account the expecta-
tions of 𝜔∗ and 𝜔†, we have to require that

(1 − 𝜋)𝑝𝜔∗ > 𝜋 + (1 − 𝜋)𝑝𝜔† and therefore

𝜋 <
Δ𝑝

Δ𝑝 + 1
.

That is, the expected values for scores of the correct alternative as
well as its strongest competitor are equal or even reversed as soon
as the OL’s influence level 𝜋 violates the above condition. Figure 2
illustrates the range of valid 𝜋-values for all possible Δ𝑝 .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Δ𝑝

𝜋

Figure 2: Permissible 𝜋-values depending on Δ𝑝.

Now given the correct alternative, 𝜔∗, as well as the fixed com-
petitor, 𝜔∗, we again derive a lower bound for the probability that
𝜔∗ receives more votes than 𝜔∗ in an approval vote as well as for
the winning against all competitors (see the middle part of Table 1
for the details).

Aggregating the cases. Now that we have the individual bounds on
the success probabilities conditioned on the OL’s choice, we can
combine both bounds by taking into account the probability for the
OL to be either right or wrong, that is, the OL’s competency, 𝑝 .

As detailed in the bottom part of Table 1, we obtain Equation (5)
as bound for the total worst-case success probability for the correct
alternative winning the approval vote. Note that this probability
approaches 1 with growing 𝑛. That is, in the limit, the overall
expression converges to 1 for any competence value 𝑝 (under the
given restriction for 𝜋 ). Thus, we can state:

Theorem 2. Consider an approval voting setting with𝑚 > 1 alter-
natives, satisfying private agent approval independence (Definition 1)
and Δ𝑝-group reliability (Definition 2) for some Δ𝑝 ∈ (0, 1], influ-
enced by an opinion leader with 𝜋 ∈ [0, Δ𝑝

Δ𝑝+1 ) and 𝑝 ∈ [0, 1]. Then
the probability that approval voting identifies the correct alternative
converges to 1 as the number of agents goes to infinity.

With this result, we can now also provide upper bounds on the
number of agents𝑛 needed to guarantee that the success probability
exceeds a certain prescribed value 𝑃min.

Theorem 3. Consider an approval voting setting as described in
Theorem 2. Then, given a probability 𝑃min < 1, it is guaranteed that
the success probability of the approval voting process is greater than
𝑃min if the number 𝑛 of agents obeys any of the below conditions.

𝑝𝑒−
𝑛
2 Δ𝑝

2 (1−𝜋 )2 + (1−𝑝)𝑒−
𝑛
2 (Δ𝑝 (1−𝜋 )−𝜋 )

2
≤ 1 − 𝑃min

𝑚−1
(7)

2
(Δ𝑝 (1−𝜋) − 𝜋)2

ln
𝑚 − 1

1 − 𝑃min
≤ 𝑛 (8)

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

986



Opinion leader is right

P(𝑉𝜔∗ > 𝑉𝜔† | 𝑋𝜔∗
𝑜 = 1)

= P(𝑉𝜔∗ −𝑉𝜔† > 0 | 𝑋𝜔∗
𝑜 = 1)

= 1 − P(𝑉𝜔∗ −𝑉𝜔† ≤ 0 | 𝑋𝜔∗
𝑜 = 1)

= 1 − P((𝑉𝜔∗ −𝑉𝜔† ) − E(𝑉𝜔∗ −𝑉𝜔† | 𝑋𝜔∗
𝑜 = 1) ≤ −E(𝑉𝜔∗ −𝑉𝜔† | 𝑋𝜔∗

𝑜 = 1) | 𝑋𝜔∗
𝑜 = 1)

= 1 − P((𝑉𝜔† −𝑉𝜔∗ ) − E(𝑉𝜔† −𝑉𝜔∗ | 𝑋𝜔∗
𝑜 = 1) ≥ E(𝑉𝜔∗ | 𝑋𝜔∗

𝑜 = 1) − E(𝑉𝜔† | 𝑋𝜔∗
𝑜 = 1) | 𝑋𝜔∗

𝑜 = 1)
= 1 − P((𝑉𝜔† −𝑉𝜔∗ ) − E(𝑉𝜔† −𝑉𝜔∗ | 𝑋𝜔∗

𝑜 = 1) ≥ 𝑛(𝜋 + (1 − 𝜋)𝑝𝜔∗ ) − 𝑛(𝜋 + (1 − 𝜋)𝑝𝜔† ) | 𝑋𝜔∗
𝑜 = 1)

≥ 1 − P((𝑉𝜔† −𝑉𝜔∗ ) − E(𝑉𝜔† −𝑉𝜔∗ | 𝑋𝜔∗
𝑜 = 1) ≥ 𝑛(1 − 𝜋)Δ𝑝 | 𝑋𝜔∗

𝑜 = 1)

≥ 1 − 𝑒−
2

4𝑛 (𝑛 (1−𝜋 )Δ𝑝 )
2

Hoeffding noting that𝑢𝑖 − 𝑙𝑖 = 2 for all 𝑖

= 1 − 𝑒−
1
2𝑛Δ𝑝

2 (1−𝜋 )2 (1)

Then we obtain for the winning against all competitors:

P(
∧
𝜔†∈W\{𝜔∗ }

𝑉𝜔∗ > 𝑉𝜔† | 𝑋𝜔∗
𝑜 = 1) ≥ 1 −∑𝑚−1

𝑖=1 (1 − P(𝑉𝜔∗ > 𝑉𝜔𝑖 | 𝑋𝜔∗
𝑜 = 1))

= 1 −∑𝑚−1
𝑖=1 (1 − (1 − 𝑒

− 1
2𝑛Δ𝑝

2 (1−𝜋 )2 )) Equation (1)

= 1 − (𝑚 − 1)𝑒−
1
2𝑛Δ𝑝

2 (1−𝜋 )2 (2)

Opinion leader is wrong

P(𝑉𝜔∗ > 𝑉𝜔† | 𝑋𝜔∗
𝑜 = 0)

= P(𝑉𝜔∗ −𝑉𝜔† > 0 | 𝑋𝜔∗
𝑜 = 0)

= 1 − P(𝑉𝜔∗ −𝑉𝜔† ≤ 0 | 𝑋𝜔∗
𝑜 = 0)

= 1 − P((𝑉𝜔∗ −𝑉𝜔† ) − E(𝑉𝜔∗ −𝑉𝜔† | 𝑋𝜔∗
𝑜 = 0) ≤ −E(𝑉𝜔∗ −𝑉𝜔† | 𝑋𝜔∗

𝑜 = 0) | 𝑋𝜔∗
𝑜 = 0)

= 1 − P((𝑉𝜔† −𝑉𝜔∗ ) − E(𝑉𝜔† −𝑉𝜔∗ | 𝑋𝜔∗
𝑜 = 0) ≥ E(𝑉𝜔∗ | 𝑋𝜔∗

𝑜 = 0) − E(𝑉𝜔† | 𝑋𝜔∗
𝑜 = 0) | 𝑋𝜔∗

𝑜 = 0)
= 1 − P((𝑉𝜔† −𝑉𝜔∗ ) − E(𝑉𝜔† −𝑉𝜔∗ | 𝑋𝜔∗

𝑜 = 0) ≥ 𝑛(1 − 𝜋)𝑝𝜔∗ − 𝑛(𝜋 + (1 − 𝜋)𝑝𝜔† ) | 𝑋𝜔∗
𝑜 = 0)

≥ 1 − P((𝑉𝜔† −𝑉𝜔∗ ) − E(𝑉𝜔† −𝑉𝜔∗ | 𝑋𝜔∗
𝑜 = 0) ≥ 𝑛

(
(1−𝜋)Δ𝑝 − 𝜋

)
| 𝑋𝜔∗

𝑜 = 0)

≥ 1 − 𝑒−
2

4𝑛

(
𝑛
(
(1−𝜋 )Δ𝑝−𝜋

) )2
Hoeffding with𝑢𝑖 − 𝑙𝑖 = 2 for all 𝑖 , assuming 𝜋 ≤ Δ𝑝

Δ𝑝+1

≥ 1 − 𝑒−
1
2𝑛
(
Δ𝑝 (1−𝜋 )−𝜋

)2
(3)

Then we obtain for the winning against all competitors:

P(
∧
𝜔†∈W\{𝜔∗ }

𝑉𝜔∗ > 𝑉𝜔† | 𝑋𝜔∗
𝑜 = 0) ≥ 1 −∑𝑚−1

𝑖=1 (1 − P(𝑉𝜔∗ > 𝑉𝜔𝑖 | 𝑋𝜔∗
𝑜 = 0))

= 1 −∑𝑚−1
𝑖=1 (1 − (1 − (𝑒

− 1
2𝑛
(
Δ𝑝 (1−𝜋 )−𝜋

)2
))) Equation (3)

= 1 − (𝑚 − 1)𝑒−
1
2𝑛
(
Δ𝑝 (1−𝜋 )−𝜋

)2
(4)

Aggregating the cases

P(
∧
𝜔†∈W\{𝜔∗ }

𝑋𝜔∗ > 𝑋𝜔† ) = P(𝑋𝜔∗
𝑜 = 1) · P(

∧
𝜔†∈W\{𝜔∗ }

𝑉𝜔∗ > 𝑉𝜔† | 𝑋𝜔∗
𝑜 = 1) + P(𝑋𝜔∗

𝑜 = 0) · P(
∧
𝜔†∈W\{𝜔∗ }

𝑉𝜔∗ > 𝑉𝜔† | 𝑋𝜔∗
𝑜 = 0)

≥ 𝑝
(
1 − (𝑚 − 1)𝑒−

1
2𝑛Δ𝑝

2 (1−𝜋 )2 ) + (1 − 𝑝) (1 − (𝑚 − 1)𝑒−
1
2𝑛 (Δ𝑝 (1−𝜋 )−𝜋 )

2 )
Equation (2) and Equation (4)

= 1 − (𝑚 − 1)
(
𝑝𝑒−

1
2𝑛Δ𝑝

2 (1−𝜋 )2 + (1 − 𝑝)𝑒−
1
2𝑛 (Δ𝑝 (1−𝜋 )−𝜋 )

2 )
(5)

≥ 1 − (𝑚 − 1)𝑒−
1
2𝑛 (Δ𝑝 (1−𝜋 )−𝜋 )

2
noting that Δ𝑝2 (1 − 𝜋 )2 ≥ (Δ𝑝 (1−𝜋 ) − 𝜋 )2 due to 𝜋 ≤ Δ𝑝

Δ𝑝+1
(6)

Table 1: Derivations of bounds for success probability, conditioned on the opinion leader’s correctness (top and middle) and
aggregated (bottom).
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The first constraint, following directly from Equation (5), is
tighter than the second, which is obtained from Equation (6). The
second condition is still useful as it does not require knowledge of
the value of 𝑝 , and it allows for the direct computation of a lower
bound for 𝑛.

We note that for 𝜋 = 0 (i.e. when the OL exerts no influence), the
above bound improves on one that was previously shown for the
identical setting without OL [9] for cases with not too big values of
Δ𝑝 , namely

2
Δ𝑝2 ln

2(𝑚 − 1)
1 − 𝑃min

≤ 𝑛.

That is, this framework is indeed a generalization as it dominates
this previously shown result.

4 EXPERIMENTS
The theoretical results obtained in the previous section provide
upper bounds on the number of agents necessary to successfully
track the underlying ground truth with a high enough chance. For
further insights into the usefulness of these findings, we conducted
experiments [8] to evaluate the tightness of both the implicit and
the explicit bound. To this end, we used statistical simulations as
described in the following.

Setup. Our experiments were conducted on a high-performance
computing system. They were run on four nodes in parallel, each
with two 12 core Intel(R) Xeon(R) E5-2680 v3 CPU 2.5GHz with
128GB local memory on SSD.

Experimental Design. Given that our goal was to establish worst-
case guarantees, the conditions for our experimental simulations
were picked with the goal of reproducing worst-case circumstances.
We found this to be the case for homogeneous competence levels
among the agents and, toward the highest possible variance, choos-
ing for a given Δ𝑝 , any agent’s probabilities to vote for right/wrong
to be centered around 1

2 , that is, we homogeneously (i.e., for all
𝑖 ∈ {1, . . . , 𝑛}) set 𝑝𝜔∗

𝑖
=

1+Δ𝑝
2 while we set 𝑝𝜔†

𝑖
=

1−Δ𝑝
2 for all

wrong worlds 𝜔†. Likewise, as in our theoretical considerations,
we assume the opinion leader always votes in favor of all false
alternatives.

We went on to compare realistic homogeneous experimental set-
tings: we stipulate a high success probability threshold (𝑃𝑚𝑖𝑛 = 0.9)
and – for the sake of simplicity – consider voting on only𝑚 = 2 al-
ternatives. We consider different choices for the OL’s competency 𝑝
ranging between 0 and 1, where 𝑝 = 0 reflects the situation of a
“malicious” OL, who has full information of the true world state
but always votes exactly the other way, while 𝑝 = 1 describes the
case where the OL blindly approves all alternatives, right or wrong.
For these settings, we iterated through 25 Δ𝑝-values across the
unit interval, excluding the prohibited case of Δ𝑝 = 0. For each
Δ𝑝-value, we compared our two bounds against the “empirical”
value obtained through repeated simulations of the voting process
under the given parameters. This series was recorded for four dif-
ferent values of 𝜋 (the strength of the OL’s influence), relative to
the threshold of Δ𝑝

Δ𝑝+1 established in Section 3.
In our simulations, the number 𝑛 of required agents was em-

pirically determined by consecutive forward-calculations, where

supposed values of 𝑛 were tested by simulating a high number of
voting rounds under the given parameter setting. We used binary
stochastic search [10] to speed up the identification of the count
of agents empirically needed to surpass the given minimal success
probability.

Experiments in Pseudocode. The voting simulations were con-
ducted as depicted by Algorithm 1. Identifying the required number
of agents is based on a noisy binary search algorithm with back-
tracking that was developed by Karp and Kleinberg [10]. The search
algorithm is adopted to our setting and given by Algorithm 2. The
overarching concept involves performing a random walk on an
infinite rooted binary tree whose nodes correspond to tuples (𝑎, 𝑏)
such that 𝑎, 𝑏 ∈ {0, . . . , ub}where𝑢𝑏 constitutes the upper bound of
agents in the tree. The overall objective is to find the exact number
of agents within the set {0, . . . , ub} such that less agents are unlikely
and more agents unnessecary to surpass the minimal prescribed
success probability, 𝑃𝑚𝑖𝑛 . A specific number of agents, referred to
as 𝑥 in line 3 of Algorithm 2, within a node is used to perform voting
simulations, until some particular node passes the termination test
(lines 5-17), thereby identifying the number of agents required to
surpass 𝑃𝑚𝑖𝑛 .

The termination test is subject to probabilistic conditions as
specified by Karp and Kleinberg [10] that guarantee to identify
the exact number of agents efficiently and reliably. Intuitively, the
termination test uses Algorithm 1 like a coin toss, calling the proce-
dure ⌈𝑠 ·ln(ub)⌉ times with a probability of 1/ln(ub) . Algorithm 1 sim-
ulates𝑘 ·ℓ votingswith a specified value for each ofΔ𝑝, 𝑝, 𝑃min and𝜋 ,
and returns a bit, encoding whether to accept the current 𝑛 ∈ {𝑎, 𝑏},
viz., 1, if the worst-case probability surpassed 𝑃min, and 0 otherwise.
More specifically, Algorithm 1 first constructs the agent’s private
signals (line 5) and subsequently computes each agent’s final votes
(lines 6-16). This process also assesses whether each agent follows
the OL or relies on their private signal (lines 8 -15). Finally, the
algorithm evaluates whether the correct alternative won a single
voting simulation (lines 17-18), updates𝑤𝑝𝑠 (line 20) to reflect the
proportion of voting rounds won, and checks if this proportion
exceeds 𝑃𝑚𝑖𝑛 (line 22).

In the event that a node fails the termination test (evaluated in
lines 5-17 in Algorithm 2), two possible outcomes are considered.

Firstly, it is assessed whether backtracking has to take place,
indicating that the algorithm has gone down the wrong branch as
the current node does not contain the required number of agents.
Alternatively, two new nodes are constructed. Backtracking occurs
(lines 21-22) if, for a given tuple, (𝑎, 𝑏), one of two conditions is
met: either the lower number of agents, 𝑎, successfully surpasses
𝑃𝑚𝑖𝑛 twice during simulations, or the greater number of agents, 𝑏,
fails to exceed 𝑃𝑚𝑖𝑛 . If neither of these conditions holds for a given
node, the binary tree construction generates two new nodes (lines
24-28). In this process, the tuple (𝑎, 𝑏) is divided into two tuples:
(𝑎, 𝑐) and (𝑐, 𝑏). Lines 3-21 and lines 6-16 in Algorithm 1, and the
simulations required in lines 7-9 and line 18 in Algorithm 2 ran in
parallel, respectively. 𝑛 = 0 returns were mapped to 𝑛 = 1, as we
require at least one agent.

Throughout all experimentswe set 𝑟 = 𝑝 ( 2
Δ𝑝2 (𝜋−1)2 ) ln(

2(𝑚−1)
1−𝑃min

)+
(1 − 𝑝) ( 2

(Δ𝑝 (𝜋−1)+𝜋 )2 ) ln(2(
𝑚−1

1−𝑃min
)). This constitutes the upper
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Algorithm 1: Simulations with 𝑛 agents.
1 Procedure simulations(𝑛,𝑚, 𝑘, ℓ,Δ𝑝, 𝑝, 𝑃min, 𝜋)
2 wps← ∅; (𝑝𝜔∗ , 𝑝𝜔 ) ← (1/2 + Δ𝑝/2, 1/2 − Δ𝑝/2);
3 for 1 . . . 𝑘 do
4 u← uniform distribution over [0, 1];

5 ps←

𝑝𝜔∗ 𝑝𝜔 . . . 𝑝𝜔

.

.

.
.
.
.

. . .
.
.
.

𝑝𝜔∗ 𝑝𝜔 . . . 𝑝𝜔

 ∈ [0, 1]
𝑛×𝑚 ;

6 for 1 . . . ℓ do
7 votes← [𝑣𝑖 𝑗 ] ∈ {0, 1}𝑛×𝑚 ;
8 for 𝑝𝑖 𝑗 ∈ ps do
9 if 𝑋 ∈ u < 𝜋 then
10 𝑣𝑖 𝑗 ← signal if 𝑗 = 1 else 1;
11 end
12 else
13 𝑣𝑖 𝑗 ← 0 if 𝑋 ∈ u > 𝑝𝑖 𝑗 else 1;
14 end
15 end
16 end
17 if

∑𝑛
𝑖=1 𝑣𝑖1 > max

2≤ 𝑗≤𝑚
(∑𝑛

𝑖=1 𝑣𝑖 𝑗 ) then

18 wins← wins + 1;
19 end
20 wps← wps ∪ {wins/ℓ};
21 end
22 return 1 if

∑
𝑝∈wps 𝑝/𝑘 > 𝑃min otherwise 0;

bound for the number of agents in Line 1 of Algorithm 2. Parame-
ters 𝑘 , ℓ and 𝑠 varied, depending on observed outliers.

Results and Evaluation. Figure 3 plots, side by side for two dif-
ferent OL competency values, the numbers of agents determined
via our simulation-based method (solid lines) as well as the corre-
sponding implicit (dashed) and explicit (dotted) bounds according
to Theorem 3. As described above, we display curves for four dif-
ferent 𝜋-values (0 and 0.7) and have Δ𝑝 traverse the interval (0, 1].
Below these diagrams, we show plots of the factor by which our
bounds are higher than the experimentally determined number of
agents.

On one hand, we find that throughout all our experiments, the
implicit bound stays in the same order of magnitude as the ex-
perimental findings, typically between a factor of 4 and 10, very
occasionally up to 20. On the other hand, the explicit bound – while
acceptable in many settings – can deviate significantly from the
empirical value, in particular for large values of 𝑝 and 𝜋 . This be-
comes very apparent in Figure 4, where for a high fixed value of
𝜋 , the agent estimates and the two bounds are displayed for vary-
ing 𝑝 . Note that, since the explicit bound does not depend on 𝑝

whatsoever, this bound is displayed as a horizontal line.
These findings indicate that the derived implicit bound performs

consistently quite well across all considered parameter settings.
Still, it is evident that the bound can be improved.

Algorithm 2: Noisy Binary Search with Backtracking.
In :𝑚,𝑘, ℓ, 𝑠 ∈ N; Δ𝑝, 𝑝, 𝑃min, 𝜋, 𝑟 ∈ R
Out :number of agents 𝑛 ∈ N

1 ub← 𝑟 + 𝑟/10 + 1; (𝑎, 𝑏) ← (0, ub); array T← [(𝑎, 𝑏)];
2 𝑜 ← ⌈𝑠 · ln(ub)⌉; u← uniform distribution over [0, 1];
3 result(𝑥) ← simulations(𝑥,𝑚, 𝑘, ℓ,Δ𝑝, 𝑝, 𝑃min);
4 while true do
5 if 1/ln(ub) > 𝑋 ∈ u then
6 (𝑟𝑎, 𝑟𝑏 ) ← (0, 0);
7 for 𝑖 = 1 . . . 𝑜 do
8 (𝑟𝑎, 𝑟𝑏 ) ← (𝑟𝑎 + result(𝑎), 𝑟𝑏 + result(𝑏));
9 end

10 (ℎ𝑎, ℎ𝑏 ) ← (𝑟𝑎/𝑜, 𝑟𝑏/𝑜);
11 if 𝑏 = 𝑎 + 1 then
12 return 𝑎 if ℎ𝑎 < 0.5 < ℎ𝑏 ;
13 end
14 else
15 return 𝑥 if 1/4 ≤ ℎ𝑥∈{𝑎,𝑏} ≤ 3/4;
16 end
17 end
18 (𝑟𝑎, 𝑟𝑏 ) ←

(result(𝑎) + result(𝑎), result(𝑏) + result(𝑏));
19 if 𝑟𝑎 = 2 or 𝑟𝑏 = 0 then
20 // backtracking
21 remove last element from T;
22 (𝑎, 𝑏) ← last element in T;
23 end
24 else
25 𝑐 ← ⌊𝑎+𝑏/2⌋;
26 (𝑎, 𝑏) ← (𝑎, 𝑐) if result(𝑐) = 1 otherwise (𝑐, 𝑏);
27 add (𝑎, 𝑏) to T if (𝑎, 𝑏) is not last element in T;
28 end
29 end

5 CONCLUSION
In this paper, we generalized the asymptotic part of the Condorcet
Jury Theorem to a setting that simultaneously weakens all of the
central assumptions underlying the CJT in its original form. In more
detail, our framework drops dichotomy by allowing to choose from
any finite number of alternatives. Also, doing awaywith the require-
ment of completeness, we allow each agent to vote for any subset
of those alternatives. Likewise, allowing for different competence
levels across agents, we dropped the homogeneity assumption, and
– in order to better cope with the diversity of competence levels we
thereby permit – we weakened reliability, in that our setting allows
some agents to be unreliable or even malicious as long as the elec-
torate as a whole is reliable on average. Most importantly, we also
relaxed the strict independence constraint, by showing that a cer-
tain level of correlation between agents’ decisions can be tolerated,
which we demonstrated via the common technique of postulating
an opinion leader, exerting influence on all the agents. The opinion
leader can be used to model noise systematically interfering with
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Figure 3: Empirical values and bounds over varying Δ𝑝.
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Figure 4: Influence of 𝑝 on the empirical and bound values.

the private signal of the (abstract) agents in the electorate, or even
deliberate malicious external influence.

We determined the admissible values for 𝜋 , that is, the amount
of influence the opinion leader may safely exert without breaking
the CJT. Finally, we demonstrated by means of statistical simu-
lations that our implicit bound deviates from the experimentally

determined values by a factor between 4 and 20, ensuring that
throughout all parameter settings, the actual number of agents
needed and the conservative worst-case estimate delivered by our
findings will be within the same order of magnitude.

Moving forward, we plan to find an improved explicit approxi-
mation of the implicit bound given in Theorem 3, better than the
explicit bound reported there. To this end, we intend to use ap-
proximations by polynomials of an appropriate degree. In a similar
vein, we believe that the implicit bound – which, after all, still con-
sistently deviates from the empirical value by a factor of at least
4 – can be further improved by employing better tail probability
estimates than the ones currently used, most notably by resorting
to a refined variant of Hoeffding’s inequality [5].
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